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Abstract

Establishing voxelwise semantic correspondence across distinct imaging modalities is a 

foundational yet formidable computer vision task. Current multi-modality registration techniques 

maximize hand-crafted inter-domain similarity functions, are limited in modeling nonlinear 

intensity-relationships and deformations, and may require significant re-engineering or 

underperform on new tasks, datasets, and domain pairs. This work presents ContraReg, 

an unsupervised contrastive representation learning approach to multi-modality deformable 

registration. By projecting learned multi-scale local patch features onto a jointly learned inter-

domain embedding space, ContraReg obtains representations useful for non-rigid multi-modality 

alignment. Experimentally, ContraReg achieves accurate and robust results with smooth and 

invertible deformations across a series of baselines and ablations on a neonatal T1–T2 brain 

MRI registration task with all methods validated over a wide range of deformation regularization 

strengths.

1. Introduction

The spatial alignment (or registration) of images from sources capturing distinct anatomical 

characteristics enables well-informed biomedical decision-making via multi-modality 

information integration. For example, multi-modality registration of intra-operative to pre-

operative imaging is crucial to various surgical procedures [13,24,33]. Consequently, several 

inter-domain image similarity functions have been developed to drive iterative or learning-

based registration [11,14,38]. Yet, despite the decades-long development of multi-modality 

objectives, accurate deformable registration of images with highly nonlinear relationships 

between their appearance and shapes remains difficult.

Losses operating on intensity features (global and local 1D histograms [8, 34, 38], local 

descriptors [14,37,39], edge-maps [11], among others) are typically hand-crafted and do 

not consistently generalize outside of the domain-pair they were originally proposed for 

and necessitate non-trivial domain expertise to tune towards optimal results. More recent 

multi-modality methods based on learned appearance similarity [28], simulation-driven 

semantic similarity [15], and image translation [29] have demonstrated strong registration 

performance but may only apply to supervised affine registration [28], require population-
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specific segmentation labels for optimal registration [15], or necessitate extensive and 

delicate GAN-based training frameworks [29].

To overcome these limitations, this work develops ContraReg (CR), an unsupervised 

representation learning framework for non-rigid multi-modality registration. CR requires 

that, once registered, corresponding positions and patches in the moved and fixed images 

have high mutual information in a jointly-learned multi-scale multi-modality embedding 

space. These characteristics are achieved via self-supervised contrastive training and only 

requires an unsupervised feature extractor (which can be pretrained or randomly-initialized 

and frozen). As a result, on the challenging task of neonatal inter-subject T1w–T2w 

diffeomorphic MRI registration, CR achieves higher anatomical overlap with comparable 

deformation characteristics to previous similarity metrics, validated over a wide range of 

regularization parameters. Finally, for experimental completeness, we then evaluate CR 

across a diversity of auxiliary losses and external negative sample selection and pretraining 

strategies.

2. Related work

Hand-crafted similarity losses.

Mutual information and its variants [19,38] typically operate on image intensity histograms 

and may be limited in their ability to model complex non-rigid deformations. Conversely, 

local mutual information methods [8,34] are spatially-aware but may not have enough 

samples to build accurate patch intensity histograms. Other losses operating on intensity-

derived local descriptors [14,39] learn domain-invariant features and have been successful 

in tasks such as body cavity MR-CT registration with relatively limited adoption in 

neuroimaging.

Simulation.

Registration via translation approaches seek to simulate one modality from the other, such 

that the problem can be reduced to a mono-modality alignment [1,29,40]. While performant, 

recent methods can be susceptible to the hallucinatory or instability drawbacks of medical 

image translation leading to suboptimal alignment [20, 31]. Recently, SynthMorph [15] 

simulates both deformations and synthetic appearances for neuroimages to train a general-

purpose multi-modality network. ContraReg instead obtains highly accurate warps for a 

given dataset at the cost of dataset-specific training.

Learned similarity losses.

Finally, several methods attempt to learn an inter-domain similarity metric via supervised 

learning with pre-aligned training images [9,18,28,36]. For example, CoMIR [28] uses 

supervised contrastive learning to learn affine registration between highly visually 

disparate modalities. In particular, ContraReg draws inspiration from PatchNCE [26], an 

image translation framework using contrastive losses on multi-scale patches. However, a 

straightforward extension of PatchNCE to registration is not possible and would lead to 

degenerate identity solutions to the PatchNCE loss as we require a warp between two 

distinct input images [17]. This work presents a different approach to incorporating multi-
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scale patches via externally-trained feature extractors which enables successful registration 

without degenerate solutions.

3. Methods

Fig. 1 illustrates ContraReg. Architectural details are in the supplementary material.

Unsupervised pre-training.

To extract multi-scale n-dimensional features in an unsupervised manner, we first train 

modality-specific autoencoders A1 and A2 as domain-specific features can be beneficial to 

patchwise contrastive training [12]. Training is done on 1283 crops with random flipping and 

brightness/contrast/saturation augmentation, using an ℒ1 + Local NCC (window width = 7
voxels) reconstruction loss [2].

Registration training.

This work focuses on unsupervised learning of registration and multi-modality similarity. 

Given cross-modality volumes I1 and I2, a VoxelMorphstyle [5] U-Net with constant 

channel width cℎ  predicts a stationary velocity field v, which when numerically 

integrated with ts time steps, yields an approximately diffeomorphic displacement ϕ. 

We focus on bidirectional registration and obtain the inverse warp via integrating 

−v. This network is trained with a 1 − λ ℒsim + λℒreg objective where ℒreg = ∥ v ∥2
2

is a regularizer controlling velocity (and indirectly displacement) field smoothness, 

ℒsim = 1
2 d12 I1 ∥ I2 ∘ ϕ + d21 I2 ∥ I1 ∘ ϕ−1  is a registration term s.t. d12,21 measures inter-

domain similarity, and λ is a hyperparameter.

Here, we define d12 and d21 is defined analogously. We first extract multi-scale spatial 

features A1
k I1  and A2

k I2 ∘ ϕ  using the autoencoders, where k = 1, …, L is the layer index 

and L is the number of layers. A perceptual registration loss [4] is inappropriate in 

this setting as these features correspond to different modality-specific spaces. Instead, we 

maximize a lower bound on mutual information between corresponding spatial locations 

in A1
k I1  and A2

k I2 ∘ ϕ  by minimizing a noise contrastive estimation loss [25]. As in 

[26], we project the channel-wise autoencoder features of size ℝNk × Ck
 (where Nk

is the number of spatial indices and Ck is the number of channels in layer) onto a 

hyperspherical representation space to obtain features F1
k A1

k I1  and F2
k A2

k I2 ∘ ϕ  where F1,2

are 3-layer 256-wide trainable ReLU-MLPs [3]. In this space, indices in correspondence 

fi
k = F1

k A1
k I1 i  and fi

k + = F2
k A2

k I2 ∘ ϕ i , where i = 1, …, Nk, are positive pairs. Similarly, 

fi
k and fj

k − = F2
k A2

k I2 ∘ ϕ j , where j = 1, …, Nk and j ≠ i, are negative pairs.

For optimal contrastive learning, we sample a single positive pair and ns > > 1 negative 

samples, and use the following loss with τ as a temperature hyperparameter:
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d12 I1 ∥ I2 ∘ ϕ = ∑
k = 1

L
∑

i = 1

Nk
− log exp fi

k ⋅ fi
k + /τ

exp fi
k ⋅ fi

k + /τ + ∑j = 1, j ≠ i
ns exp fi

k ⋅ fj
k − /τ

Notably, as medical images also acquire empty space outside of the body, random patch 

sampling will lead to the sampling of false positive and negative pairs (e.g., background 

voxels sampled as both positive and negative pairs). To this end, the masked CR (mCR) 

model samples voxel pairs only within the union of the binary foregrounds of I1 and I2 and 

resizes this mask to the layer-k specific resolution when sampling from A1
k I1  and A2

k I2 ∘ ϕ . 

We further investigate tolerance to false positive and negative training pairs and thus also 

train models without masking (denoted CR only).

Hypernetwork optimization.

Registration performance strongly depends on weighing λ correctly for a given dataset and 

ℒsim . Therefore, for fair comparison, the entire range of λ is evaluated for all benchmarked 

methods using hypernetworks [10] developed for registration [16,23]. Specifically, the FiLM 

[27] based framework of [23] is used with a 4-layer 128-wide ReLU-MLP to generate 

a λ u 0,1 -conditioned shared embedding, which is then linearly projected (with a weight 

decay of 10−5) to each layer in the registration network to generate λ-conditioned scales and 

shifts for the network activations. At test time, we sample 17 registration networks for each 

method with dense λ sampling between 0,0.2  and sparse sampling between 0.2,1.0 .

4. Experiments

Data.

We compare registration methods by benchmarking on inter-subject multi-modality 

registration. We use pre-processed T1w and T2w MRI of newborns imaged at 29–45 weeks 

gestational age from dHCP  [22], a challenging dataset due to rapid temporal development 

in morphology and appearance alongside inter-subject variability. We follow [7] for further 

preprocessing to obtain 160 × 192 × 160 volumes at 0.6132 × 0.6257 × 0.6572 mm3 resolution 

and use 405/23/64 images for training, validation, and testing.

Evaluation methods.

Registration evaluation is non-trivial due to competing objectives. Low smoothness 

regularization λ  can allow for near-exact matching of appearance but with anatomically-

implausible and highly irregular deformations. Conversely, high λ enables smooth 

deformations with suboptimal alignment. Therefore, we evaluate registration performance 

and robustness as a function of λ, via Dice and Dice30 (average of 30% of lowest dice 

scores) scores, respectively, calculated between the target and moved label maps of the input 

images (segmentations provided by dHCP [21]). To investigate deformation smoothness, we 

also evaluate the percentage of folding voxels and the standard deviation of the log Jacobian 

determinant of ϕ as a function of λ.
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Benchmarked methods.

Using the same registration network with cℎ = 64 and ts = 5, we benchmark popular 

multi-modality metrics including Mutual Information (MI) (48 bins), local MI (48 bins, 

patch size = 9), MIND (distance = 2, patch size = 3), and normalized gradient fields, 

alongside the proposed mCR and CR models. We further compare against the general-

purpose SynthMorph (SM)-shapes and brains models [15], by using their publicly released 

models and affine-aligning the images to their atlas. As SM uses cℎ = 256, we retrain the 

proposed registration models at that width. As we use public models, we cannot perform 

λ-conditioning and evaluation for SM. Further, as inter-subject dHCP registration can 

require large non-smooth deformations, we study whether a higher number of integration 

steps improves deformation characteristics (as in [35]) for the cℎ = 256 model, evaluating 

ts = 10,16,32  with 32 as default.

To evaluate extensions of CR and mCR, we investigate whether combining them with 

a global loss + MI , incorporating more negative samples from an external randomly-

selected subject +  ExtNegs , or both + MI +  ExtNegs   lead to improved results. We then 

evaluate the importance of feature extractor pretraining by using randomly-intialized frozen 
autoencoders instead as a worst-case feature extractor +  RandAE . Finally, we evaluate 

whether contrastively pre-training the autoencoders and projection MLPs by using ground 

truth multi-modality image pairs alongside the reconstruction losses +  SupPretrain  leads to 

improved results, with the following loss, where I1,2 are from the same subject, λsp = 0.1, and 

I1,2
ˆ  are the reconstructions,

ℒA1, A2, F1, F2 = λspd12 I1, I2 + ∑
i = 1

2
ITi − IT i 1 + NCC ITi, ITi .

Implementation details.

All models were developed in TensorFlow 2.4 and were all trained for 105 iterations 

with Adam on a V100 GPU. For stability across all methods, we use a conservative 

learning rate of 5 × 10−5. For the contrastive loss, we set ns =  1024 and τ = 0.007. The 

autoencoder has 7Conv − IN − LeakyReLU 0.2  blocks with 3 down/up sampling layers and 

32-64-128-64-32-32-32-1 filters with its post-convolution features from the first 6 layers 

sampled for the contrastive loss. In practice, to avoid tuning the sampling strategy for λ as in 

[16], we add a rescaling constant α = 0.1 to the objective function for CR and mCR with the 

form α 1 − λ ℒsim + λℒreg.

Results.

Sample registration visualizations are provided in Fig. 2, performance scores versus λ are 

plotted in Fig. 3, and a study of trading-off registration accuracy for smoothness is tabulated 

in Table 1. We make the following experimental observations:

(m)CR achieves higher accuracy and converges faster than baseline losses. Fig. 3 

(row 1) indicates that the proposed models achieve better Dice with comparable 
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(mCR) or better (CR) folding and smoothness characteristics in comparison to 

baseline losses as a function of the 17 values of λ tested. Further, Table 1 reveals 

that if anatomical overlap is reduced to also achieve negligible folding (defined as 

folds in 0.5% of all voxels [30]), CR and mCR still achieve the optimal tradeoff.

(m)CR achieves more accurate registration than label-trained methods at the cost of 
lower warp regularity. While the public SM-brains model does not achieve the same 

Dice score as (m)CR, it achieves the third-highest performance behind (m)CR with 

substantially smoother deformations. We postulate that this effect stems from the 

intensity-invariant label-based training of SM-brains only looking at the semantics of 

the image, whereas our approach and other baselines are appearance based.

Masking consistently improves results. Excluding false positive and false negative 

pairs from the training patches yields improved registration performance across all 

values of λ with acceptable increases in deformation irregularities vs. λ (Fig 3 rows 1 

& 3; cols 1–3). Importantly, contrastive training without foreground masks (CR) still 

outperforms other baseline losses and does so with smoother warps.

Pretraining has a marginal impact on (m)CR. While still outperforming other 

baselines, using a randomly-intialized & frozen feature extractor achieves marginally 

lower dice with longer convergence times as compared to the full pretrained model.

Using external losses or negatives with (m)CR does not improve results. Combining 

a global loss (MI) with CR does not improve results, which we speculate is due to 

the inputs already being globally affine-aligned. We also see a similar phenomenon to 

[26], where adding external negatives from other subjects lowers performance.

Self-supervision yields nearly the same performance as supervised pretraining. 

Comparing rows A5–6 and C4–5 of Table 1 reveals that utilizing supervised pairs 

of aligned images for pretraining A1,2 and F1,2 yields very similar results, indicating 

that supervision is not required for optimal registration in this context.

5. Discussion

Limitations and future work.

Some limitations exist in the presented material and will be addressed in subsequent 

work: (1) While we perform λ-conditioned hypernetwork registration to fairly compare 

benchmarked losses across all regularization strengths, hypernetworks may not exactly 

approximate all λ conditions. Further, hypernetworks were not trained for two of our 

baselines (SM-brains and shapes [15]) as we instead used their public models and we 

regularize for velocity-smoothness instead of warp-smoothness as in their work, both of 

which confound comparisons. (2) It is probable that combining our appearance-based 

approach with label-based simulation [15] would further improve results. (3) We did 

not explore other architectural configurations for the autoencoders and MLPs and it is 

plausible that there may be significant room for optimization. (4) We benchmarked the 

simulated inter-subject registration task and other use-cases such as pre-to-intra operative 

warping and preprocessing for multi-sensor fusion [6] may show different trends. (5) (m)CR 

currently requires 15% more time per training iteration w.r.t. mutual information and can 
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be optimized. (6) Unsupervised patch sampling may introduce false negative pairs in the 

contrastive loss and can be avoided with unsupervised negative-free patch representation 

learning methods [32].

Conclusions.

This work presented ContraReg, a self-supervised contrastive representation learning 

approach to diffeomorphic non-rigid image registration. On the challenging task of 

inter-subject T1w–T 2w registration with neonatal images showing high appearance and 

morphological variation, CR achieved high registration performance and robustness while 

maintaining desirable deformation qualities such as invertibility and smoothness. Finally, 

CR was validated across several baseline losses (including MI, MIND, NGF), training 

configurations, and frameworks, with results indicating that training supervision, losses, or 

external negative sampling strategies are not required.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. ContraReg.
Given displacements and a moved image from a multi-modality registration network (left), 
a contrastive loss is calculated on multi-scale patches extracted from modality-specific 

networks (right), such that corresponding locations have high mutual information. In 

practice, our implementation is bidirectional s.t. the inverse modality-pair loss is also 

computed.
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Fig. 2. 
T1w–T2w registration visualization between arbitrarily selected subjects for the (top) ch=64 

and (bottom) ch=256 models. Error maps computed w.r.t. the T2w MRI of the target 

subject. Hypernetwork registration models are sampled with the same λ as Table 1.

Dey et al. Page 11

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2023 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Plots of registration accuracy vs. λ (col. 1), deformation qualities vs. λ (cols. &3), and 

accuracy vs. training steps (col. 4). Benchmarks are performed against commonly used 

multimodality losses (row 1), extensions of the proposed techniques (row 2), and recent 

modality-pair agnostic methods (row 3). Across baseline losses, CR and mCR achieve the 

best tradeoff between accuracy and deformation characteristics (row 1, cols. 1–3). Further, 

using external losses and/or negatives reduces performance and supervised pretraining does 

not yield notable improvements (row 2, cols. 1–3). Compared to SynthMorph-brains [15], 

CR and mCR obtain higher accuracy (row 3, col. 1) in the λ = 0.0 − 0.15 and 0.0 − 0.3 ranges, 

respectively, at the cost of more irregular warps (row 3, cols. 2–3). See Table 1 for an 

analysis of trading off accuracy for smoothness.
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Table 1.

Trading off performance for invertibility.

Set Width Method Opt. λ Dice (↑) Dice30 (↑) % Folds (↓) Sdlog|Jφ|(↓)

A 64 NGF [11] 0.0 0.696 ± 0.023 0.686 0.141 ± 0.043 0.072

64 MI [38] 0.175 0.748 ± 0.021 0.739 0.461 ± 0.100 0.089

64 LocalMI [8] 0.125 0.745 ± 0.023 0.737 0.402 ± 0.076 0.083

64 MIND [14] 0.3 0.726 ± 0.023 0.716 0.258 ± 0.051 0.079

64 CR (proposed) 0.05 0.776 ± 0.020 0.768 0.451 ± 0.074 0.083

64 mCR (proposed) 0.125 0.781 ± 0.020 0.774 0.475 ± 0.070 0.084

B 256 SM-brains [15] - 0.755 ± 0.020 0.749 0.023 ± 0.008 0.048

256 SM-shapes [15] - 0.721 ± 0.021 0.715 0.017 ± 0.011 0.056

256 MI [38] 0.2 0.759 ± 0.021 0.750 0.487 ± 0.099 0.090

256 CR (proposed) 0.075 0.774 ± 0.020 0.765 0.315 ± 0.0576 0.078

256 mCR (proposed) 0.15 0.780 ± 0.021 0.773 0.416 ± 0.065 0.082

C 64 CR+MI 0.3 0.751 ± 0.021 0.742 0.246 ± 0.059 0.080

64 CR+ExtNegs 0.05 0.764 ± 0.020 0.756 0.489 ± 0.073 0.085

64 CR+MI+ExtNegs 0.3 0.747 ± 0.021 0.739 0.214 ± 0.056 0.078

64 CR+SupPretrain 0.025 0.778 ± 0.020 0.770 0.465 ± 0.075 0.084

64 mCR+SupPretrain 0.075 0.778 ± 0.020 0.770 0.406 ± 0.067 0.081

64 mCR+RandAE 0.1 0.778 ± 0.020 0.770 0.393 ± 0.070 0.80

D 256 CR (10 int. steps) 0.075 0.773 ± 0.021 0.764 0.341 ± 0.058 0.079

256 CR (16 int. steps) 0.05 0.779 ± 0.020 0.772 0.462 ± 0.071 0.083

256 CR (32 int. steps) 0.075 0.774 ± 0.020 0.765 0.315 ± 0.0576 0.078

Registration accuracy (Dice), robustness (Dice30), and characteristics (% Folds, stddev. log Jφ ) for all benchmarked methods at values of λ
that maintains the percentage of folding voxels at less than 0.5% of all voxels, as in [30], s.t. high performance is achieved alongside negligible 

singularities. This table is best interpreted in conjunction with figure 3, where results from all λ values are visualized. A. CR and mCR obtain 

improved accuracy and robustness (A5–6) with similar deformation characteristics to baseline losses (A1–4). B. At larger model sizes, mCR and 
CR still obtain higher registration accuracy and robustness (B4–5), albeit at the cost of more irregular deformations in comparison to SM (B1). 
C. Further adding external losses, negative samples, or both to CR harms performance (C1–3), supervised pretraining (C4–5) very marginally 
improves results over training from scratch (A5–6), and random feature extraction only slightly reduces Dice while smoothening displacements 
(C6). D. At a given λ, increasing integration steps yields marginal Dice and smoothness improvements.
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