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In Brief
Membrane proteins are difficult
to detect in bottom-up
proteomics due to their
hydrophobicity and low
abundance compared to soluble
proteins. We apply here the
peptidisc membrane-mimetic to
isolate the plasma membrane
proteome. The method captures
membrane proteins in a water-
soluble state that is amenable to
mass spectrometry analysis and
protein purification. The
technique is promising in
identifying naturally low
abundant plasma membrane
proteins. It is also applicable to
compare the panels of cell
surface markers.
Highlights
• Peptidisc stabilizes membrane proteins in a water-soluble library.• The membrane protein library is amenable to purification and proteomic analysis.• The library comprehensively reflects the membrane proteome.• The method facilitates the identification of cell surface markers.
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RESEARCH
A Peptidisc-Based Survey of the Plasma
Membrane Proteome of a Mammalian Cell
Zhiyu Zhao1 , Arshdeep Khurana1 , Frank Antony1, John W. Young1 ,
Keeley G. Hewton1,2 , Zora Brough1, Tianshuang Zhong1, Seth J. Parker1,2,3 , and
Franck Duong van Hoa1,*
Membrane proteins play critical roles at the cell surface
and their misfunction is a hallmark of many human dis-
eases. A precise evaluation of the plasma membrane
proteome is therefore essential for cell biology and for
discovering novel biomarkers and therapeutic targets.
However, the low abundance of this proteome relative to
soluble proteins makes it difficult to characterize, even
with the most advanced proteomics technologies. Here,
we apply the peptidisc membrane mimetic to purify the
cell membrane proteome. Using the HeLa cell line as a
reference, we capture 500 different integral membrane
proteins, with half annotated to the plasma membrane.
Notably, the peptidisc library is enriched with several ABC,
SLC, GPCR, CD, and cell adhesion molecules that gener-
ally exist at low to very low copy numbers in the cell. We
extend the method to compare two pancreatic cell lines,
Panc-1 and hPSC. Here we observe a striking difference in
the relative abundance of the cell surface cancer markers
L1CAM, ANPEP, ITGB4, and CD70. We also identify two
novel SLC transporters, SLC30A1 and SLC12A7, that are
highly present in the Panc-1 cell only. The peptidisc library
thus emerges as an effective way to survey and compare
the membrane proteome of mammalian cells. Further-
more, since the method stabilizes membrane proteins in a
water-soluble state, members of the library, here
SLC12A7, can be specifically isolated.

Membrane proteins (MPs), especially plasma MPs, play
critical roles in cellular communication and interactions with
their surroundings. They fulfill numerous functions, such as
signal transduction, nutrient transport, cell adhesion, antigen
presentation, drug extrusion, and many other enzymatic ac-
tivities (1–3). Misfunction, mistargeting, or altered expression
of MPs are directly linked to disease development, including
hypertension (4), Alzheimer’s disease (5), and multiple forms of
cancers (6–9). Due to their central involvement in disease
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development and surface accessibility, MPs—particularly G
protein-coupled receptors (GPCRs), solute carriers, and ion
channels—are among the most amenable and lucrative tar-
gets for diagnostic and therapeutic research (10–13).
Mass spectrometry (MS) is a very valuable method to survey

a cell integral membrane proteome, yet challenging to perform
because MPs are poorly soluble and present in low abun-
dance compared to the overall cell proteome (14, 15). During
MS analysis, the intense signals derived from soluble proteins
often mask the weaker signal obtained with integral mem-
brane proteins (IMPs, (10, 16–18). A few methods have been
developed to increase the detection efficiency of this mem-
brane proteome, such as silica-bead coating, cell surface la-
beling (CSL), and cell surface capture (CSC) (19–22). These
methods have greatly improved the definition of the mem-
brane proteome, yet some technical challenges remain. The
CSL procedure is limited by the surface accessibility of lysine
residues, and over-labeling and cell lysis can decrease
digestion efficiency and labeling specificity, respectively (23,
24). The CSC method also depends on the selective capture
of a glycosyl-moiety that can be heterologous and absent on
certain cell surface proteins (23, 24). The recovery of the
membrane proteome is also problematic because membrane
solubilization often requires detergents, such as SDS, which
are not compatible with the downstream LC-MS (24–26).
Protocols, such as filter-aided sample preparation and S-Trap,
have been developed to help with detergent removal, but it is
still challenging to recover peptides without causing loss
(27–31).
In this study, we test if the membrane mimetic peptidisc, so

far developed with Escherichia coli, can also be employed to
survey the lipid-diverse and organelle-complex mammalian
membrane proteome. And if yes, how do the results compare
to other cell surface assays such as CSC and CSL? The
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A Survey of the Cell Membrane Proteome
peptidisc sensitive enough to perform comparative membrane
analysis without requiring labeling reagents or strong de-
tergents. The peptidisc is an amphipathic ApoA1-derived
peptide designed to shield the water-insoluble parts of MPs
(18, 32–34). Due to a self-assembly property, this mimetic can
convert the whole membrane proteome into water-soluble
nanoparticles, termed as “peptidisc library” (32, 35). Impor-
tantly, for this study, the peptidisc is modified with a His6-tag,
and thus the membrane proteome in the library can be
enriched by nickel nitrilotriacetic acid (Ni-NTA) chromatog-
raphy (18). Since the library bypasses strong detergents, the
protein folds are preserved and proteins can be purified.
Using the HeLa cell line as a reference, we report the spe-

cific captures of ~500 IMPs, with half predicted to be located
at the plasma membrane (pIMPs). As expected, the IMPs
representation over total proteins is greatly augmented upon
library purification. These identification results compare well
with other CSL and CSC methods. We then apply the method
to survey the membrane proteome of the pancreatic ductal
adenocarcinoma (PDAC) cell line Panc-1 and the nonmalig-
nant stellate cell human pancreatic stellate cell (hPSC) (36).
PDAC is one of the most lethal cancers, partly due to a lack of
effective therapeutics (37, 38). Our results provide a short list
of plasma MPs, whose abundance is strikingly different across
the two cell lines, including known and potentially novel bio-
markers and actionable targets. We further show that one of
them can readily be isolated from the library using an
antibody.
EXPERIMENTAL PROCEDURES

Materials

Frozen HeLa cell pellets (C3 PN: HA48) were purchased from the
Cell Culture Company. Nickel-affinity resin was obtained from Qiagen.
Detergent n-dodecyl-β-D-maltoside (DDM) was purchased from
Anatrace. His-tagged peptidiscs (purity >90%) were obtained from
Peptidisc Biotech. Superose 6 10/300 and Protein A Sepharose CL-
4B were purchased from GE Healthcare. The protease inhibitor
cOmplete Cocktail was purchased from Sigma. Trypsin, anti-KCC4
(A304-442A), and anti-MRP1 (A304-419A) antibodies were pur-
chased from Thermo Fisher Scientific. Octadecyl (C18) Empore disks
were purchased from 3M. Polygoprep 300-20 C18 power was pur-
chased from Macherey-Nagel. General chemicals such as NaCl, Tris-
base, PMSF, and EDTA were obtained from Bioshop and Thermo
Fisher Scientific Canada. Anti-Na+/K+ ATPase (sc-21712) was kindly
provided by Santa Cruz Biotechnology for a sample test.

Cell Cultures

The cell line Panc-1 was obtained from the American Type Culture
Collection, a nonprofit organization for cell line collection, and
authenticated by short tandem repeat DNA fingerprinting and main-
tained in a centralized cell bank. The de-identified hPSC#1 cell line
was generously supplied under a transfer agreement from Alec Kim-
melman at the New York University School of Medicine (36). Both cell
lines were verified to be negative for Mycoplasma by PCR method
prior to experiments. Cell lines were cultured in Dulbecco’s modified
Eagle’s medium (Corning) supplemented with 10% fetal bovine serum
2 Mol Cell Proteomics (2023) 22(8) 100588
and 1% penicillin-streptomycin. Roughly 40 million cells were har-
vested per sample by rapid trypsinization and washed twice in PBS.
Cell pellets were flash-frozen in liquid nitrogen and stored at −80 ◦C
until use.

Preparation of Crude Membranes

Frozen cells pellets (equivalent to ~40 million cells) were resus-
pended in 4 ml hypotonic buffer (10 mM Tris–HCl, 30 mM NaCl, and
1 mM EDTA, pH 7.4) containing 1× cocktail protease inhibitor and
1 mM PMSF on ice for 20 min. Cells were homogenized in a metal
douncer and through a 27 Gauge needle over 70 times. To remove
chromosomal DNA, 10 mMMgCl2 and 50 μg Dnase were added to the
lysed cells and incubated on ice for 15 min. Unbroken cells and nu-
cleus fraction were removed by centrifugation at 1200g for 10 min at
4 ◦C. The supernatant was collected and centrifuged again (5000g,
10 min at 4 ◦C) to remove the mitochondria fraction. The crude
membrane fraction (plasma, endoplasmic reticulum [ER], Golgi,
vesicle membranes) was then pelleted by ultra-centrifugation
(110,000g, 45 min at 4 ◦C) in a Beckman TLA110 rotor. This mem-
brane preparation was resuspended in 100 μl TSG buffer (50 mM Tris,
pH 7.8, 100 mM NaCl, 10% glycerol) and stored at −80 ◦C until use.

Preparation of the Peptidisc Libraries

To prepare the peptidisc library, crude membranes were solubilized
in 0.8% DDM for 30 min at 4 ◦C with gentle shaking. After the removal
of insoluble aggregates by ultracentrifugation (100,000g, 15 min,
4 ◦C), the MPs present in the detergent extract was reconstituted into
His-tagged peptidiscs as previously described with minor modifica-
tions (18). Briefly, the “DDM extract” (~300 μg) was mixed with His-
tagged peptidisc peptide (~900 μg) for 15 min at 4 ◦C. The mixture
(total ~450 μl) was diluted to 5 ml in TS buffer (50 mM Tris, pH 7.8,
100 mM NaCl) over a 100 kDa-cutoff centrifugal filter (Amicon, Milli-
pore) and then concentrated (3000g, 10 min). The mixture (~200 μl)
was diluted to 5 ml again in TS buffer and concentrated to ~300 μl
(~1 mg). The resulting peptidisc library (termed “Starting Library”) was
incubated with 60 μl of Ni-NTA resin (Qiagen) for 1 h with shaking.
After extensive washing with TS buffer to remove nonspecific binders
(5 washes, 1 ml each), the “Purified Library” was eluted in 150 μl TS
buffer supplemented with 600 mM imidazole.

Detergent Removal and Acetone Precipitation

Sample “DDM Extract” preparation: The DDM-solubilized crude
membrane (180 μg) was treated with 100% ice-cold acetone and left
overnight at −20 ◦C to precipitate. The precipitated proteins were
pellet at 16,100g for 10 min. The pellet was then washed with 100%
acetone and pelleted again. The supernatant was aspirated, and the
pellet was air-dried at 42 ◦C. The pellet was resuspended in 100 μl of
20 mM NH4HCO3 before trypsin digestion.

Immunoprecipitation of KCC4

About 4 μg of anti-KCC4 antibody were incubated with Panc-1
peptidisc library (~1 mg) in TS buffer (50 mM Tris, 100 mM NaCl)
overnight at 4 ◦C with gentle rocking. On the following day, the mixture
was incubated with 200 μl Protein A Sepharose resin equilibrated with
TS buffer for at least 4 h with gentle rocking. After two washes with TS
buffer (1 ml and 1 min each), the immunoprecipitation (IP) sample was
eluted with 200 μl of 100 mM glycine (pH 3.0). Before 6 M urea
treatment and trypsin digestion, the pH of the IP sample was adjusted
to 7.8 using 1 M Tris.

Sample Preparation for MS Analysis

Protein samples (DDM Extract, Starting Library, Purified Library,
~80 μg each; IP sample, concentration not measurable) were treated
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with 6 M urea at room temperature for 30 min before reduction with
10 mM fresh DTT for 1 h. Alkylation was performed with 20 mM
iodoacetamide in the dark at room temperature for 30 min, followed by
the addition of 10 mM DTT for 30 min. The urea concentration was
diluted to 1 M with TS buffer. Trypsin digestion was performed with an
enzyme/protein ratio of 1:50 at 25 ◦C for 18 h. The tryptic peptides
were acidified to pH 3 with 10% formic acid and desalted using home-
packed Stage-Tips C18. The peptides were eluted with 80% aceto-
nitrile/0.1% formic acid and dried by vacuum centrifugation.

LC and MS/MS Analysis

The LC and MS analysis was done at the SPARC BioCenter (The
SickKids Proteomics). The dried peptides were resuspended in buffer
A (0.1% formic acid). Peptides (3 μg for DDM-treated and 4 μg for the
peptidisc library samples) were analyzed using an EASY-nanoLC 1200
system coupled to an Orbitrap Fusion Lumos Tribrid Mass Spec-
trometer (Thermo Fisher Scientific). The LC portion of the analysis
consisted of an 18 min linear gradient running 3 to 20% of buffer A to
buffer B (0.1% FA, 80% acetonitrile), followed by a 31 min linear
gradient running 20 to 35% of buffer A to buffer B, a 2 min ramp to
100% buffer B and 9 min hold at 100% buffer B, all at a flow rate of
250 nl/min. Samples were loaded into a 75 μm × 2 cm Acclaim
PepMap 100 Pre-column followed by a 75 μm × 50 cm PepMax RSLC
EASY-Spray analytical column filled with 2 μm C18 beads (Thermo
Fisher Scientific). MS1 acquisition resolution was set to 120,000 with
automatic gain control target value of 4 × 105 and maximum ion in-
jection time of 50 ms for a scan range of m/z 375 to 1500. Mono-
isotopic precursor selection was determined at the peptide level with a
global intensity threshold of 10,000. Only peptides with charge states
of 2 to 7 were accepted, with dynamic exclusion set to 10 s. Isolation
for MS2 scans was performed in the quadrupole with an isolation
window of m/z 0.7. MS2 scans were performed in the ion trap with a
maximum ion injection time of 10 ms, automatic gain control target
value of 1 × 104, and higher-energy collisional dissociation activation
with a normalized collision energy of 30.

Raw Data Processing

All raw MS data were processed using MaxQuant (https://www.
maxquant.org) v2.0.3.0 (39). MaxQuant-integrated Andromeda
search engine was used against the UniProt Homo sapiens (modified
seventh of March, 2021—78,120 entries, unreviewed) protein data-
base. To allow Andromeda to recognize the peptidisc peptides in the
samples, the NSPr sequence was manually added to the protein
database and given the arbitrary protein ID, P1EPTD (NSPr sequence:
n-FAEKFKEAVKDYFAKFWD-P-AAEKLKEAVKDYFAKLWD-c). The
initial MaxQuant individual peptide mass tolerance was set at 20 ppm
for both the precursor and fragment ions. The entries in the database
were trypsin digested in silico and matched against detected peptide
features, with a maximum of two missed cleavages considered.
Cysteine carbamidomethyl was set as a fixed modification, while
methionine oxidation, N-terminal acetylation, asparagine, and gluta-
mine deamidation were the variable modifications. The UniProt data-
base was also concatenated with an automatically generated reverse
database to estimate the false discovery rate using a target decoy
search. A threshold false discovery rate of 1% was applied at the
peptide spectrum match and protein level. For relative quantification,
the MaxQuant label-free quantification function—label-free quantita-
tion (LFQ) and iBAQ—were enabled (40). Both razor and unique
peptides were used for quantification.

Statistical Analysis

The protein groups.txt output from MaxQuant was exported into
Perseus v1.6.15.0 for downstream analysis (41). The protein groups
identified from the reverse decoy database, marked as potential
contaminants, or only identified by a posttranslation modification site
were removed from any downstream analysis. The remaining intensity,
LFQ intensity, and iBAQ values were log2 normalized. For the HeLa,
Panc-1, and hPSC Purified Library replicates, an LFQ analysis was
performed to assess the reproducibility with a Pearson correlation
coefficient. To find the differential abundance of proteins in the Panc-1
and hPSC cell line libraries, a student’s t test was conducted with an
artificial within groups variance, s0, set at 0.1. The test was applied on
data filtered for only those proteins with a valid LFQ intensity in at least
both replicates of the hPSC or Panc-1 cell line libraries. Before
applying the t test, the remaining undefined intensity values were
imputed from a normal distribution with a downshift of 1.8 SDs from
the total sample mean and a width of 0.3 times the sample SD. In this
study, proteins are considered differentially expressed between the
cells if the peptide intensity (PI) fold change (FC) across samples is ≥2
or ≤-2 (the absolute value of Log2FC ≥ 1), p < 0.05 (-Log10 (p-value)
> 1.3).

Protein Annotation

The protein list was “Gene ontology (GO)-term” analyzed using the
UniProtKB database. Proteins with the GO-term “membrane” were
annotated as MPs. The Phobius web server (http://phobius.sbc.su.se/)
was then used to predict the number of the transmembrane segment
(TMS) for each MP. Proteins with at least one predicted TMS were
annotated as IMPs. The subcellular location of the IMPs was then
categorized using the GO-term “Subcellular location [CC]” to “plasma
membrane,” “ER/Golgi membrane,” “vesicle membrane (including
endosome, exosome, lysosome, vesicle, and peroxisome),” “mito-
chondrial membrane,” and other “membrane (including “membrane,”
nucleus, and secreted)” proteins. The IMPs with a GO-term “plasma
membrane” or “cell membrane” were annotated as pIMPs. The IMPs
that were solely defined with a GO-term “membrane” were further
analyzed using the HeLa spatial proteome database to get their
specific localization (42).

Other Bioinformatic Tools

Venn Diagram analysis was done using Bioinformatics & Evolu-
tionary Genomics (http://bioinformatics.psb.ugent.be/webtools). The
relative abundance of MPs was checked in PAXdb: Protein Abun-
dance Database (https://www.pax-db.org) using the gene name of
each protein. Graphs and corresponding statistical analysis were done
in GraphPad Prism 8.4.3 (https://www.graphpad.com). The Graphic
Abstract was created with BioRender (https://biorender.com).

Western Blot

Crude membranes (5 μg) from either Panc-1 or hPSC were loaded
on 10% SDS-PAGE. The proteins were transferred to a polyvinylidene
fluoride membrane (Immobilon-P, Millipore) via semi-dry Western
Blotting. Anti-KCC4 (SLC12A7), anti-MRP1 (ABCC1), or anti-Na+/K+

ATPase (ATP1A1) were used as primary antibodies and incubated with
the membrane overnight at 4 ◦C. After washing with PBS-Tween (3
times, 10 min each), the HRP-conjugated secondary antibody (anti-
rabbit or anti-mouse) was added to the membrane for 1 h at room
temperature. The membrane was washed with PBS-Tween (6 times,
5 min each). The chemiluminescent substrate (170-5060, Bio-Rad)
was incubated with the membrane for 5 min before imaging.

Experimental Design and Statistical Rationale

Proteomic studies on Panc-1 and hPSC cells were conducted in
biological triplicates (n = 3). The MS data analysis was done using
MaxQuant and Perseus. To investigate the reproducibility of the
peptidisc library purification method, we used the MaxLFQ algorithm
Mol Cell Proteomics (2023) 22(8) 100588 3
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for LFQ. Quantification was performed using both razor and unique
peptides. The correlation coefficient r was obtained using Perseus. For
the comparison between Panc-1 and hPSC cells, a student’s t test
was performed. Proteins were considered differentially expressed
when the FC of their PI across the two samples was equal to or larger
than 2, and a p-value <0.05 was considered statistically significant.
RESULTS

Capture and Purification of the HeLa Cell Membrane
Proteome in Peptidisc

The HeLa cell line is commonly employed in proteomics
analysis (43–45), and its cell surface proteome was profiled
using the CSL and CSC methods (46, 47). We, therefore,
employed this cell line to benchmark our study. After me-
chanical lysis of ~40 million cells, the membrane fraction was
isolated by ultracentrifugation to remove nuclei and large or-
ganelles such as mitochondria. Next, the membrane fraction,
a mixture of plasma, ER, and Golgi membranes, was solubi-
lized with the detergent DDM (hereafter termed “DDM
Extract”). The proteins in the DDM Extract were then trapped
in the His-tagged peptidisc (termed “Starting Library”) and
purified over Nickel-affinity resin (termed “Purified Library”).
Following these preparative steps, equal amounts of DDM
Extract, Starting Library, and Purified Library (~80 μg protein
each) were digested with trypsin, stage-tipped, and analyzed
by LC-MS/MS. The proteins identified were then annotated
using the GO-term “membrane” to determine the number of
MPs. Within the MPs group, proteins containing at least one
α-helical TMS were labeled IMPs. The IMPs with the GO-term
“plasma membrane” or “cell membrane” were further anno-
tated as pIMPs.
The DDM Extract contained 2646 protein IDs, compared to

2186 in the Starting Library. We note that similar amounts of
digested peptides were analyzed in both cases (3–4 μg), but
since 3/4th of the peptide mass comes from the peptidisc
peptides in the latter case, a lower identification rate is ex-
pected. We also note that ~300 fewer proteins were identified
in the Purified Library than the Starting Library (1865 vs. 2186;
Table 1), but the protein annotation reveals that most of the
TABLE

Number of proteins identified acro

MS sample Total proteins MPs

DDM extract 2646 992
Starting library 2186 912
Purified library 1865 877
Reference list 1 (Li et al., 2019) (46) 1899 854
Reference list 2
(Bausch-Fluck et al., 2015) (47)

347 311

“Total proteins” represents the total number of proteins identified in eac
“IMPs” represents the proteins with at least one predicted transmembra
“plasma membrane” GO-term. The Reference Lists (“supplemental Tabl
dataset in (47)) were annotated following the same criteria. The complet

4 Mol Cell Proteomics (2023) 22(8) 100588
missed IDs (~90%) correspond to cytosolic proteins (e.g.,
translational, proteasomal, and RNA-related proteins), as ex-
pected since these nonmembrane contaminants are washed
away during library purification. Comparing the three samples,
the percentage of IMPs and pIMPs identified over the total
protein IDs was similar (~23–29% for IMPs and 8–14% for
pIMPs; Table 1). However, as shown below, the detection
efficiency of IMPs is greatly augmented in the Purified Library.

Enrichment of pIMPs in the Purified Library

To assess the impact of library purification, we ranked the
proteins identified using their PI and iBAQ values, which
reflect protein abundance across and within samples. To
visualize the results, we plotted and annotated the top 200
proteins (Fig. 1 and supplemental File S1). The Purified Library
had almost three-fold more IMPs than the DDM Extract (68
IMPs/52 pIMPs versus 24 IMPs/20 pIMPs, respectively) and
almost twice more than in the Starting Library (compare
Figure 1B to Figure 1C). Notably, some pIMPs considered key
therapeutic targets, such as the solute carrier (SLC) trans-
porters (SLC26A6, SLC30A1, SLC16A3, SLC4A2, SLC38A1,
SLC39A10), integrins (ITGA3, ITGA6, ITGB4), and CD antigens
(CD81, CD9), appeared in the top 200 IDs in the Purified Li-
brary only (Fig. 1C). We next plotted and compared the iBAQ
values for the total proteins identified. As shown in Figure 2,
the top 400 most abundant proteins contained twice more
IMPs and pIMPs in the Purified Library than the corresponding
sample from the Starting Library or DDM Extract. Altogether,
these results show that library purification removes soluble
background protein contaminants, which augments the
detection efficiency of IMPs.

Presence of Low-Abundance pIMPs in the Peptidisc
Library

To assess the overall sensitivity of our method, we deter-
mined if the Purified Library contains pIMPs that otherwise
exist in limited copy numbers in the HeLa cell. For this anal-
ysis, we used the Protein Abundance Database (PAXdb)
1
ss the various samples analyzed

IMPs pIMPs
Ratio IMPs/Total

proteins
Ratio pIMPs/Total

proteins

601 226 27.7% 8.5%
509 235 23.3% 10.8%
534 249 28.6% 13.4%
528 258 27.8% 13.6%
286 207 82.4% 59.6%

h sample. “MPs” represents the proteins with a “membrane” GO-term.
ne segment. “pIMPs” represents IMPs that have a “cell membrane” or
e S2_experimental group #1” in (46) and “supplemental File S1” HeLa
e annotated reference datasets can be found in supplemental File S1.
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FIG. 2. Comparison of protein abundance within samples. Proteins identified in DDM Extract, Starting Library, and Purified Library were
ranked based on their iBAQ values. The top 1600 proteins from each sample are plotted and divided into quartiles. The presence of IMPs/pIMPs
is provided as a % of the total proteins present in each quartile. DDM, n-dodecyl-β-D-maltoside; IMP, integral membrane protein; pIMP, plasma
integral membrane protein.
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(https://www.pax-db.org) because this reference database
integrates the HeLa cell data obtained from three independent
high-throughput proteomics studies, which provides maximal
coverage of the HeLa proteome (48–50). Strikingly, over the
249 pIMPs we examined, 37 were either completely absent or
in extremely low abundance in the PAXdb database (bottom
10%). The list includes the GPCRs (OR10P1, RXFP1, EMR2,
OR14A16, GRM3, TAS2R3), SLC transporters (SLC13A4,
SLC46A1, SLC19A3, and SLC22A1), membrane enzymes
(CA9 and MMP15), and an ion channel (ORAI1). Other medi-
cally important pIMPs, such as ABC transporters (ABCC2,
ABCC3), SLC (SLC7A2, SLC26A6, SLC39A8), and cell adhe-
sion molecule (EPCAM), which rank bottom 50% in the
database, were now listed at the top 25% in the Purified Li-
brary (supplemental File S2).

Content of the HeLa Cell Peptidisc Library

The IMPs in the Purified Library were classified using their
GO-term “Subcellular Location.” About half of the IMPs were
assigned to the plasma membrane (249 pIMPs out of 534
IMPs). The remaining IMPs were assigned mainly to the ER/
Golgi system and small vesicular membranes (endosome,
exosome, lysosome; Fig. 3A). We also classified the 249
pIMPs using their GO-term “molecular function” (Table 2 and
supplemental File S3). The classification indicates that over
half of the pIMPs are functionally related to membrane
transport (77 IDs, including SLC, ATPase pumps, ABC trans-
porters), membrane enzymes (39 IDs, including kinases,
peptidases, and phosphatases), and transmembrane re-
ceptors (70 IDs, including 13 GPCRs). The other pIMPs
correspond to ion channels (8 IDs), adhesion molecules (16
IDs), CD antigens (9 IDs), regulators (14 IDs), chaperones
(6 IDs), and vesicle-associated MPs (8 IDs), in addition to
pIMPs (48 IDs) with unknown or less evident function.
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To further analyze our results, we compared our data to that
published by Li et al. (46) and Bausch-Fluck et al. (47), which
employed the CSL and CSC protocols to survey the HeLa
membrane proteome. We downloaded the corresponding
datasets and annotated them following the same criteria as in
our study (supplemental Fig. S1A and supplemental File S1).
As summarized in Table 1, the CSC method showed the best
spatial resolution, since ~60% of the total protein identified
are classified as pIMPs, compared to ~13 to 14% with the
Peptidisc and CSL methods. However, Table 1 also shows
that all three methods identified a similar number of pIMPs
(~210–250 IDs). Thus, the identification efficiency of pIMPs is
seemingly identical for all three methods.
We also ranked the pIMPs based on their predicted TMS

number (Figs. 3B and S1B). The comparison reveals that the
CSL and CSC methods identify a higher number of pIMPs with
one TMS (65%-70%, compared to 52% in peptidiscs). In
contrast, the number of pIMPs with multiple TMS is seemingly
higher with the peptidisc method (48% in peptidiscs vs.
30–35% in CSL/CSC; supplemental Fig. S1B).
Finally, to examine the variability of the method, we per-

formed a biological quadruplicate (Fig. 3C). On average, 1600
proteins were detected in each replicate, with about 490
proteins annotated as IMPs and 210 as pIMPs. We obtained a
generally good correlation between replicates (average r =
0.61, p < 0.0001, supplemental Fig. S2A), considering the high
number of variables caused by cell lysis, centrifugation steps,
and detergent solubilization, library construction, purification,
and LC-MS/MS analysis.

Comparing the Plasma Membrane Proteome of Two
Pancreatic Cell Lines

Given the encouraging results, we tested our method in
comparative proteomics. We used the Panc-1 cell line,

https://www.pax-db.org


FIG. 3. Purified Library. A, subcellular location for the IMPs identified in the Purified Library. The annotation is based on the GO-term
“Subcellular location [CC]” terminology. B, TMS number of identified pIMPs. The TMS number of each identified pIMP was annotated based
on Phobius prediction. C, biological replicates. Variance on protein counts and peptide intensities obtained with the HeLa cell Purified Libraries.
The numbers in the graph indicate the mean ± SD, N = 4. IMP, integral membrane protein; pIMP, plasma integral membrane protein; TMS,
transmembrane segment.
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commonly used to study PDAC in vitro (51), and the hPSC cell
line, which is an immortalized but nonmalignant cell found in
the PDAC microenvironment (38, 52, 53). The stellate cells
supply the PDAC cells with metabolic fuels through the se-
lective engagement of cell surface transporters (38, 54). Thus,
the global proteomic comparison of the membrane systems in
the two cell lines may provide valuable information.
Following the protocol established with the HeLa cells, the

Panc-1 and the hPSC membrane proteomes were captured in
His-tagged peptidiscs and affinity purified. The experiments
were performed in biological triplicates (Figs. 4, S3 and
supplemental File S4). In Panc-1, of the 162 pIMPs identified,
115 were present in all replicates. Of the 149 pIMPs identified
in hPSC, 106 were present in all replicates (Fig. 4, C and D).
Comparing Panc-1 and hPSC, 508 IMPs, including 170
pIMPs, were common in the two cell lines (Fig. 4E). The LFQ-
intensity value for these common proteins was then used to
estimate their relative abundance, and a student’s t test was
conducted to determine the statistical significance of the
observed protein differences (supplemental File S4). As a vi-
sual representation of data, we used a volcano plot (Fig. 5).
We considered the proteins to be differentially expressed
when the LFQ intensity FC is ≥2 (Log2FC ≥ 1) and the p-value
<0.05 (-Log10(p-value) >1.3). The volcano plot also includes
the protein subcellular location based on the GO-term anno-
tation (Fig. 5A).
A total of 14 pIMPs were found enriched in the Panc-1 li-

brary relative to the hPSC library (Fig. 5B and Table 3).
Encouragingly, transcriptomic data indicate that most of these
proteins also have high expression levels in the Panc-1 cell
line and, for the most part, are also overexpressed in the other
53 PDAC cell lines tested (supplemental Fig. S4). Specifically,
L1CAM, ANPEP, ITGB4, and CD70 are considered specific
biomarkers of the PDAC disease (55–59). The membrane
transporter ABCC1 (MRP1), which confers multidrug resis-
tance to cancer cells, was also enriched in the Panc-1 library,
along with three other SLC transporters, SLC4A2, SLC30A1,
and SLC12A7 (KCC4), plus the epidermal growth factor re-
ceptor EGFR and lipid transport protein ESYT2. The proteins
MRP1 and KCC4 were selected for validation by Western Blot
analysis (Fig. 6A). The Western Blot results corroborate nicely
the MS analysis.
In the hPSC library, 11 pIMPs were identified as enriched

over the Panc-1 library (Fig. 5B and Table 3). Proteins such as
Mol Cell Proteomics (2023) 22(8) 100588 7



TABLE 2
Molecular function of IMPs and pIMPs identified in Purified Library

Molecular function Subtype IMPs pIMPs

Adaptor/chaperone/
chaperone binding

− 12 6

Adhesion molecule − 16 16
Enzyme Kinase 15 12

Peptidase 19 8
Phosphatase 10 8
Other 63 11

Membrane transport
protein

ABC transporter 8 8
ATPase pump 17 9
SLC transporter 69 53
Ion channel 18 8
Other 27 7

Receptor GPCRs 15 13
Other 83 57

Regulator − 30 14
Vesicle/Cargo protein − 29 8
CD antigen − 11 9
Other − 147 48

The protein molecular function was retrieved from the UniprotKB
“Gene Ontology (molecular function)”. Key words “adaptor activity”,
“chaperone binding”, “chaperone”; “focal adhesion”; “receptor activ-
ity”; “regulator activity”; “G protein-coupled receptor activity”;
“channel”; and “transporter” were used to look for the specific func-
tion of each IMP and pIMP. The molecular function annotation of ABC-
transporter, ATPase pump, SLC transporter, and CD antigens were
determined based on their gene name. The assigned molecular
function of each IMP and pIMP is presented in supplemental File S3.
Note that proteins can be classified with two or more molecular
functions.
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MRC2, a signature protein in pancreatic stroma (60–62), or
ITGA5, NCAM1, and ATP2B1 have been reported earlier to
have high expression in the hPSC cell line (63–65). The other
seven pIMPs we have identified have not been documented in
previous studies. Their potential role in pancreatic stellate cell
biology in pancreatic cancer development may be worth
exploring in future studies.

Immunoprecipitation of SLC12A7 from the Panc-1
Peptidisc Library

We next examined the usability of the peptidisc library.
Multi-TMS proteins, such as GPCRs and SLC transporters,
are valuable targets for biomedical discovery (66, 67).
However, their hydrophobicity renders purification and
in vitro characterization difficult. Since the peptidisc stabi-
lizes MPs in a detergent-free water-soluble state, we tested
whether proteins in the library, such as SLC12A7 (KCC4),
can be isolated. The Panc-1 membrane proteome was
trapped in peptidiscs, followed by incubation with an anti-
KCC4 antibody. The complex was captured on a Protein A
affinity resin and washed twice to remove unspecific pro-
teins. Finally, the eluted sample was trypsin digested and
analyzed by LC-MS/MS. A total of 399 proteins were
8 Mol Cell Proteomics (2023) 22(8) 100588
identified with at least two spectral counts (supplemental File
S5). For visualization, we plotted the spectral count number
for the top 50 proteins identified (Fig. 6B). From the plot, it is
evident that KCC4 (SLC12A7) has been isolated using the
anti-KCC4 antibody.

DISCUSSION

This study extends the application of the peptidisc to the
mammalian membrane proteome to identify and isolate pro-
teins that are integral to the membrane because of an α-helical
TMS. This class of protein is of great pharmaceutical interest
as it includes most cell markers and disease biomarkers,
which, given their cell surface exposure, can be targeted with
drugs and biologics. The precise characterization of the
membrane proteome, especially at the cell surface, remains
complicated, however, because this proteome is inherently
insoluble and in low abundance. Consequently, it is harder to
isolate and vastly underrepresented in the proteomic datasets
(46, 68, 69). To help circumvent the limitations, we employed
the His-tagged peptidisc to purify the cell membrane prote-
ome via Ni-NTA chromatography.
We used the HeLa cell line as a reference. Membranes were

isolated by ultracentrifugation and solubilized with a mild
detergent, and the extracted proteins were trapped and puri-
fied in His-tagged peptidiscs. This simple workflow—no
extensive fractionation and limited MS analysis (60 min)—
produced a library containing ~500 different IMPs, with half
predicted to be located in the plasma membrane. The other
half comprised proteins from smaller organelles, such as ER,
Golgi, and cell trafficking vesicles, probably due to similar
densities and membrane contact sites leading to co-isolation
during ultracentrifugation. Notably, the library annotation did
not reveal an apparent bias towards protein function, as the
general protein categories expected for the HeLa cell were all
present (Table 2). There was also no evident bias towards the
isolated protein size, as the library contained proteins having 1
to 17 TMS and a molecular weight ranging from 4 to ~800 kDa
(supplemental File S1).
The method’s sensitivity was assessed by examining the

abundance of the pIMPs over total proteins within and across
the samples (Figs. 1 and 2). As expected, MP detection was
significantly improved upon library purification. In the final li-
brary, around twice more pIMPs were present within the top
400 proteins isolated (Fig. 2). The pIMPs enrichment was also
evident when comparing our dataset to the Protein Abun-
dance Database (PAXdb) (https://www.pax-db.org). Some
ABC transporters (ABCC2, ABCC3), SLC transporters
(SLC7A2, SLC26A6, SLC39A8), as well as GPCRs (OR10P1,
RXFP1) and adhesion molecule (EPCAM), all reported at low
abundance in the PAXdb database (bottom 50%), were
ranked within the top 25% in our list. Additionally, of the 249
pIMPs in our dataset, ~15% (37 IDs) were either completely
absent or located in the bottom 5%-10% in the PAXdb

https://www.pax-db.org


FIG. 4. Panc-1 and hPSC replicates. A and B, LFQ-analysis of the Purified Library prepared from Panc-1 and hPSC biological replicates.
Three independent biological replicates were employed for each cell line. The Pearson correlation coefficient r was obtained using the MaxQuant
and Perseus software. Note: Replicate 1 and 2 are presented here as a representation. The comparison between replicate 1 & 3, 2 & 3 is
presented in the supplemental Fig. S3. C–E, protein ID overlap. Venn diagram representing the overlap across (C) biological replicates of Panc-1
Purified Libraries and (D) biological replicates of hPSC Purified Libraries. E, protein ID overlap between Panc-1 and hPSC Purified Libraries. LFQ,
label-free quantitation.
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database. Clearly, removing the “spectral space” occupied by
soluble contaminants is essential to augment the MS detec-
tion sensitivity for MPs. Accordingly, a recent study also re-
ports that washing the membrane fraction with chaotropic
agents significantly increases pIMPs’ detection sensitivity (69).
We then applied our method to compare the membrane

proteomes of two human pancreatic cell lines, Panc-1 and
hPSC. We identified 25 cell surface MPs differentially
expressed across the two cell lines (FC ≥2 and p < 0.05). Of
the 14 pIMPs upregulated in Panc-1, four pancreatic cancer
biomarkers were previously reported (ANPEP, L1CAM, ITGB4,
and CD70; Table 3 and reference within). We also identified
MRP1 (ABCC1), a protein responsible for chemoresistance
and typically upregulated in cancer cells (70), and ITGB4,
which has a key role in tumorigenesis (59). Three SLC trans-
porters (SLC4A2, SLC30A1, and SLC12A7) were upregulated.
The anion exchange protein 2 (SLC4A2) was reported upre-
gulated in a gemcitabine-resistant Panc-1 cell line at the
protein levels (71). The SLC12A7 (or KCC4) has a potassium/
chloride symporter activity, and systematic gene amplification
was observed in adrenocortical carcinoma, where it promotes
higher cell motility and invasiveness (72–74). For SLC30A1, a
proton-coupled zinc antiporter, its upregulation is found in
gastric cancer and cervical carcinoma (75, 76). Thus, the po-
tential role of these three SLCs in PDAC occurrence is a
promising avenue for future exploration. Of the 11 pIMPs
enriched in the hPSC library, some were previously identified
as stellate cell markers (i.e., MRC2, NCAM1, and ITGA5;
Mol Cell Proteomics (2023) 22(8) 100588 9
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TABLE 3
Differentially expressed pIMPs identified in Panc-1 and hPSC Purified Libraries

Gene name Fold change (Log2) Literature evidence Sample and method of the analysis

Enriched in Panc-1 over hPSC
ABCC1 5.8 ± 1.2 Upregulated (82, 83) PDA mouse model; RT-PCR
L1CAM 5.5 ± 0.8 Upregulated (82, 84) Pancreas, Panc-1; IHC
ITGB4 5.1 ± 1.7 Upregulated (59) Tissue, cell line; WB, IHC, RT-PCR
SLC30A1 4.7 ± 0.7 n.a.
SLC12A7 4.4 ± 0.5 n.a.
ANPEP 4.2 ± 1.3 Downregulated (56) Bioinformatics; Gene Expression Omnibus
SLC4A2 4.0 ± 2.1 Upregulated (71) Panc-1 and Panc1R; Proteomics
OCLN 2.9 ± 2.3 n.a.
CD70 2.9 ± 0.8 Upregulated (58, 82, 85) Panc-1; FACS, IHC, RT-PCR
EGFR 2.9 ± 0.8 Upregulated (86, 87) Panc-1; WB, Database search
PTPRA 2.4 ± 1.2 Upregulated (88) Bioinformatics; Gene Expression Omnibus
ICAM1 2.3 ± 0.9 Upregulated (89, 90) Serum; ELISA
CLCN3 2.2 ± 0.7 n.a.
ESYT2 2.0 ± 1.1 Upregulated (82, 91) Biopsy samples; Onco-array
Enriched in hPSC over Panc-1
MRC2 3.7 ± 1.6 Stromal signature gene (60–62) Tissue; WB, expression array
NCAM1 3.3 ± 0.4 Increased expression (63) Immortalized PSCs; RT-PCR
MCAM 3.2 ± 1.2 n.a.
PTK7 2.7 ± 0.9 n.a.
ITGA5 2.3 ± 0.4 Upregulated (64) Tissue; microarray
ATP2B1 2.1 ± 1.4 Slightly higher in hPSC (66) Panc-1 and hPSC; RT-qPCR
ITGA1 2.0 ± 0.2 n.a.
DYSF 1.8 ± 0.5 n.a.
PVR 1.4 ± 0.8 n.a.
HLA-B 1.1 ± 0.8 n.a.
EPHB2 1.1 ± 0.4 n.a.

The average fold change (Log2) ± SD was calculated using LFQ intensity values across the triplicates in MaxQuant software. Column
“Literature evidence” indicates that at least one previous publication has reported an upregulation of the listed pIMPs. The sample employed
(cells, tissues, database) and the method of analysis in the corresponding publication is indicated. N.a.: no data available in the Panc-1 and
hPSC cell lines.
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Table 3 and reference within), but most others have not yet
been studied in the context of PDAC progression. Collectively,
these results validate the peptidisc as a method to survey and
compare the cell plasma membrane proteomes. Such com-
parison is critically important for the discovery of tumor-
specific cell surface markers (26) or for developing effective
targeted immunotherapy, such as chimeric antigen receptor T
cell immunotherapies or monitoring cell surface changes after,
for example, drug treatment.
From a technical point of view, we see several other ad-

vantages of implementing a peptidisc-based approach for
eukaryotic cell analysis. The survey of the pIMP proteome with
peptidisc does not depend on surface labeling ((23, 24) for a
review of other methods), and the construction of the pepti-
disc library does not require living cells. The same workflow
can also be applied to characterize the membrane proteome in
intact tissues or organs, where other methods are limited by
the penetration of the labeling reagents (77). Finally, a deter-
gent removal step is not necessary, thus reducing the risk of
peptide loss (24, 26). Several methods exist to remove de-
tergents before MS analysis and thereby increase detection
efficiency, including filter-aided sample preparation, S-Trap,
SP3, and recently SP4 (78–81). Still, in all cases, MPs are
irreversibly denatured with detergents or organic solvents,
whereas in peptidisc, MPs are preserved in a water-soluble
state, which is a distinctive advantage for downstream anal-
ysis, such as protein purification, binding assays, and
screening of libraries of antibodies or small molecules.
Further development to better implement the peptidisc in the

proteomic analysis is possible, but some inherent limitations
exist. One is the amount of cell material necessary to construct
the library (~20–40 million cells), which renders the method
with limited biological material. Secondly, multiple copies of
the peptidisc peptide are necessary to keep MP water-soluble.
We estimated that 10 to 12 peptidisc peptides are bound to a
multi-TMS protein (35). Although peptidisc peptides are
compatible with trypsin digestion and MS analysis, this large
amount relative to total proteins can lead to MS signal sup-
pression. Further peptide fractionation or data-independent
acquisition might be needed to address this issue.
DATA AVAILABILITY

The mass spectrometry proteomics data have been
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FIG. 6. Western blot analysis and KCC4 immunoprecipitation assay. A, Western Blot analysis of KCC4, MRP1, and ATP1A1 expression in
Panc-1 and hPSC cells. The same amount (5 μg) of crude membranes from Panc-1 and hPSC cells were loaded onto 10% SDS-PAGE and
analyzed by Western blot. The uncropped Western Blots and the corresponding silver-stained gel are shown in supplemental Fig. S5.
B, immunoprecipitation of KCC4 (SLC12A7) from the Panc-1 peptidisc library and MS analysis of the resulting sample (AP/MS). The IMPs are
colored orange, and the soluble proteins are colored blue. The (*) correspond to the soluble proteins vimentin and heterogeneous nuclear
ribonucleoproteins A2/B1, respectively. IMP, integral membrane protein; MS, mass spectrometry.
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and PXD041913. For annotated spectra, the data have been
uploaded to MS-viewer with the search keys “kefaqk11ru” and
“msekhytirl”.

Supplemental data—This article contains supplemental
data. The “supplemental Table S2_experimental group #1” in
the reference study (46) and “supplemental File S1” in the
reference study (47) were used to compare with and bench-
mark our study (see Table 1 and supplemental Fig. S1).
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