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Living systems are molecular assemblies whose dynamics are maintained
by non-equilibrium chemical reactions. To date, artificial cells have been
studied from such physical and chemical viewpoints. This review briefly
gives a perspective on using DNA droplets in constructing artificial cells.
A DNA droplet is a coacervate composed of DNA nanostructures, a novel
category of synthetic DNA self-assembled systems. The DNA droplets
have programmability in physical properties based on DNA base sequence
design. The aspect of DNA as an information molecule allows physical
and chemical control of nanostructure formation, molecular assembly and
molecular reactions through the design of DNA base pairing. As a result,
the construction of artificial cells equipped with non-equilibrium behaviours
such as dynamical motions, phase separations, molecular sensing and com-
putation using chemical energy is becoming possible. This review mainly
focuses on such dynamical DNA droplets for artificial cell research in
terms of computation and non-equilibrium chemical reactions.

1. Introduction

The basic building blocks of living systems are cells. Cells are micrometre-sized
molecular assemblies whose dynamics are maintained by non-equilibrium
chemical reactions and physical phenomena of biological soft matter. For
example, an immune cell, macrophage, can sense bacteria, virus-infected cells
and tumour cells, and phagocytose such enemies using non-equilibrium molecu-
lar reaction networks and fluidic motion and deformation of biological soft
matter in its cell [1,2]. Another example is a cell nucleus: a cell appropriately sep-
arates replicated chromosomes and divides the nucleus synchronously with the
cell division [1,2]. The generation of such sophisticated dynamical behaviours
generally requires non-equilibrium chemical reaction systems [3] with a soft,
deformable reaction field, where energy, matter and information flows into
and out of the soft reaction field are sustained. So far, many studies have been
reported on non-equilibrium protocell models (figure 1) [4-7] and molecular
robots inspired by cell-like dynamical behaviours [8,9]. There are two types of
systems for artificial cells: (i) ‘membranous’ molecular assemblies using lipid
bilayer vesicles (liposomes) or water-in-oil droplets [4-7,10-13] and (ii) ‘mem-
brane-less’ molecular assemblies using hydrogels, biomolecular coacervates
(a form of associative liquid-liquid phase-separated (LLPS) droplets), or segrega-
tive LLPS droplets [14-19]. In both cases, the goal is to create a dynamical
artificial cell with autonomous functions based on non-equilibrium chemical
reaction systems.

© 2023 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
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Figure 1. Concept of non-equilibrium artificial cells showing various dynamics and functions such as autonomous motion, deformation, division, self-reproduction

and computation.
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Figure 2. Protocell models. (a) Protocell model of a self-replicating vesicle under a non-equilibrium condition proposed by Szostak et al. [4]. (b) Von Neumann’s
self-reproducing automaton (self-replicating machine). A: universal constructor. B: Copier. C: Controller. Ip: Instruction tape. D: Hardware including A, B and C. E:

Software. Image adapted from [6]. Copyright 2011 National Academy of Sciences.

2. Molecular computing and informatics aspects

of artificial cells

Although replicating the body under a non-equilibrium
condition (figure 24) [4] is important for life, replicating infor-
mation is also essential. The self-reproducing automaton
(self-replicating machine) proposed by John von Neumann
(figure 2b) [22,23] gives a perspective of life from an informatics
viewpoint [5,6]. The self-reproducing automaton comprises
hardware (D in figure 2b) and software (E); the hardware con-
sists of a universal constructor (A), copier (B) and controller
(©). The software has an instruction tape (Ip), which plays
the roles of code and program. The universal constructor
builds the offspring’s hardware by following the command
of the instruction tape. The copier duplicates the instruction
tape. The controller controls the universal constructor and
the copier. The offspring replicates itself again in the same
way. In biological systems, the instruction tape is genetic infor-
mation such as DNA; non-equilibrium chemical reaction

networks realize the universal constructor, copier and control-
ler. Thus, the molecular program coded with information
molecules and the non-equilibrium chemical reaction networks
are the essence of an autonomous and dynamical artificial cell
or protocell model; such systems must be encapsulated in a
body, such as a lipid vesicle or a coacervate.

Regarding von Neumann'’s self-reproducing automaton,
DNA would be one of the promising materials for building
artificial cells and protocell models. DNA can work as both
hardware and software: DNA can realize non-equilibrium
chemical reaction networks, even like replication based on
molecular programs on DNA. Although, at this moment, the
functions of the universal constructor and the copier require
catalytic activities provided by enzymes or organic/inorganic
catalysts in addition to DNA molecules, the programmability
of DNA would be essential to design and create artificial cells
in a programmable manner.

DNA has high molecular recognition ability, achieved
by specific Watson—Crick base pairing. The thermodynamic
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stability of base pairing can be estimated based on free energy
calculations using the nearest-neighbour model [24], which
allows the prediction of intramolecular secondary structure
formation and intermolecular association reactions from base
sequences with high accuracy; e.g. the Nucleic Acid Package
(NUPACK) is available for this purpose [25]. Therefore, self-
assembled DNA nanostructures can be precisely designed
and controlled at the nanometre level based on sequence infor-
mation, and this concept has been extended to even micro- to
millimetre scales [26-29]. In DNA nanotechnology, this prop-
erty is called the programmability of DNA. In addition, DNA
nanostructures can be chemically modified by functional
materials such as RNA aptamers, enzymes and metal nano-
particles. With these advantages, DNA nanostructures are
often used for various applications, such as drug delivery
systems and nanodevices for cancer diagnosis in cells [30,31].

Furthermore, Leonard Adleman demonstrated that DNA
molecules could perform mathematical calculations [32]. This
technique is called molecular computing (DNA computing).
Initially, Adleman considered DNA molecules as computational
elements; he generated solution candidates for the directed
Hamiltonian path problem by spontaneous DNA hybridization
and extracted a proper solution using molecular biology
techniques. Subsequently, Shapiro’s group realized a molecular
automaton (autonomous DNA computer) that accepts messen-
ger RNAs (mRNAs) as input and releases DNA outputs that
function as a drug [33,34]. After that, the DNA computing
field has been vigorously pioneering autonomous DNA com-
puters that can perform logical operations based on designed
molecular reaction circuits, just as biological systems realize
genetic circuits and neural networks based on complex molecu-
lar reaction networks of multiple DNA/RNA strands and
enzymes [35-53]. Winfree’s group has demonstrated enzyme-
free autonomous DNA computation systems using nucleic
acid hybridization and strand displacement reactions [35-37],
as well as enzyme-assisted autonomous DNA computation
systems [38,39] (figure 3a). The enzyme-free DNA molecular
computing circuits were extended to more complex dynamical
systems [40,41]. Suyama’s group proposed a reverse transcrip-
tion and transcription-based autonomous computing system
accepting RNA inputs and generating RNA outputs, modelled
on retroviral replication [42,43,55]. Rondelez’s group proposed
the PEN-DNA toolbox system [44—46] as a universal method
to create dynamical systems like biological systems based on
enzyme-assisted DNA reaction circuits. Reif's group recently
showed fast, compact logic circuits using strand-displacing
polymerase [47]. These results showed that designed artificial
complex molecular reaction networks using DNA could
mimic the dynamics of biological systems. Recent progress in
the DNA computing field has reached the development of arti-
ficial cells with dynamical reaction circuits showing oscillation
[48,49] and artificial neural networks (figure 3b) [50,51]. Thus,
DNA computing has a significant advantage in artificial cell
construction in designing molecular inputs and outputs and
controlling other molecular systems based on nonlinear
non-equilibrium chemical reactions.

3. DNA droplets

Artificial micrometre-sized self-assemblies of DNA nano-
structures are well-investigated these days. DNA hydrogels
made of branched DNA nanostructures can self-assemble

and exhibit various functions, such as molecule encapsulation n

ability, RNA transcription ability and mechanical/viscoelastic
properties [28,56-58]. There are two types of DNA hydrogels:
(i) chemical gels [28], in which DNA nanostructure monomers
are covalently bonded by ligation and (ii) physical gels, in
which association and dissociation are reversible due to weak
interactions such as base pairing and entanglement [57,59].

In cell biology, biomolecular assemblies by reversible and
weak bonding, such as hydrogen bonding and n—cation inter-
action, are known as intracellular LLPS droplets [60] and
have recently attracted much biological attention as they are
thought to be involved in various cellular dynamics, such
as expression and regulation of biochemical reactions
[60-63]. Because of the reversible and weak bonds, LLPS dro-
plets have dynamical properties that change their state and
function in response to the environment, including tempera-
ture, pH, ionic strength and biomolecules. Similarly, DNA-
based physical gels also have the property of shifting their
structure from a gel state to a liquid-like state by responding
to the environment thanks to the reversible binding
(figure 4a) [20,21,64,66-69].

Recently, several research groups have constructed ‘DNA
droplets’. The DNA droplets are lipid-membrane-less coacer-
vates, which have been vigorously applied to membrane-less
protocells and membrane-less organelles controlled by DNA
sequence information. Mainly, two types of DNA droplets
have been reported. The first one is DNA-based coacervates
(figure 4a—) generated by the self-assembly of branched
DNA nanostructures (also referred to as DNA nanostars or
branched DNA motifs) such as Y- and X-shaped nanostruc-
tures (figure 4b, top). When the appropriately designed
branched DNA nanostructures are cooled down from a high
temperature (approx. 95°C), the branched DNA nanostructures
make a network to form fluid DNA droplets at around 60°C
(figure 4b, bottom middle); finally, the fluid DNA droplets tran-
sition to a non-fluid DNA gel around room temperature
(figure 4b, bottom right) (however, the transition temperatures
are affected by experimental conditions). The dispersion-
droplet and droplet-gel transition temperatures depend on
the DNA sequences (figure 4c) [21] and ionic strength [69].
In addition, the interfacial tension of DNA droplets was
0.01-4 uN m™! [69,70], which is significantly lower than the
air-water interfacial tension, and their viscosity was several
tens of Pa s [69]; these physical properties also could be chan-
ged by the sticky-end length [70]. Historically, branched
DNA nanostructures were proposed by Seeman to create
ordered phases like crystals [26,71,72], but later, the flexible,
simple star-like motifs were found not to form an ordered
phase because gel/coacervate-like disordered phases are ther-
modynamically the most stable [73]; i.e. the flexible star-like
motifs are found to be suitable for the formation of DNA
gels/droplets, although more rigid branched structures are
required to form DNA crystals [74].

The physical properties of DNA droplets based on
branched nanostructures, such as their stability and speci-
ficity, are controlled not only by the sticky-end sequences of
the branched nanostructures but also by nanomechanical
and physico-chemical properties of DNA nanostructures,
such as the number of branches; the shape, size and flexibility
of the nanostructures; and amphiphilicity of the chemically
modified DNA nanostructures [21,64,65,67,70,75-78]. For
example, if the number of branches changed from 3 to 6
arms, the gel-droplet transition temperature rose about
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Figure 3. Dynamical systems by molecular computing systems. (a) Biochemical oscillator. Images adapted from [39] licensed under Creative Commons (CC BY-NC-ND).
(b) Enzymatic neural networks for nonlinear decision-making. Images adapted from [51] with permission. Copyright 2022 Springer Nature.

30°C in the case of the 8-nucleotide sticky end [21]. When
the arm length of the Y-shaped DNA nanostars increased
from 8 to 40 base pairs, the average size of the resultant
DNA droplets also increased [77], which shows that
the growth kinetics of DNA droplets was affected by the
arm length.

The other DNA droplet is DNA-based coacervates con-
structed by hybridizing and entangling polymerized long
single-stranded DNAs (ssDNAs) produced using rolling
circle amplification (RCA) (figure 4d) [54,59,79,80]. The for-
mation mechanism differs between RCA-based DNA
droplets and those based on branched DNA nanostructures.
After the synthesis of long ssDNAs with the RCA reaction,
the temperature increase induced the demixing and entangle-
ment of the long ssDNAs; this physico-chemical property
of polymers is called a lower critical solution temperature-
type demixing. Then, by decreasing temperature, the
entangled state is fixed by the hybridization between
the long ssDNAs. The physical and chemical properties of

RCA-based DNA droplets are also tunable by sequence
designing. Using this method, Walther’s group has realized
DNA-based protocells.

4. Non-equilibrium dynamics of DNA droplets

4.1. Controlled fusion, division and pattern formation

dynamics of DNA droplets
The dynamical behaviours of DNA droplets, such as fusion,
division and pattern formation, can be controlled by the
sequence of the sticky ends and the nanomechanical properties
of branched DNA nanostructures [21,64]. For example, DNA
droplets fused when composed of DNA nanostructures with
complementary sticky ends; they did not fuse in other cases
(figure 5a) [21]. Even if the branched DNA nanostructures
did not directly make fusion, they could make Janus DNA
droplets (figure 5a) [21] and multi-compartment droplets
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Figure 4. DNA droplets. (a) DNA droplets formed from branched DNA nanostructures. Images adapted from [20] with permission. Copyright 2019 American Chemical
Society. (b) State transition of DNA droplets based on branched DNA nanostructures. (c) Dependence of the state transition on the sticky-end length. (b,c) Images adapted
from [21]. (d) DNA protocells formed from long ssDNA produced by a RCA. Images adapted from [54] licensed under Creative Commons (CC BY).

(figure 5b) [64] with linker DNAs. In addition, Di Michele’s
group has successfully generated core-shell structures of
DNA droplets/gels [65] in which an amphiphilic branched
DNA nanostructure core was coated with other branched
DNA nanostructures (figure 5c); they also demonstrated the
triggered release of the DNA shell (figure 5c¢).

In these examples, the linker DNAs act as programmable,
dynamical ‘surfactants’ that can control the ‘amphiphilicity’
between two or more types of DNA nanostructures. The
design of the linker amphiphilicity is currently based on the
sticky-end hybridization stability, the multi-valency of the
linker branches, and the branch structures and flexibility;

however, the design is still in an ad hoc manner. If more soph-
isticated design principle is established and some kinds of
design software are developed, this field will proceed faster.
Another interesting feature of DNA droplets is that relatively
weak interaction of the sticky ends (only several nucleotides)
decides the behaviours of DNA droplets. This phenomenon
would be related to the behaviour of the above-mentioned
LLPS droplets of biomolecules in actual living cells. The
remarkable feature of artificial DNA droplets compared to
the natural LLPS droplets is that the DNA droplets are well
controlled based on reversible, weak interactions embedded
as base sequence information. The design of reversible, weak
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Figure 5. Multi-compartment structures of DNA droplets. (a) Janus structure. Images adapted from [21]. (b) Multi-compartment and emulsion-like structures.
Images adapted from [64] with permission. Copyright 2020 American Chemical Society. (c) Core—shell structure. Images adapted from [65] licensed under Creative

Commons (CC BY).

binding would be a different concept of DNA sequence design
from DNA nanostructure research and DNA computing
driven by the design of stable hybridization. The advantage
of DNA droplet systems is that DNA sequences can control
micrometre-sized (i.e. cell-sized) self-assembly processes, as
shown; this feature will strongly promote the construction of
dynamical artificial cells.

4.2. Non-equilibrium dynamics of DNA droplets using
enzymatic reactions

DNA droplets can show dynamics by recognizing environ-
mental biomolecular information such as proteins and RNAs
or by coupling with non-equilibrium biomolecular reactions.
We fabricated a six-branched DNA nanostructure that can
bridge two different Y-shaped DNA nanostructures [21];
three arms of the six-branched DNA nanostructure bind one
of the Y-shaped DNA nanostructures and another three
arms bind the other Y-shaped DNA nanostructures
(figures 5a and 6a), allowing the blue and green DNA droplets
to fuse. Here, since the six-branched DNA nanostructures
were designed to have RNA parts at their branch centre, the
six-branched DNA nanostructures can recognize the presence
of ribonuclease (RNase) and split into two portions, which
induced the division of the DNA droplet into two DNA dro-
plets (figure 6a, blue- and green-coloured DNA droplets).
The repulsion of DNA drove the droplet phase separation
because of no association with one another. Saleh’s group
has also demonstrated the dynamical properties of DNA dro-
plets by incorporating enzymatic reactions (figure 6b) [81].
They found the bubbling phenomenon of DNA droplets by
sequence-specific cleavage of branched DNA nanostructure
arms with a restriction enzyme, which showed the dissolution
of DNA droplets from the inside (figure 6b). From a thermo-
dynamic viewpoint, the non-equilibrium dynamics with the
enzymes to show droplet division or bubbling was caused

by the free energy difference in the chemical bond of the
RNA or DNA backbone. Figure 6¢c shows the free energy land-
scape to explain the division dynamics by RNase reaction. In
this reaction, the six-branched linker DNA also plays a role
of a fuel substrate. The RNase cleaves the six-branched DNA
and produces the free energy difference between the six-
branched DNA and the cleaved DNA nanostructures; finally,
DNA droplets are divided using the free energy difference.

Di Michele’s group has also demonstrated that the core—
shell DNA droplets produced using the amphiphilic branched
DNA nanostructures dynamically collapsed lipid membranes
of liposomes and captured bacteria [65]. Additionally, they
realized a reaction—diffusion pattern in DNA droplets with
the core-shell structures (figure 7a) [82]. Walther’s group
generated DNA droplets as a non-equilibrium steady state
by coupling the synthesis of branched DNA nanostructures
by ligation using ATP energy and the degradation by
restriction enzyme cleavage (figure 7b) [83]. Walther’s non-
equilibrium DNA droplets are entirely different from other
equilibrium DNA droplets in the free energy minimum;
thus, they will provide a new basis for constructing non-equi-
librium artificial cells. In addition, Hamada et al. demonstrated
the autonomous locomotion of RCA-based DNA assemblies
by combining them with enzymatic synthesis and degradation
reactions mimicking metabolic reactions [87].

In all examples, chemical energy, such as ATP and DNA/
RNA chemical bonding energy, is converted to non-equili-
brium dynamics. How the free energy change is converted
to the actual non-equilibrium dynamics is programmed in
DNA droplets. In the next step, the complexity of molecular
programs will be the point of research: for example, feedback
loops and multistep cascades of dynamics.

4.3. Molecular computation by DNA droplets
A DNA droplet-based logic computer is one example of
more complex DNA droplet systems using non-equilibrium

1Z00£70T €L Smo4 dxpuaiu)  sisi/jeuinol/biobuiysiigndfianosjesol H



(@) CS-motif Y-portion
3’ Cy5)
5
RNase A ?E
e
orthy _portion
(Cy3)
RNase A
. =y —

NSAl S,
j};x L (el L
AN LAY S I e Ti gt \_d
el

Jog

orthy_motif

t=0s t=30s t=60s
t=90s t=120s t=150s

—3 At =1 min

Y-, othy- and Y-motif
CS- motif Y-portion *™Y-portion
()
Sma I site =
| C CGATCGLG
nanostar i BT % xZRa Rt

droplets

+salt

(©)

w/o enzyme
linker

(fuel substrate)

free energy difference —»
for droplet division y

QOOEE0O000

—3 At=1min

n

0000000000

droplet

() A

* Smal a

enzyme, E
(RNase A)

- —Pp
chemical reaction

(S5 P1+P2)

Figure 6. Dynamical DNA droplets with enzymatic reactions. (a) Division of DNA droplets. Images adapted from [21]. (b) Bubbling of a DNA droplet by the degra-
dation with a restriction enzyme. Image adapted from [81]. Copyright 2021 National Academy of Sciences. () Thermodynamic description of the division of DNA

droplets with enzymatic cleavage of the linker.

dynamics. The DNA droplet computer can be constructed
by adding logical operation capabilities to branched
DNA nanostructures. To recognize biomarker microRNAs
(miRNAs), a six-branched DNA droplet was modified to
have ssDNA parts for miRNA binding [84]. After the hybrid-
ization of two input miRNAs (I; and I,) to the six-branched
DNA nanostructures, strand displacement reactions by the
two miRNAs caused cleavage; then, DNA droplets were
divided, demonstrating an AND operation ([; AL)
(figure 8a). This system was extended to a logic calculation
for four RNA inputs: (I; A ) A (I3 A —Iy).

The logical computation was driven by the free energy
difference AGigal = AGy + AGgg + AGps, where AGy, AGgq
and AG are the free energy differences due to the DNA
hybridizations, the strand displacement reactions and the
mixing/phase separation of two types of branched DNA
nanostructures, respectively (figure 8b). AG, and AGgq can
be estimated by the nearest-neighbour model with SantaLu-
cia’s parameters [24]; AGps can be estimated based on the
Flory—Huggins theory for polymer phase separation [60].
Figure 8b shows a thermodynamic view of this dynamical

reaction system. Adding miRNAs changes the free energy
landscape, and non-equilibrium molecular reactions for
computation occur autonomously. The unique aspect of
DNA droplet computing is that it also exploits the free
energy difference between the mixing and phase separation
of DNAs as polymers. Like this, in DNA droplet computing,
the soft matter physics of DNA would play an essential role
in the design of the system as well as the physical chemistry
of DNA.

Currently, the output of this system has been limited to
displaying the computation results as the droplet division;
in the next step, it should be improved to emit the outputs
of computation results as information molecules such as
DNA, RNA and proteins to achieve the logic circuits of the
DNA droplet logic gates. If logic circuits with input-output
cascades are realized, this system will get more valuable in
creating intelligent artificial cells. In the future, introducing
more complex logic gates and integrating multiple inputs
and outputs for molecular information processing may
lead to applications in the early detection of diseases and
regenerative therapies.
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4.4, Non-equilibrium dynamics of DNA droplets in a

cell-mimicking tiny space
Here, we describe the control of DNA droplets through the
interactions with a cell-sized tiny space or those with environ-
mental polymers as challenges of applying DNA droplets
to artificial cells and organelles. Gopfrich’s group has
constructed an artificial cell model encapsulating DNA dro-
plets in a water-in-oil (W/O) microdroplet [85] (figure 9a).
In this case, the spatially confined DNA droplets were appro-
priately divided into two droplets because some divided
DNA droplets were re-fused with one another in the tiny
space of W/O microdroplets. DNA coacervates constrained
at the interface of oil-in-water droplet emulsions and lipo-
somes exhibit phase-separation patterns [90]. Deng’s group

also proposed DNA droplets as artificial membrane-less
organelles and has demonstrated molecular communication
between the artificial organelles (figure 9b) [86]. In the
future, the spatial organization of artificial organelles based
on DNA droplets confined in a tiny space will be explored,
similar to polymer gel-based artificial organelles [91].

In addition, the intracellular environment is not a dilute
aqueous solution but an environment filled with highly con-
densed water-soluble polymers. Aqueous two-phase systems
of dextran and polyethylene glycol (PEG) are often used
to mimic such an intracellular environment. In particular
concentration conditions, dextran microdroplets form in a con-
tinuous phase of PEG solution by microphase separation.
Yoshikawa’s group found that genome-sized DNAs were
incorporated into dextran droplets in a size-dependent
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Figure 8. Computational DNA droplets. (a) AND gate. Images adapted from [84]. (b) Thermodynamic description of the AND gate. Two miRNA inputs are used as a
substrate to perform the cleavage reaction of the linker DNA. By the hybridization and their strand displacement of two inputs, the free energy decreased by
AGy + AGgg. Just after the linker cleavage, the DNA droplet is almost mixed (bottom left); then, phase separation occurs with the free energy decrease
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manner and could be used as artificial cells (figure 9c) [88]. DNA droplets were generated in cell-sized microchambers
We showed that DNA droplets were also incorporated (approx. 100 pm) in a microchannel. A temperature gradient
into the dextran microdroplets [89], where uniform-sized was created between the top and bottom of the microchamber,
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Commons (CC BY). (b) Molecular communication between DNA droplet-based artificial organelles. Images adapted from [86] with permission. Copyright 2022 Wiley-
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causing non-equilibrium convection in the microchamber, and
the convection flow collected the DNA droplets into one
(figure 94). The growth of phase-separated biomolecular dro-
plets in the presence of a thermal gradient and convection may
relate to the research on the origins of life.

5. Discussion and conclusion

In this review, we introduced a new technology, DNA droplet
(DNA coacervate), and gave a perspective on its application to
constructing artificial cells with intelligence and non-equili-
brium dynamics. The DNA droplet is a new programmable
biomacromolecular coacervate that can exhibit intelligent
and dynamical behaviours by converting chemical energy to

sensing [84], computation [84] and motion [87] functions.
However, examples are still limited, although vigorous related
research is ongoing [21,54,81-87]. The current challenges and
future directions will be summarized as follows.

From the viewpoint of basic science in physical chemistry
and information nanotechnology, the dynamical systems of
DNA droplets using chemical energy should be explored
more in the next step. For example, Constructing more Complex
logic circuits or reaction networks (cascade reactions) includ-
ing a nonlinear response function would be highly desired.
Non-equilibrium dynamical motions of DNA droplets also
would be desired because there are only a few examples,
such as locomotion [87] and division [21]. In addition,
remote control of DNA droplets with magnetic/electrical
fields or light irradiation would be valuable in this field. The
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encapsulation of DNA droplets to mimic organelles in an arti-
ficial cell would help to understand the effect of the cell-sized
space for biochemical reactions. From the viewpoint of appli-
cations, the combination between DNA droplets and other
targets would be essential. For example, the interaction of
DNA droplets and living biological cells has not been reported
except for an example by Di Michele’s group [65]. The recog-
nition of cell surfaces or the introduction of DNA droplets
into a cell to control transcription and translation of the cell
will be a challenging topic. These directions are essential for
DNA droplet research to diagnosis and therapy.

Various LLPS droplets have recently been found in living
cells and have attracted attention because of their essential
roles in living systems in the control of inter-/intramolecular
reactions and soft matter physical phenomena [60-63].
Combining such biophysical phenomena in cells with pro-
grammable DNA droplets would be a practical approach to
constructing intelligent molecular systems and a novel cell
control technology. In the future, coupling the self-dividing
DNA droplets and gene expression functions or amplification
will lead to the construction of artificial cells and artificial
organelles autonomously working under a non-equilibrium
environment. The artificial cells and artificial organelles
constructed with programmable DNA droplets differ from
existing living systems in terms of molecular compositions;

however, they give us universal design principles and
minimum elements of living systems in terms of physics,
chemistry and informatics. In particular, the programmability
of DNA would help us construct artificial cells from an infor-
matics perspective, such as the idea of a self-reproducing
automaton [5,6,22,23]. At the same time, they would be valu-
able in various fields: they will lead to the construction of
molecular robots, molecular computers and other appli-
cations such as cancer diagnosis, treatment in living cells
and novel molecular-electrical devices.
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