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In Brief
Schraink, Blumenberg, and
Hussey et al., demonstrate the
use of PhosphoDisco, a newly
developed tookit for the
identification of co-regulated
phosphorylation sites from
tandem mass spectrometry–
based phosphoproteomic data.
Using data from breast and non-
small cell lung cancers they
identify several clinically relevant
phosphorylation modules
including a cell cycle checkpoint
module enriched in basal breast
cancer samples and a module of
PRKC isozymes putatively co-
regulated by CDK12 in lung
cancer.
Highlights
• PhosphoDisco is a computational approach to define co-regulated phosphosites.• Implementation finds signaling modules in breast and non-small cell lung cancer.• Identified a cell cycle checkpoint module in enriched basal breast tumors.• PRKC-associated and proliferative enriched modules found in lung tumors.
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PhosphoDisco: A Toolkit for Co-regulated
Phosphorylation Module Discovery in
Phosphoproteomic Data
Tobias Schraink1,2,3,‡ , Lili Blumenberg1,2,‡, Grant Hussey1,2,3,‡ , Sabrina George1,2 ,
Brecca Miller1,2 , Nithu Mathew1,2, Tania J. González-Robles1,2,3, Vladislav Sviderskiy4,
Thales Papagiannakopoulos4, Richard Possemato4, David Fenyö2,3, and
Kelly V. Ruggles1,2,*
Kinases are key players in cancer-relevant pathways and
are the targets of many successful precision cancer
therapies. Phosphoproteomics is a powerful approach to
study kinase activity and has been used increasingly for
the characterization of tumor samples leading to the
identification of novel chemotherapeutic targets and bio-
markers. Finding co-regulated phosphorylation sites
which represent potential kinase-substrate sets or mem-
bers of the same signaling pathway allows us to harness
these data to identify clinically relevant and targetable
alterations in signaling cascades. Unfortunately, studies
have found that databases of co-regulated phosphoryla-
tion sites are only experimentally supported in a small
number of substrate sets. To address the inherent chal-
lenge of defining co-regulated phosphorylation modules
relevant to a given dataset, we developed PhosphoDisco,
a toolkit for determining co-regulated phosphorylation
modules. We applied this approach to tandem mass
spectrometry based phosphoproteomic data for breast
and non-small cell lung cancer and identified canonical as
well as putative new phosphorylation site modules. Our
analysis identified several interesting modules in each
cohort. Among these was a new cell cycle checkpoint
module enriched in basal breast cancer samples and a
module of PRKC isozymes putatively co-regulated by
CDK12 in lung cancer. We demonstrate that modules
defined by PhosphoDisco can be used to further person-
alized cancer treatment strategies by establishing active
signaling pathways in a given patient tumor or set of tu-
mors, and in providing new ways to classify tumors based
on signaling activity.

Protein phosphorylation results in conformational changes,
leading to changes in protein activity, substrate affinity, and
degradation. This process is regulated by enzymatic kinases
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and phosphatases that catalyze the transfer of phosphate
between their substrates. Subsequently, the activity of these
enzymes results in the activation or deactivation of signaling
pathways that drive different cellular processes such as cell
growth, apoptosis, and differentiation. Improper regulation of
these pathways can lead to severe disease states such as
cancer. Although protein kinase genes account for only 2% of
human genes, up to 30% of all human proteins can be
modified by kinase activity (1, 2). Therefore, exploring the role
of phosphoproteins and the mechanisms of kinases is vital in
contributing to our understanding of cancer biology. Further,
kinases are eminently targetable and represent some of the
most successful personalized cancer therapeutics developed
to date (3–7).
Quantitation of the phosphoproteome by mass spectrom-

etry (MS) provides a particularly useful perspective on
signaling patterns and vulnerabilities in cancer and can pro-
vide a personalized view of aberrations in potentially target-
able pathways. However, comprehensively discerning the
activity of phosphorylation signaling pathways is challenging
because phosphorylation is often context-dependent and
significantly modified in cancer. To address this challenge, the
Clinical Proteomics Tumor Analysis Consortium (CPTAC) has
conducted proteogenomic characterization of several cancer
types by performing DNA and RNA sequencing, as well as
MS-based proteomic and phosphoproteomic analysis (8–17).
These efforts have generated rich high-dimensional data sets
which have been used to generate and test novel hypotheses.
However, identifying relevant pathways from these large-scale
omics studies can be difficult, largely due to their high
dimensionality and co-linearity. Further, it has been shown
that the correlation between kinase abundance and known
substrate sets in multiple CPTAC data sets is close to what
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PhosphoDisco: Co-regulated Phosphorylation Module Discovery
would be expected by chance (18) and independently identi-
fied associations between phosphopeptides and kinases have
minimal overlap with these curated sets (19). There are many
reasons why kinase-substrate sets curated from myriad
sources would not be reflected in a particular cancer dataset,
but the challenge of defining co-regulated phosphosites in
cancer data remains.
To better define these co-regulated modules in patient

samples, we developed a computational toolkit, Phospho-
Disco, for the analysis of tumor phosphoproteomic and pro-
teomic data. We applied PhosphoDisco to data from a cohort
of breast cancer (BRCA) tumors, and a combined data set of
lung squamous cell carcinoma (LSCC) and lung adenocarci-
noma (LUAD) tumors with their respective matched normal
samples to define co-regulated phosphorylation modules
within and across data sets. We show that putative modules
can be used to nominate biomarkers for disease-specific
treatments, as well as targets for novel treatment strategies,
and highlight the strength of pan-cancer phosphoproteomics
for cancer discovery.
EXPERIMENTAL PROCEDURES

Proteomics and Phosphoproteomics Data

The dataset we chose to demonstrate the utility of PhosphoDisco
was collected and processed as part of the CPTAC consortium.
Comprehensive characterization of the BRCA (17), LSCC (15), and
LUAD (16) tumor and matched normal cohorts (Table 1) have been
completed, and all samples were collected and processed according
to the CPTAC standard protocols (20). Detailed experimental pro-
cedures including cohort statistics, clinical data, sample collection
and processing, and data acquisition for these cohorts are described
in detail elsewhere (15–17).

Briefly, tumor samples were snap-frozen less than 30 min after
collection, after which genomic and transcriptomic sequencing was
completed. Samples also underwent higher-energy C-trap dissocia-
tion (HCD) liquid chromatography (LC)-MS/MS analysis of tandem
mass tag (TMT)-labeled samples for proteomic and phosphoproteo-
mic characterization as previously described (20).

Data Processing and Quality Control

The Spectrum Mill software package v7.0 pre-release (Agilent
Technologies, Santa Clara, CA) co-developed by Karl Clauser of the
Carr laboratory (https://www.broadinstitute.org/proteomics) was used
for MS data analysis. Protein identification was performed by
searching the MS/MS spectra against the protein sequence database
TABLE

Dataset sum

Tumor type
Number of tumor

samples
Number of normal

samples

LUAD 98 98
LSCC 99 99
BRCA 122 0

Lists basic summary stats about the main data sets used in this pa
analysis, and included normal samples, while the breast dataset (BRCA
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obtained using the UCSC Table Browser (https://genome.ucsc.edu/
cgi-bin/hgTables) on September 14, 2016, which contains 37,579
proteins mapped to the human reference genome (hg19), adding
common contaminants, mitochondrial proteins, and non-canonical
small open reading frames. The searches were performed allowing
±20 ppm mass tolerance for precursor and product ions, allowing for
common modification. Peptide spectrum matches (PSMs) were
filtered for 30% minimum matched peak intensity and target-decoy-
based false discovery rate (FDR) estimates at the PSM level, and for
proteins protein level for each TMT-plex for all TMT-plexes for a tumor
type, and for phosphorylation at the site levels. Normalization of each
peptide was performed using the common reference, and a two-
component Gaussian mixture model-based normalization was used
to nullify the effect of differential protein loading and/or systematic MS
variation.

PhosphoDisco Workflow

The PhosphoDisco workflow (supplemental Fig. S1 and
supplemental Table S1) starts with normalizing, filtering, and pairwise
correlation of peptide-level phosphorylation data, described in more
detail below. The next steps are to find co-regulated modules relevant
to clinical annotations, followed by nominating putative protein regu-
lators for the modules. Further, Gene Ontology (GO) enrichment is
then applied to find modules associated with annotated pathways,
and motif analysis of phosphosite flanking sequences can identify
common motifs across phosphosites within the module. Identification
of kinase activation loop phosphosites, druggability analysis, and PTM
set enrichment analysis is also applied to help rank nominated mod-
ules and their regulators (Fig. 1). Together, this approach enables the
user to reduce complex phosphoproteomic data sets into potentially
relevant signaling modules for further biological interrogation.

PhosphoDisco comes with a Snakemake (21) pipeline that can be
run using phdc_run via the command line. Before running the pipeline,
the user should generate a configuration file that includes the path to
the phosphorylation and protein data files. Input and output structure,
as well as example workflows can be found in the PhosphoDisco
tutorial which comes with each PhosphoDisco installation. Although
built to be run on a high-performance compute cluster, all the
computation in this study can be performed on a laptop (20 GB RAM,
Quad core Intel I7). All relevant code and documentation can be found
here: https://github.com/ruggleslab/phosphodisco.

Input Data and Pre-processing

PhosphoDisco functions are built around the ProteomicsData class
in Python, which requires phosphopeptide and protein input tables,
assumed to be in the form of log2(relative abundance). Input data
should be structured as samples as columns and proteins/phospho-
peptides as rows (22). Detailed examples of both file structures can be
found in supplemental Tables S2 and S3. We suggest that both tables
be normalized for sample loading (e.g., with median or upper quartile
normalization). A function that can perform different normalization
1
mary stats

Number of phosphosites
assigned to modules

Number of modules

1684 14
1684 14
1017 69

per. The two lung datasets (LSCC, LUAD) were used in a combined
) only included tumor samples.

https://www.broadinstitute.org/proteomics
https://genome.ucsc.edu/cgi-bin/hgTables
https://genome.ucsc.edu/cgi-bin/hgTables
https://github.com/ruggleslab/phosphodisco


FIG. 1. PhosphoDisco core functionalities. A, regularized linear models are used to normalize phosphorylation data by protein abundance.
B, normalized phosphorylation data are correlated with itself and modules are found by clustering the correlation matrix using hypercluster. C,
clinical metadata are correlated with module scores to find relevant modules. D, kinase and phosphatase abundances are correlated with
module scores and assigned potential regulators to modules. E, motifs can be calculated from peptides for a module. F, enrichments of
phosphosites in a module can be calculated against a phosphosite annotations database like PhosphositePlus.

PhosphoDisco: Co-regulated Phosphorylation Module Discovery
procedures is included (column_normalize) (supplemental Fig. S1). We
do not recommend any row filtering and discourage row-
normalizations like z-scoring, as maintaining different standard de-
viations between phosphosites is important for filtering before defining
modules.

Protein Normalization of Phosphopeptides

Phosphopeptide relative abundance data can be difficult to inter-
pret because differences in abundance can be due to changes either
in parent protein abundance or differences in phosphorylation state.
To account for these confounding factors, PhosphoDisco includes a
normalize_phospho_by_protein method which accounts for variation
in abundance of the parent protein, and extracts variation due to
changes in phosphorylation. The main caveat of this approach is that
it will over-correct for peptides that are auto-phosphorylated or auto-
dephosphorylated on kinases and phosphatases, respectively. In
these cases, protein abundance and phosphorylation are inter-
connected, and therefore normalizing by the former will cancel out the
latter. For this reason, PhosphoDisco also identifies putative regulator
sites on kinases and phosphatases which can identify these special
cases (see section Association With Possible Regulators below).

To complete protein normalization for each phosphopeptide, we
train a model using regularized linear regression, using cross-
validation (CV) to choose the regularization parameter (linear_re-
gression.RidgeCV from scikit-learn (23)). We train the model with
phosphopeptide abundance as the target and its parent protein
abundance as the feature. We then use this model to predict phos-
phopeptide abundance values based on the parent protein abundance
and subtract that value from the phosphopeptide abundance (convert
to residuals) (Fig. 1A), resulting in normalized phosphopeptide abun-
dance (ProteomicsData.normed_phospho). During normalization, only
peptides that share at least as many non-missing values as the CV
fold are retained; this step acts as a missing values filter. Regulari-
zation is important in the case of low correlation between a phos-
phopeptide and its parent protein (e.g., if a lack of variation in protein
abundance across the cohort exists) (Fig. 1A). Regularization values
and CV fold are changeable parameters, and by default, the regula-
rization values 0.00032, 0.0016, 0.008, 0.04, 0.2, 1, 5, 25, 125, 625,
and 3 CV folds are used.

When combining different datasets (e.g., different cancer types or
tumor and normal samples), we recommend first performing this
normalization for each subgroup, so in the case of two cancer types A
and B, and their matched normals, we would normalize A-normals, B-
normals, A-tumors, and B-tumors independently. This helps amelio-
rate non-linear scale differences between datasets.

Filtering and Module Discovery

Prior to module discovery, we suggest that users retain only rows
with high variance and low fraction of missing values from the protein
normalized phosphopeptide table. This helps to reduce the required
Mol Cell Proteomics (2023) 22(8) 100596 3
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memory needed to run the pipeline and our default filters out the lower
50% of variance rows, after filtering out rows with more than 25% of
missing values. Both of these steps are automatically performed by
the PhosphoDisco pipeline. If using more than one cohort (e.g., mul-
tiple cancer types or tumor and normal samples) we recommend
performing this filtering step within each subgroup separately. For
example, in the case of two cancer types A and B, and their matched
normals, we would apply these filters to the groups of A-normals, B-
normals, A-tumors, B-tumors, A, B, as well as A and B combined
(supplemental Fig. S3). We then keep the union of all phosphosites
that pass our filters in any of the groups. In our analysis of a combined
LSCC and LUAD phosphoproteomic dataset, we have observed that
upwards of 90% of retained phosphosites in the A/B example would
come from filtering A and B combined.

To assign modules, PhosphoDisco completes a pairwise correlation
between each phosphosite using the assign_modules function. Given
that there is no clear precedent for a clustering algorithm most suited
for module discovery in proteomics and phosphoproteomics, one
method is to run a multitude of clustering algorithms (23). Additionally,
hyperparameters are adjustable options that a statistical algorithm
exposes to the user, allowing them to modify how the algorithm
operates. For clustering algorithms, it is often not obvious which
configuration is best for addressing a given question for a given data
set. The built-in hypercluster package (24) enables the execution of a
combination of multiple clustering algorithms with a range of hyper-
parameter sets. Each of these hyperparameter sets then clusters the
data into its own set of modules. Hypercluster offers a variety of
different metrics for evaluating which module set to choose, including
the adjusted Rand index (25), which can tell us which module set is the
most inclusive, i.e., the most similar to all other module sets.

For small datasets, the assign_modules function runs the default
parameters of hypercluster.MultiAutoClusterer.fit to find modules. For
large datasets we recommend finding optimized clusters using the
hypercluster Snakemake (21) pipeline in a distributed manner, then
using the final labels and evaluations to pick the best clustering
method for module detection (Fig. 1B). In the examples below, we
chose the best modules by finding the top parameter sets based on
the highest adjusted Rand index as suggested to identify the most
robust modules. An example table with modules can be found in
supplemental Table S4. Once modules are defined, a score for each
module is calculated with the calculate_module_scores method by
taking the mean of all members of the module per sample. Next users
can use the impute_missing_values function to impute values missing
in the normed_phospho attribute of the ProteomicsData object. This
can be useful for plotting purposes for data sets with few missing
values but can lead to artifacts with larger missingness percentages.
For this sklearn.impute is used with a KNNImputer by default.

PhosphoDisco includes a visualize_modules function that generates
a clustered heatmap of protein-normalized phosphopeptides per
sample for each co-regulated module (Fig. 2B). User-supplied sample
annotations can be visualized alongside the heatmap to show re-
lationships between module phosphosite levels and clinical features.
This visualization is a key step for users to filter and interpret results. It
is also important to visualize modules because clustering algorithms
will often generate spurious modules, which can be manually removed
by users from downstream analyses.

Association With Clinical Variables

Users can also assess whether module scores are associated with
user-supplied sample annotations such as tumor subtype or survival
using the calculate_annotation_association method. These associa-
tions are useful for finding modules that may be relevant to diagnostic
subgroups of tumors. An example of such an annotation table can be
found in supplemental Table S5. An annotations DataFrame can be
4 Mol Cell Proteomics (2023) 22(8) 100596
added to a ProteomicsData object using the add_annotationsmethod.
When add_annotations is applied, users must supply a list, defining
which columns of the DataFrame are continuous or categorical vari-
ables, as categorical columns are split into binarized groups. Next,
using the calculate_annotation_association function, users can
calculate p-values for module enrichment per group per categorical
variables, or correlation for continuous variables. The p-values are
then corrected for multiple hypothesis testing (default is Benjamini
Hochberg procedure (26)) from the statsmodels package (27) (Fig. 1C).

Association With Possible Regulators

Proteins regulating the phosphorylation status of multiple phos-
phopeptides within a module are of particular interest as potential
upstream targets for module inhibition and treatment. We therefore
include methods to assist with nominating regulators for modules.
Users can provide a list of gene names of putative regulators,
matching identifiers in the top level of the index for the protein and
phosphopeptide tables. The collect_possible_regulators function
(supplemental Fig. S1 and supplemental Table S1) consolidates pro-
tein and phosphopeptide abundance data for all genes in that list. To
prevent problems stemming from collinearity, this function also col-
lapses features with higher than a user-set Pearson R value between
them (default 0.95), by taking the mean values per sample. To prevent
collapsing features, users can set the corr_threshold variable to a
value above 1. After correlated features are collapsed, the remaining
missing values are imputed with a sklearn.impute object (default is
KNNImputer). The collected data is stored in the ProteomicsData.-
possible_regulators_data attribute. For this analysis, raw phospho-
peptide data for each possible regulator is used, rather than protein-
normalized data, to allow for the identification of auto-
phosphorylation or auto-dephosphorylation, as discussed previously.

Once regulator data is collected, the calculate_regulator_associa-
tion method finds the association between the vector of module
scores and features in the possible_regulators_data attribute (Fig. 1D)
for each pair of a regulator and a module. The method can be run in
two modes: (a) it simply returns the correlation (default is Spearman),
or (b) it builds a regularized linear model using possible_regulator_data
as features and the modules scores at targets. There is also an option
to transform the module scores so that the relationship being quan-
tified between the regulators and modules scores is a sigmoid curve,
as that is often the relationship between log(kinase abundance) and
substrate concentration (28, 29) (supplemental Fig. S2A).

To aid in module prioritization, PhosphoDisco also provides the
option to test the association of module scores with the abundances
of a known set of kinase activation loop phosphosites (30) through the
correlate_kinase_activation_loop_phosphosites_with_module_scores
function. Kinase activation loop phosphorylation is strongly connected
with kinase activity (30). Thus, this function can be used to further
evidence for kinase activity beyond the more general calculate_r-
egulator_association function. Users can also filter regulators by their
known or predicted druggability using the druggable_regulato-
r_heatmap function (31).

Motif Analysis

Phosphatases and kinases often show preference for specific
amino acid motifs, therefore analyzing the peptide sequences within a
module can help further refine our list of potential regulators. Flanking
amino acid sequences of each peptide can be defined if users provide
an additional DataFrame with one column containing the corre-
sponding protein identifier appropriate for the given fasta file (e.g., the
RefSeq isoform ID for that genome version) and one column with a
comma separated ordinal value of the modified amino acid(s) along
with a corresponding protein fasta file. Users can employ the collec-
t_aa_sequences method (supplemental Fig. S1 and supplemental
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FIG. 2. Module selection and module scores of BRCA and combined LUAD-LSCC cancer datasets. Module scores are calculated for
each sample and each module by taking the log2 of the average abundance of all members in a module in a sample for (A) BRCA and (B)
combined LUAD and LSCC cohorts. C, modules with significant correlations with sample annotations. DHX9, FAT1, PDGFRA, POLQ, RARA,
STK11 indicate gene mutations.
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Table S6) to find the flanking amino acids for each modified site which
will create the module_sequences attribute, containing dictionaries of
amino acid sequences for each module.

The method calculate_motif_enrichment (supplemental Fig. S1 and
supplemental Table S1) then finds amino acid motifs in clusters. The
function aligns a user-set number of amino acids on either side of the
modified site (default is 15, 7 on each side of the phosphorylation site).
A p-value is assigned to the enrichment or depletion of each amino
acid and is calculated using a Fisher’s exact test. Users can visualize
raw counts or the enrichment log10(p-value) (Fig. 1E) of amino acids at
each site. The function visualize_aa_similarity (supplemental Fig. S1)
can then be used to detect multiple motifs in a single module. For each
module, this function counts how many amino acids a peptide has in
common with another peptide across a single module. It then visu-
alizes these similarities in a clustered heatmap (Supplemental
Fig. S2B). This allows users to identify multiple groups of similar
peptides within a module.

Gene Ontology Term and Post Translational Modification Set
Enrichment

In addition to motif discovery, flanking amino acids can also be
used to compare phosphorylation modules to known modified peptide
sets from PTM-ssGSEA (32), which can help with module interpreta-
tion. Upon running collect_aa_sequences to collect sequences, the
ptm_ssgsea function can be used to find enriched peptide sets. In
addition, users can apply gene ontology enrichment tests on gene
sets from each module, using gseapy and Enrichr (33, 34). Either of
these results can be visualized as bar plots using the visual-
ize_set_enrichment function (Fig. 1F, supplemental Fig. S1 and
Supplemental Table S1). In addition, enrichment in protein complexes
can be assessed using the same GO enrichment analysis method
using protein complex databases (e.g., NURSA_Human_Endoge-
nous_Complexome) to specifically check for enrichment of protein
complexes within modules.

Sensitivity Analysis

The strength of the signal for a given module will depend, to some
degree, on the number of samples. Therefore, to provide guidance
on sample size and associated limitations, we completed a sample
size sensitivity analysis based on input size. Specifically, we
assessed PhosphoDisco’s ability to produce consistent results when
applied to smaller cohorts by running the pipeline on 15 randomly-
selected patient cohorts of size n = 25, n = 50, n = 75 or n = 100,
resulting in 60 individual PhosphoDisco runs. This allowed us to
determine if these smaller subsampled cohorts would consistently
recapitulate our original findings. Using the breast cancer dataset
and specifically module BRCA-63 as a test case, we determined the
ability of PhosphoDisco to resolve the same phosphosites within
each cluster at different cohort sizes based the adjusted rand index
and percent of phosphosite overlap in BRCA-63 across the 15 runs.
Patient samples were subsampled from the full CPTAC BRCA tumor
dataset (n = 122) using the ShuffleSplit module from the python
scikit-learn package to ensure phosphosite variability was as evenly
distributed as possible.

RESULTS

Discovery and Exploration of Putatively Co-regulated
Phosphorylation Modules

To demonstrate the utility of PhosphoDisco to analyze
proteomic and phosphoproteomic data, we provide two case
studies, the first from a breast cancer cohort (BRCA, N = 122)
(17) and the second integrating a lung adenocarcinoma
6 Mol Cell Proteomics (2023) 22(8) 100596
(LUAD, N = 98) (16) and a lung squamous cell carcinoma
(LSCC, N = 99) (15) cohort, all from the Clinical Proteomic
Tumor Analysis Consortium (CPTAC). In addition to the tumor
samples, both lung cohorts have matched normal samples
from tumor-adjacent healthy lung tissue (N = 98 and N = 99 for
LUAD and LSCC, respectively, Table 1).

Breast Cancer Cohort Analysis

For our BRCA analysis, following protein normalization, we
filtered out sites that had more than 25% missing values and
took the top 50% of sites with the highest standard deviation.
We then calculated the pairwise correlation between all sites
and applied hypercluster to test several clustering techniques
and hyperparameter combinations to find clusters of similar
phosphosites (putatively co-regulatedmodules). To identify the
most reproducible modules across hyperparameter settings,
we determined howsimilar each set of labels is to each other, as
measured by the adjusted rand index, which is ameasure of the
similarity between sets of labels (supplemental Fig. S4A). There
were several sets of labels from the hdbscan algorithm (35) that
were highly similar to almost all other sets of labels, due to
hdbscan’s ability to dispose of sites that do not cluster well with
anything. To keep the maximum number of phosphosites for
downstream analysis, from this set of reproducible labels we
chose the hyperparameters that led to the most labeled phos-
phosites. These criteria led to the selection of labels calculated
by the hdbscan algorithm with a minimum cluster size of 4;
resulting in 69 modules representing 1017 phosphosites
(Fig. 2A, Table 1 and Supplemental Table S4).
In the clinic, the treatment strategy for breast cancer is

determined by the presence or absence of three receptors: the
estrogen receptor (ER), progesterone receptor (PR), and the
human epidermal growth factor receptor (HER2). Patients with
tumors presenting these receptors can receive therapy that
prevents receptor signaling and downstream proliferation.
Tumors lacking all three receptors (i.e., triple-negative breast
cancer, TNBC) have the worst prognosis and the most
aggressive suggested treatment (36–38). Based on PAM50
subtyping (39–42) there are four major molecular subtypes:
Luminal A (LumA), Luminal B (LumB), Her2-enriched (Her2e),
and Basal-like (Basal) with Basal tumors strongly enriched for
TNBC. To test the utility of PhosphoDisco in breast cancer
discovery, we focused on modules associated with the Basal
tumor type.

Module BRCA-63: A Basal Subtype-Enriched Cell Cycle
Checkpoint Module

The majority of TNBCs are in the Basal subtype (50–75%),
and the majority of Basal tumors are TNBC (>90%). Target
discovery is especially important for patients with Basal sub-
type tumors, as they usually have poor prognosis and dearth
of viable targets. As such, we first set out to prioritize modules
that may represent key biological pathways active in this
highest risk subtypes. To do this, we calculated an adjusted p-
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value representing the association of each PAM50 group with
each module (43) identifying module BRCA-63 as having the
strongest association with the Basal subtype (adjusted
p-value = 1.8e-7) (Fig. 3A).
Module BRCA-63 appeared to be a cell cycle checkpoint

signaling module, as it has an SP/TP motif, characteristic of
CDK1 and CDK2 targets (Fig. 3B). Furthermore, the phos-
phosites in this module significantly overlapped with known
CDK1 and CDK2 targets (adj p = 1.27e-8, 7e-10, respectively)
(32, 44) (Fig. 3C), though the majority of the sites were not
contained in the CDK1 or CDK2 substrate lists from Phos-
phoSitePlus (Fig. 3E). When looking for regulators of the
module, we identified a strong correlation between the module
score and CDK1 abundance (Fig. 3D), as well as other mitotic
kinases such as TTK, AURKB and MASTL (Fig. 1D). Moreover,
this module contains compelling novel targets of CDK1 and/or
CDK2, such as serine 183 on EIF3H, a site whose phos-
phorylation has been shown to be functionally necessary for
oncogenic proliferation (45), potentially pointing to a connec-
tion between cell cycle checkpoint activation and translational
initiation control.
Interestingly, the putative cell cycle checkpoint module

(BRCA-63) is separate from a module containing several KI67
phosphosites (module BRCA-48) (supplemental Fig. S5),
which is a marker of proliferation and is broadly used as a
prognostic test in breast cancer (46–49). While both modules
have high scores in Basal samples (Fig. 3A and supplemental
Fig. S5A), the cell cycle checkpoint module is secondarily high
in Her2e samples, while the proliferation module is also high in
LumB samples (supplemental Fig. S5, B and C). This
discrepancy indicates that proliferation and cell cycle check-
points are separable pathways at the phosphorylation
signaling level. The cell cycle checkpoint module is of partic-
ular interest, because CDK4/6 inhibitors (CDK4/6i) are
currently being used to treat ER+ breast cancer (50), but there
is a dearth of reliable biomarkers for the efficacy of this
treatment (51, 52). Since CDK2 overactivation can compen-
sate for CDK4/6i by phosphorylating the tumor suppressor Rb
(53), the phosphorylation of peptides in this module could be
excellent candidates as putative biomarkers for CDK4/6i
resistance. The use of these biomarkers (along with others,
such as measuring Rb loss) could expand the use of CDK4/6i
to new patient cohorts.

Down-Sampling to Assess Module Identification Sensitivity
in Smaller Cohorts

To assess PhosphoDisco’s ability to produce consistent
modules with smaller sample size inputs, we ran 15 randomly
selected patient cohorts at four different cohort sizes (n = 25,
n = 50, n = 75 or n = 100), resulting in 60 total runs. We then
compared the modules identified by this subsampling to
determine if smaller patient cohorts were able recapitulate the
same modules that we found in our 122-patient cohort set, with
a particular focus on BRCA-63 as a test case. Using the
HBDSCAN-min-4 clustering method, the same method applied
in our original analysis, we found that PhosphoDisco performed
exceptionally well regardless of sample size. Comparing
phosphosite overlap for module BRCA-63 and modules iden-
tified in our subsampled analysis, we found an average phos-
phosite overlap of 86.65%, 96.20%, 97.99%, and 98.44% for
n = 25, 50, 75, and 100 patient cohorts, respectively
(supplemental Fig. S6A) between the original BRCA-63 module
and its most similar cluster in each of the runs.
Although the high performance for the n = 25 patient co-

horts suggests that we can confidently identify modules from
cohorts of 25 patients or more, we did note higher module
variability as sample size decreased. Using an adjusted rand
index for which BRCA-63 phosphosites were clustered across
the 15 runs at each cohort size level we found that n = 25 had
the lowest adjusted rand index at 0.06. This jumps consider-
ably to 0.80 for n = 50 patients and is a perfect score of 1.0 for
n = 75 and n = 100 patients (supplemental Fig. S6B). This
suggests that n = 25 patients may be sufficient to find the
majority of the important phosphosites for key modules within
your data, however additional patients can substantially in-
crease consistency across runs. We suggest that, when
feasible, users use a similar bootstrapping method to test the
robustness of their modules based on a random down sam-
pling approach.

Non-Small Cell Lung Cancer Cohort Analysis

To demonstrate PhosphoDisco’s functionality in the anal-
ysis of combined datasets, we combined tumor and normal
samples from a lung squamous cell carcinoma (LSCC) (15)
and lung adenocarcinoma (LUAD) datasets (16). Non-small
cell lung cancer (NSCLC) accounts for around 80% of lung
cancers (54). The two most common NSCLC subtypes are
LUAD (50%) and LSCC (40%) (54). Subtyping within LSCC
and LUAD is not as clearly established as it is in breast
cancer.
Phosphoproteomics data from LSCC tumors, LSCC nor-

mals, LUAD tumors, and LUAD normals were normalized
separately and combined following the procedure outlined in
supplemental Fig. S3. For the combined data set, we retained
phosphopeptides that passed our filters (maximum 25%
missing values, top 50% of highest standard deviation) when
looking at the samples in any one of several different combi-
nations: (i) LSCC tumors, LSCC normals, LUAD tumors, and
LUAD normals separately; (ii) all LSCC samples and all LUAD
samples separately; and, (iii) all lung samples together. We
then took the pairwise correlation between all sites. To find
clusters of similar phosphosites (putatively co-regulated
modules), we applied hypercluster to test several clustering
techniques and hyperparameter combinations.
To find the most reproducible modules across hyper-

parameter settings, we determined how similar each set of
labels are to each other, as measured by the adjusted rand
index (supplemental Fig. S4B). As seen previously
Mol Cell Proteomics (2023) 22(8) 100596 7
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FIG. 3. Module BRCA-63. A, heatmap of normalized phosphosite abundance. B, module peptide motif. C, PTM SEA enrichment. D, overlap
between kinase substrate phosphosite sets and module phosphosites. E, correlation between CDK1 protein abundance and module scores.
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(supplemental Fig. S4A), there were several sets of labels from
the hdbscan algorithm (35) that were highly similar to almost
all other sets of labels and again chose hyperparameters that
led to the most labeled phosphosites. These criteria led to the
selection of labels calculated by the hdbscan algorithm with a
minimum cluster size of 9; these labels contained 14 modules
representing 1684 phosphosites (Fig. 2B and supplemental
Table S7). Nine of these clusters were found to be signifi-
cantly correlated with a clinically relevant feature including
mutation status and cancer subtype (Fig. 2C).

Module Lung-3: Phosphorylated PRKC Isozymes Enriched
Module in Lung Tumors

Expression of PRKC isoforms has been associated with
poor prognosis in non-small cell lung cancer (NSCLC) (55). In
FIG. 4. Module Lung-3. A, module plot for Lung-3, including heatmap
GO-term annotations, and annotations. B, top nominated regulators tha
regulators regardless of module membership. Trendlines in (B) and (C) a
using spearman correlation (scipy.stats.spearmanr with default argumen
our combined LSCC and LUAD dataset, we identified module
Lung-3, which was made up of 21 phosphosites (Fig. 4A).
These phosphosites included PRKC isoforms B, D, E, Q, all of
which have been associated with reduced drug sensitivity,
increased cell survival, proliferation, invasion, migration,
evasion of apoptosis, anchorage-independent growth, pro-
gression, chemotaxis, as well as cell cycle progression (55)
making this module potentially interesting for therapy. We
found phosphosites of both CDK12 and CDK13 to be strongly
correlated to the module scores of this module (CDK13-T871:
p < 9e-84, corr = 0.79; CDK12-T893: p < 4e-140, corr = 0.90)
(Fig. 4, B and C), where the CDK12 site is part of the module,
and the CDK13 site is not. Additional potential regulators
included PDGFA, PRKCD, PRKCZ, and PRKRA, indicating a
potential role for ceramide metabolism (56) in this module
of normalized phosphosites for samples versus module phosphosites,
t are not also part of the module phosphosite list. C, top nominated
re not representative of listed r and p-values, which were calculated
ts).
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(Fig. 4, B and C). Further, we found that the Lung-3 module
scores were significantly correlated with a mutation in the
platelet-derived growth factor receptor alpha gene PDGFRA
(adj-p = 0.036) (Fig. 2C). This gene has been shown to play a
role in wound healing and tumor progression in a variety of
cancers (55). In summary, this module encompasses multiple
co-correlated paralogs of PRKC that may be co-regulated by
CDK12/CDK13, potentially via the ceramide pathway and
PRKRA. Many of the protein kinase C phosphopeptides in this
module are also highly similar to each other while not being
identical (supplemental Fig. S7B), which would be consistent
with these phosphosites being phosphorylated by the same
kinase or family of kinases. Interestingly, we found a highly
similar module (p < 2e-10) in our breast cohort (BRCA-38),
containing phosphosites in PRKCB and PRKCD as well as
CDK12 and CDK13 (supplemental Fig. S7, C and D).

Module Lung-5: Cell Cycle/Proliferation Module

An additional module, Lung-5, was identified as being
associated with the proliferative primitive subtype of LSCC, as
well as the LUAD proximal proliferative subtype C3 (p-values
< 0.0002) (16) (Fig. 5A). Lung-5 module scores were found to
have high correlation with CDK1 and CDK2 expression (Fig. 5,
B and C) and were found to contain a significant number of
known CDK1 and CDK2 phosphosites, as determined by
PTM-SEA (Fig. 5D). Further evidence for CDK1 and CDK2 as
regulators for this module, is the S/T-P-x-K peptide motif
enriched in the phosphosites of this module (Fig. 5E), which is
consistent with the known CDK1 motif (57). The site TPR-
T1677 in module Lung-5 was previously observed in cell
lines (58) as a minorly abundant phosphosite with unknown
regulator. The same study (58) found TPR-S2059 to be
phosphorylated by CDK1 in cell lines which we did not
observe in our data set. This suggests that TPR-T1677 may
also be phosphorylated directly by CDK1 and may in fact be
the major phosphosite.
Further, proteins in this module were found to be signifi-

cantly enriched (FDR < 0.05) in five protein complexes (BL840,
AB81, BL373, BL6690, SC-126) based on the NURSA protein
complexes database, a dataset made up of protein-protein
complex associations that were identified by protein in com-
plex recovered using Immunoprecipitation-MS (59). RANBP2,
DSP, NPM1, XRCC6, TP53BP1, RPLP2 and HNRNPK were
found in all five complexes identified. Interestingly, the ma-
jority of these genes are known binders of the tumor sup-
pressor, TP53. This is consistent the associations found with
CDK1/2 as p53 is known a downstream kinase substrate for
these kinases.
Interestingly, this module has substantial overlap (p < 6e-14)

with the breast cancer module BRCA-63 (Figs. 3 and 5F,
supplemental Table S8). Three of the parent proteins of the
phosphosites these modules have in common (HMGA1,
HNRNPK, XRCC6) are known binding proteins of HMGB1, an
10 Mol Cell Proteomics (2023) 22(8) 100596
important regulator of homeostasis in airway epithelial cells,
as well as regulating immune and inflammatory responses
(60).

DISCUSSION

Zeroing in on Biomarkers and Novel Targets

While certain signaling pathways are well-established tar-
gets for cancer treatment, determining relevant players in a
particular disease is challenging. We show that Phospho-
Disco can help users identify and interpret co-regulated
signaling modules in phosphoproteomic datasets. Applying
PhosphoDisco to a breast cancer data set, we identified a
putative cell cycle checkpoint module, which nominated
novel targets of cell cycle kinases, drawing a potential link
between cell cycle checkpoints and translation initiation
control. In addition, the members of this module are good
candidates to be tested as biomarkers of resistance to
CDK4/6 inhibition. Lastly, PhosphoDisco was able to identify
modules associated with mutation status and other relevant
clinical features in lung cancer (Fig. 2C) further highlighting its
ability to assists in processing and prioritizing phosphopro-
teomics data to generate hypotheses about biomarkers and
novel therapeutic targets.

Pan-Cancer Phosphorylation Signaling Pathways

Results from a preliminary pan-cancer PhosphoDisco
analysis hint that phosphorylation modules found across
cancers are more similar to each other than to current data-
bases of kinase-substrate sets. The reproducibility of some of
these modules increases the confidence in the approach
taken by PhosphoDisco. The signaling pathways repeatedly
found in CPTAC phosphoproteomics data could redefine key
phosphorylation cascades, narrowing down the scope of
downstream validation experiments across cancer biology. In
particular, PhosphoDisco can be used for the design of
combination kinase inhibitor therapy, where it can identify ki-
nases likely to be in the same or different pathways. This can
guide experiments testing whether inhibition of two kinases
would be additive or redundant, or simply be effective in
different populations (61–63). Additionally, PhosphoDisco
could be used to find redundant kinases in the same
pathway, for which only simultaneous inhibition would lead to
an effect.

Limitations

Since individual phosphosites are typically only quantified
based on the measurement of one peptide, we expect varia-
tion in measurements to be larger for phosphosite level anal-
ysis compared with protein quantification, where often several
peptides can be used. Further, phosphorylation data is very
high in its level of missingness. These inherent limitations
require tools specific to this data structure, and PhosphoDisco



FIG. 5. Module Lung-5. A, module plot for Lung-5, including heatmap of normalized phosphosites for samples versus module phosphosites,
GO-term annotations, and annotations. Correlation between module scores of Lung-5 and (B) CDK1 and (C) CDK2 expression. D, PTM ssGSEA
enrichment analysis of module 5 against PhosphoSitePlus sets. E, Lung-5 peptide motif of 15 length peptides centered on module phos-
phosites. F, overlap between phosphosites in Lung-5 and BRCA-63.
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was designed to support both the larger quantitative error rate
and the missingness in phosphorylation data. The sparsity of
this data type also complicates our ability to comprehensively
assess ‘gold standard’ kinase-substrate sets in our data but
we expect that this will improve as mass spectrometry-based
proteomics technology continues to advance.

Expanded Use Cases

Each function provided by PhosphoDisco could be useful
as steps in other custom analysis pipelines. We particularly
anticipate the protein normalized phosphopeptide abundance
to be of broad use for other analyses, where determining
whether differences in abundance are due to phosphorylation
or parent protein expression changes. While this tool is
currently most suited to data sets from CPTAC and similar
consortia, there are increasing numbers of research programs
that are using phospho-enriched shotgun mass spectrometry
to study different systems (64). PhosphoDisco could poten-
tially be used on any analogous PTM-enriched relative abun-
dance mass spectrometry data, such as acetylproteomics.
Acetylation-based signaling is chronically understudied,
making high throughput experiments more difficult to inter-
pret, though it is evidence that acetylation signaling could be
key to understanding breast cancer progression (65) and
many other cancer types (66, 67).
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