
RESEARCH
Blood- and Urine-Based Liquid Biopsy for
Early-Stage Cancer Investigation: Taken Clear Renal
Cell Carcinoma as a Model
Authors
Xiaoyan liu, Mingxin Zhang, Chen Shao, Haidan Sun, Binbin Zhang, Zhengguang Guo, Jiameng Sun,
Feng Qi, Yushi Zhang, Haitao Niu, and Wei Sun
Correspondence Graphical Abstract
2023, Mol Cell Proteomics 22(8), 100
© 2023 THE AUTHORS. Published b
Molecular Biology. This is an open a
creativecommons.org/licenses/by-nc
https://doi.org/10.1016/j.mcpro.2023
zhangyushi2014@126.com;
niuht0532@126.com; sunwei@
ibms.pumc.edu.cn

In Brief
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urine from 27 ccRCC patients
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data-independent analysis. Both
plasma and urine proteome
could reflect functional changes
of tumor tissue. In plasma,
cytoskeletal proteins and
metabolic enzymes were
differentially expressed. And in
urine, adhesion molecular and
defense proteins showed
differential levels. Plasma and
urine proteins could distinct RCC
from control with good
performances.
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RESEARCH
Blood- and Urine-Based Liquid Biopsy for
Early-Stage Cancer Investigation: Taken Clear
Renal Cell Carcinoma as a Model
Xiaoyan liu1,‡, Mingxin Zhang2,‡, Chen Shao1,3,‡, Haidan Sun1, Binbin Zhang4,
Zhengguang Guo1, Jiameng Sun1, Feng Qi1, Yushi Zhang5,*, Haitao Niu2,*, and Wei Sun1,*
Liquid biopsy is a noninvasive technique that can provide
valuable information for disease characterization by us-
ing biofluids as a source of biomarkers. Proteins found in
biofluids can offer a wealth of information for under-
standing pathological processes. In this study, we used
early-stage clear cell renal cell carcinoma (ccRCC) as a
model to explore the proteomic relationships among tis-
sue, plasma, and urine. We analyzed samples of tumor
tissue, plasma, and urine from a cohort of 27 ccRCC
patients with T1-2 stage and 27 matched healthy con-
trols, using liquid chromatography–mass spectrometry
(LC-MS) for proteomic analysis. We integrated the dif-
ferential proteins found in the three types of samples to
explore ccRCC-associated molecular changes. Our re-
sults showed that both plasma and urine proteomes
could reflect functional changes in tumor tissue. In
plasma, cytoskeletal proteins and metabolic enzymes
were differentially expressed, while in urine, adhesion
molecules and defense proteins showed differential
levels. The differential proteins found in plasma and urine
both reflect the binding and catalytic activity of tumor
tissue. Additionally, proteins only changed in biofluids
could reflect body immune response changes, with
plasma proteins involved in actin cytoskeleton and
oxidative stress, and urine proteins involved in gran-
ulocyte adhesion and leukocyte extravasation signaling.
Plasma and urine proteins could effectively distinguish
RCC from control, with good performances (plasma/
urine: 92.6%/92.6% specificity, 96.3%/92.6% sensitivity,
and an area under the curve of 0.981/0.97). In conclusion,
biofluids could not only reflect functional changes in tu-
mor tissue but also reflect changes in the body's immune
response. These findings will benefit the understanding
of body biomarkers in tumors and the discovery of po-
tential disease biomarkers.
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Liquid biopsy is a technique that uses human body fluids,
including blood, urine, saliva, and even cerebrospinal fluid, as
a source of sample to obtain disease-related information.
Liquid biopsy is a convenient tool for biomarker discovery or
pathological diagnosis. Compared to traditional tissue bi-
opsy, liquid biopsy has advantages of minimally invasive
nature and significantly less morbidity. It could be scheduled
more frequently to provide a personalized snapshot of dis-
ease at successive time points. Additionally, liquid biopsy
could reflect tumor heterogeneity present in patients, unlike
tissue biopsies which are obtained from only one tumor
region (1).
Liquid biopsy, as a powerful supplement to traditional

methods, has shown great success in the research and
development of new biomarkers in recent years. Circulating
tumor cell, circulating tumor DNA, exosome, proteins, and
several small moleculars are the mainly testing targets of
liquid biopsy (2–5). However, the clinical application of
circulating tumor DNA, circulating tumor cell, and exosomes
in tumor is limited by the extraction and separation technol-
ogy, since their content in biofluids is very low. In contrast,
the content of protein in biofluids is relatively high, providing
valuable information for disease characterization. Consid-
ering that the majority of drug targets are proteins and
protein-based analysis is the most common technique uti-
lized in the clinical setting (6), delineating target proteins have
direct translational application. A myriad of studies had uti-
lized proteomic technologies to explore the protein profiles of
biofluids to identify the differentially expressed proteins
associated with tumor.
The network of arteries, veins, and capillaries in contact with

organs offers a means for the proteins secreted, shed, or
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Liquid Biopsy for Cancer Investigation
released by tumor tissues. As proteomic technologies
continue to be matured, plasma proteome has great potential
for biomarker research and clinical applications. Plasma pro-
teins have been used for biomarker discovery for various of
tumors, including cancer, autoimmune diseases, viral dis-
eases, and cardiovascular diseases (7, 8). Previous study
indicated that plasma E-cadherin performed most favorably
from a large panel of plasma proteins in terms of diagnostic
and predictive potential in curatively treatable prostate cancer
(9). Ting Shu et al. developed a panel of 11 plasma proteins as
COVID-19 biomarkers, which could accurately distinguish and
predict COVID-19 outcomes (10).
Urine is a proximal biological fluid that may offer a richer

source of proteins of interest. Urine has a narrower dynamic
range of protein concentration and the reduced abundance of
proteins (11). Urine-based proteomics have been widely
applied for biomarker discovery and clinical applications. Early
in 2015, Tomasz P Radon et al discovered a three-biomarker
panel in urine, LYVE-1, REG1A, and TFF1, for pancreatic
adenocarcinoma diagnosis (12). Urinary protein panel could
distinguish even stage I gastric cancer patients from healthy
controls (HC) patients with the area under the curve (AUC) of
0.850 (13). For clear cell renal cell carcinoma (ccRCC) small
mass tumor diagnosis, urine proteomics also showed valuable
application. Ashley Di Meo et al evaluated 115 urine samples,
including 33 renal oncocytoma (≤4 cm), 30 progressive, and
26 nonprogressive ccRCC-small renal mass cases, in addition
to 26 healthy controls. A two-protein signature (EPS8L2 and
CCT6A) showed significant discriminatory ability (areas under
the curve: 0.81) in distinguishing progressive from nonpro-
gressive ccRCC-small renal masses (14).
Although most of the published studies have focused on

either tumor tissue or a specific biofluid for proteomics
analysis, there are limited available data examining the use
of a biofluid to serve as a proxy for tumor proteomic
changes through simultaneous examination of tissue and
biofluids. It is essential to determine how proteomic changes
occurring in a tumor are detected in plasma and urine. In
present study, early ccRCC (stage I-II) was used as the
analysis model. The tumor tissue, plasma, and urine from
27 ccRCC patients (26 with T1 stage and 1 with T2 stage)
and 54 matched healthy controls (27 controls for plasma and
27 controls for urine, supplemental Table S1) were analyzed
by data-independent acquisition (DIA). In present study, we
aimed to explore how proteomic changes occurring in a
tumor could be detected in plasma and urine. Thus, we
performed integrative analysis of urine/plasma proteome
with tissue proteome to discover molecular with high cor-
relation with tumor tissue that may result in the discovery of
potential diagnostic targets and biomarkers with high spec-
ificity. According to comparisons of the proteomes of tissue,
plasma, and urine, we tried to reveal the extent to which
plasma and urine could reflect functional changes of tumor
in tumor early stage (Fig. 1A).
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EXPERIMENTAL PROCEDURES

Experimental Design and Statistical Rationale

The purpose of this study was to find the proteomic relationships
among tissue, plasma, and urine to assistant biofluid biomarker dis-
covery. Overall 81 subjects were enrolled, including 27 ccRCC pa-
tients, and 54 healthy controls (27 controls for plasma and 27 controls
for urine) were enrolled. Tissue, plasma, and urine spectral libraries
were generated using 2D-LC-MS–based data-dependent acquisition
(DDA) method, individually. The tumor tissue, adjacent normal tissue,
plasma, and urine from ccRCC patients and healthy controls were
analyzed by DIA. The variable isolation window of DIA method with
different windows was developed for different samples (Detailed data
in supplemental Table S2). Samples were injected in a random order
for tissue, plasma, and urine, individually. Quality control (QC) sample
was injected frequently to monitoring reproducibility of the method. A
total of 30 QC samples were injected and the correlation of QC
samples was above 0.9, indicating good repeatability. Principal
component analysis and heat map virtualization were implemented
using the Wu kong data analysis platform (https://www.omicsolution.
org/wkomics/main/). Nonparameter Wilcoxon rank-sum test (p < 0.05)
and fold change was performed for significance evaluation of proteins
between groups for individual omic matrix analysis. For integrative
analysis between two omic matrices, only fold change was considered
for differential analysis (fold change >1.5) for more pathways and
functions coverage. Function and pathway were analyzed using in-
genuity pathway analysis (IPA) (http://www.ingenuity.com/products/
ipa#/?tab=features) software (QIAGEN), a repository of biologic in-
teractions and functions created from millions of individually modeled
relationships that range from the molecular (proteins, genes) to or-
ganism (diseases) level.

Sample Collection

This study was approved by the Institutional Review Board of the
Institute of Basic Medical Sciences, Chinese Academy of Medical
Sciences and abide by the Helsinki Declaration of 1975 (as revised in
2008) concerning Human and Animal Rights and that they followed
out the policy concerning Informed Consent as shown on Springer.
com. A total of 81 participants, 27 ccRCC patients, 27 healthy con-
trols for plasma control, and 27 healthy controls for urine control were
included in this study. All human subjects provided informed consent
before participating in this study. Tissue samples were collected from
27 ccRCC patients who were undergoing surgical resection and had
received no prior treatment for their disease. Urine and plasma sam-
ples were collected from ccRCC patients and matched healthy con-
trols. The urine samples were collected from the first urination in the
morning. Samples were centrifuged within 6 h of collection; the su-
pernatants were isolated, aliquoted, and stored at −80 ◦C until anal-
ysis. The plasma samples were collected in the morning from 07:00
AM−09:00 AM after an overnight fast to eliminate dietary distur-
bances. After collected, all plasma samples were separated following
centrifugation at 1000 g for 10 min at 4 ◦C and were stored at −80 ◦C.

Sample Preparation

For tissue, approximately 25 to 120 mg of each cryopulverized renal
tumor tissues or normal adjacent tissues (NATs) were homogenized
separately in an appropriate volume of lysis buffer (2% SDS, 20 mM
Tris, Cocktail [1:100 dilution], DNAse [1:100 dilution], RNAse [1:1000
dilution]) by repeated vortexing. Protein concentration was determined
by BCA assay (Pierce). Hundred micrograms of protein from each
sample were digested with the filter-aided sample preparation (FASP)
method. The protein samples were reduced with 20 mM DTT for 5 min
at 95 ◦C and then carboxyamidomethylated with 50 mM iodoaceta-
mide (IAA) at room temperature (RT) in the dark for 45 min. Then, the

https://www.omicsolution.org/wkomics/main/
https://www.omicsolution.org/wkomics/main/
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FIG. 1. Differentially expressed proteins in tissue, plasma, and urine. A, the workflow of the study. B–D, PCA score plot of proteome of
tissue, plasma, and urine. Tissue and plasma proteome showed apparent separation between ccRCC and controls, while urine proteome
showed several overlay between ccRCC and controls. E–G, heat map of differentially expressed proteins and the enriched pathways in tissue,
plasma, and urine. x-axis t(1) means component 1; y-axis t(2) means component 2. ccRCC, clear cell renal cell carcinoma; PCA, principal
component analysis.

Liquid Biopsy for Cancer Investigation
sample was loaded onto a 30KD ultracentrifugation filter, washed twice
with UA buffer (containing 7 M urea and 50 mM Tris), and washed twice
with 25 mM NH4HCO3. The treated samples were digested with
trypsin (2 μg per 100 g protein) in 25 mM NH4HCO3. The samples were
digested at 37 ◦C overnight. The digested peptides were eluted from
the 30 KD filter, and the samples desalted on C18 columns (3 cc,
60 mg, Oasis, Waters Corporation). The desalted peptides were
lyophilized by vacuum centrifugation and stored at −80 ◦C

For urine, 2 ml urine was reduced with 20 mM DTT for 5 min at 95
◦C and subsequently alkylated with 50 mM IAA for 45 min at RT in the
dark. Then, 6 times volume precooled acetone was added to extract
protein. The precipitated protein was redissolved using 200 μl 20 mM
Tris buffer. Protein digestion was carried out using FASP method
mentioned above.

For plasma, before protein digestion, top 12 high-abundant protein
depletion was carried out for 10 μl plasma using spin column (Agilent).
Finally, 400 μl high-abundant protein-depleted plasma supernatant
was reduced with 20 mM DTT for 5 min at 95 ◦C and subsequently
alkylated with 50 mM IAA for 45 min at RT in the dark. Then, 6 times
volume precooled acetone was added to extract protein. The
precipitated protein was redissolved using 200 μl 20 mM Tris buffer.
Protein digestion was carried out using FASP method mentioned
above.

For each type sample, a pooled sample of equal protein amount
from each sample was used for spectral library generation and QC
analysis.

Offline HPLC Separation for Proteome Library Generation

The pooled peptide sample of each type sample was separated by
high-pH RPLC columns (4.6 mm × 250 mm, C18, 3 μm; Waters),
respectively. Each pooled sample was loaded onto the column in
buffer A1 (99.9% H2O, pH 10). The elution gradient was 5%–30%
buffer B1 (90% acetonitrile, pH 10; flow rate, 1 ml/min) for 30 min. The
eluted peptides were collected at one fraction per minute. After
lyophilization, the 30 fractions were resuspended in 0.1% formic acid
and then were concatenated into 15 fractions by combining fractions
1, 16, and so on.
Mol Cell Proteomics (2023) 22(8) 100603 3
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On-Line LC-MS/MS Data Acquisition

The digested peptides were dissolved in 0.1% formic acid and
separated on an RP C18 precast integrated capillary LC column
(50 μm × 50 cm). The eluted gradient was 5%–30% buffer B2
(0.1% formic acid, 99.9% ACN; flow rate, 0.3 μl/min) for 60 min. A
Thermofisher orbitrap fusion lumos mass spectrometer (Thermo
Fisher Scientific) was used to analyze the eluted peptides from LC.
To generate the spectral library, the fractions from RPLC were
analyzed in the DDA mode. The parameters were set as follows:
the MS was recorded at 350 to 1500 m/z at a resolution of
60,000 m/z; the maximum injection time was 50 ms, the auto gain
control (AGC) was 1E6, and the cycle time was 3 s. MS/MS scans
were performed at a resolution of 15,000 with an isolation window
of 1.6 Da and a collision energy at 32% (high collision dissocia-
tion); the AGC target was 50,000, and the maximum injection time
was 30 ms.

For DIA analysis, the variable isolation window DIA method with
different windows was developed for different samples (Detailed data
in supplemental Table S2). The specific window lists were constructed
based on the DDA experiment of the pooled sample. The full scan was
set at a resolution of 120,000 over the m/z range of 400 to 900, fol-
lowed by DIA scans with a resolution of 30,000; the HCD collision
energy was 32%, the AGC target was 1E6, and the maximal injection
time was 50 ms.

Spectral Library Generation

Tissue, plasma, and urine spectral libraries were generated, indi-
vidually. To generate a comprehensive spectral library, the pooled
sample from each sample was processed. The DDA data were pro-
cessed using Proteome Discoverer (version 2.3, Thermo Fisher Sci-
entific) software and searched against the human SwissProt
database (Homo sapiens, 20,358 SwissProt, 2019_05 version)
appended with the indexed retentions time fusion protein sequence
(Biognosys). A maximum of two missed cleavages for trypsin was
used, and cysteine carbamidomethylation was set as a fixed modi-
fication. Methionine oxidation, lysine deamination, and carbamylation
(+43) were set as variable modifications. The parent and fragment ion
mass tolerances were set to 10 ppm and 0.02 Da, respectively. The
applied false discovery rate (FDR) cutoff was 0.01 at the protein level.
The results were then imported to Spectronaut Pulsar (version 14,
Biognosys) software to generate the spectral library. Additionally, DIA
data were also imported into Spectronaut Pulsar software and
searched against the human SwissProt database to generate DIA li-
brary. The final spectral library was generated by combining DDA and
DIA libraries.

Data Analysis

The DIA raw data were loaded to the Spectronaut 14 to calculate
peptide retention time based on indexed retentions time data, and
Spectronaut provided protein identification and quantitation by
matching the retention time, m/z, etc., to peptide library. The retention
time prediction type was set to dynamic indexed retentions time, and
interference correction at the MS2 level was enabled. The MS1 and
MS2 tolerance strategy was set to dynamic. It applied a correction
factor to the automatically determined mass tolerance. The correction
factor for ms1 and ms2 was all set as 1. The precursor posterior error
probability cutoff was set to 1, and precursors that do not satisfy the
cutoff will be imputed. The top N (min: 1; max: 3) precursors per
peptide were used for quantify calculation. The top N ranking order is
determined by a cross-run quality measure. Peptide intensity was
calculated by summing the peak areas of their respective fragment
ions for MS2. Cross-run normalization was enabled to correct for
systematic variance in the LC-MS performance, and a local
4 Mol Cell Proteomics (2023) 22(8) 100603
normalization strategy was used. Normalization was based on the
assumption that on average, a similar number of peptides are upre-
gulated and downregulated, and the majority of the peptides within
the sample are not regulated across runs and along retention times.
Protein inference, which gave rise to the protein groups, was per-
formed on the principle of parsimony using the ID picker algorithm as
implemented in Spectronaut Pulsar. All results were filtered by a Q
value cutoff of 0.01 (corresponding to an FDR of 1%). Protein intensity
was calculated by summing the intensity of their respective peptides
(15). Proteins identified in more than 50% of the samples in each
group were retained for further analysis. Missing values were imputed
based on the k-nearest neighbor method. To make data comparable,
the data matrices were auto-scaled as z-score value for subsequent
statistical analysis using MetaboAnalyst 5.0 software (https://www.
metaboanalyst.ca/). For individual proteomic analysis, differential
proteins were defined by p value (nonparameter Wilcoxon rank-sum
test) and fold change. For integrative analysis between two proteo-
mic matrices (tissue vs. Plasma, tissue vs. Urine, plasma vs. urine),
differential proteins were defined using a cutoff with only fold change
for more comprehensive pathways and functions analysis. Differential
proteins were submitted to pathway analysis using IPA software (In-
genuity Systems). Gene ontology (GO) terms of molecular function
and protein class were used for common proteins enrichment analysis
using 'Wu Kong' platform (https://www.omicsolution.com/wkomics/
main/). Human swissprot database was used as background. Func-
tional analysis of serum and urine-only changed proteins were per-
formed by ClueGo and CluePedia in cytoscape (version 3.9). The
ontology sources we used is “GO-biological process-EBI-uniprot-
2022, including 17,400 terms/pathways with 18,085 unique genes”.
Network specificity was set as medium. The GO tree internal was set
from 3 to 8. For biomarker selection, nonparameter wilcoxon rank-sum
test and random forest were performed for significance evaluation of
proteins between ccRCC and HC based on all samples. The impor-
tance of features was ranked by “p adjusted value” and “mean
decrease accuracy”, individually. Features in the top 20 in both
models were chosen as potential biomarkers. Then, the potential
biomarkers were used to construct prediction model using logistic
regression algorithm with 10-fold cross validation. We also used
LOOCV method by “pROC” and “caret” package in R to validate the
performance of the features.

To make sure the data are comparable with Clinical Proteomic
Tumor Analysis Consortium (CPTAC) data, we downloaded the raw
DIA data of tissues from ccRCC and control subjects performed by
CPTAC. The raw data was re-analyzed using spectronaut software.
The analysis parameters and search library were set as the same with
our data in present study. Differential proteins were further defined
based on the same criteria with our data using p value and fold
change.
RESULTS

Spectral Library Generation and Protein Identification in
DIA–MS

In present study, to estimate system stability during whole
analysis process, the pooled sample was used as a QC to
observe the stability of the instrument signal. The QC samples
were firstly analyzed by three repeats to ensure the system
stability. During the whole analysis process, QC was analyzed
before and after all samples and among every 7 to 9 samples.
The average Pearson’s correlation coefficient of QC samples
was approximately 1 for tissue, plasma, and urine, indicating
good system stability (supplemental Fig. S1A). Second, we
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analyzed protein-wise coefficient of variation (CV) distribution
for QC samples and their association with average protein
abundance. The medium of protein CV were 0.162, 0.163, and
0.227 for tissue, plasma, and urine, respectively. The dynamic
range spanned eight orders of magnitude. As more abundant
proteins are generally easier to precisely quantify, protein
abundance was negatively correlated with the CVs
(supplemental Fig. S1B).
Spectral libraries of ccRCC tissue, plasma, and urine were

constructed by DDA and DIA analysis, respectively. Finally,
the merged library from the above two analysis strategies was
constructed by Spectronaut pulsar. Overall 1372,85/32,673/
60,432 precursors, 87,623/15,602/34,560 peptides, and
9643/1563/4514 protein groups were obtained from tissue/
plasma/urine spectral library (supplemental Table S3A).
According to above spectral library, 8166 proteins (an

average of 6745) in tissue, 1340 proteins (an average of 1017)
in plasma, and 4468 proteins (an average of 3497) in urine
were detected with a protein FDR <1% (supplemental
Table S3, B–D and supplemental Fig. S1C). Proteins with
quantitative data in more than 50% of samples in each group
were selected for further analysis. Finally, 5927/827/2796
proteins in tissue/plasma/urine were quantified (supplemental
Table S3, E–G).
Differential Analysis of ccRCC Proteomes in Tissue,
Plasma, and Urine

To systematically investigate relevance of molecular
changes between biofluids and tissue, we performed
comprehensive analyses of 27 pair of ccRCC tissue and the
NAT proteomes, as well as 27 paired of plasma and urine
proteomes from ccRCC patients and healthy controls. The
integrative analyses were carried out via a tissue-centric
manner. Differentially expressed protein and the correspond-
ing biological functions in plasma and urine were compared
with those in tissue to investigate the tissue-plasma-urine
correlation (Fig. 1A).
First, we analyzed the differential proteomes of the three

type samples, respectively. The ccRCC and control samples
were distinguishable by principle component analysis of the
proteomic results (Fig. 1, B–D). Though urine results showed
partial overlay between ccRCC and control samples to some
extent, the Orthogonal Partial Least Squares Discrimination
Analysis (OPLS-DA) showed statistical significance between
two groups (supplemental Fig. S1B).
As a result, the tissue results identified 1480 differential

proteins between RCC and NATs, with 691 proteins down-
regulated and 789 upregulated (Fig. 1E). Functional enrich-
ment analysis revealed significant disturbance of metabolic
and energy metabolism, immune response, and cancer
mechanism pathway in ccRCC. Decreased OXPHOS and TCA
cycle was the response of tumor for low oxygen microenvi-
ronment under regulation of transcriptional regulator HIF1α
accumulation, which was the fundamental tumor-initiating
event during ccRCC (16), while immune response, IL-4
signaling, and tumor microenvironment pathway showed
upregulated in tumor (Fig. 1E).
CPTAC group had reported tissue proteomics analysis of

110 treatment-naive ccRCC and 84 paired-matched NAT
samples (17). We compared our tissue results with CPTAC
data. More than 80% proteins (4859 proteins) were commonly
identified, and almost 50% differential proteins (699 proteins)
showed significantly differential levels in both studies
(supplemental Fig. S2). The top pathways of both studies
showed high degree of consistency, with upregulation of im-
mune response pathways (IL-8 signaling, sirtuin signaling
pathway, Th1 pathway, etc.) and downregulation of energy
metabolism (oxidative phosphorylation, TCA cycle, serotonin
degradation, and valine degradation), while, several pathways
were significantly enriched only in present study, including
clotting-related pathways (extrinsic prothrombin activation
pathway, intrinsic prothrombin activation pathway), meta-
bolism pathway (α-tocopherol degradation, aspartate degra-
dation II, aspartate biosynthesis, glutamate degradation II),
and immune-related pathways (autophagy, remodeling of
epithelial adherens junctions, and Fcγ receptor-mediated
phagocytosis in macrophages and monocytes). Metabolism
and immune disorders have been reported as the main events
occurred in ccRCC (18, 19). Clotting-related pathways
showed significantly changed discovered in present study,
which have been reported in urological cancers, including
renal tumor. Coagulation pathway seems to be activated in
urological malignancies. Specific panels of coagulation factors
might play a role as screening or prognostic tools in earlier
stages of renal cancer (20).
Similarly, plasma proteomic analysis identified 180 differ-

ential proteins, with 91 downregulated and 89 upregulated
(Fig. 1F). The top three protein classes were cytoskeletal
protein (18.2%), defense/immunity protein (10.2%), and
metabolite interconversion enzyme (9.1%) (supplemental
Fig. S3A). IPA analysis showed that the upregulated proteins
were mainly involved in pathways of cellular growth and
development, including remodeling of epithelial adhere junc-
tion, actin cytoskeleton signaling, and integrin signaling, etc.
Plasma downregulated proteins were involved in IL-15
signaling, complement system, amino acid metabolism, and
glycolysis (Fig. 1F).
Urine proteomic analysis identified 169 differential proteins,

with 41 downregulated and 128 upregulated (Fig. 1G). The top
three protein classes were metabolite interconversion enzyme
(13.2%), protein modifying enzyme (7.8%), and cell adhesion
molecule (6%) (supplemental Fig. S3B). The top enriched
pathways of urine differential proteins were immune response
(acute phase response signaling, immune cell adhesion, and
diapedesis, and endocytosis signaling) and metabolic
pathway (arginine degradation and aspartate degradation)
(Fig. 1G).
Mol Cell Proteomics (2023) 22(8) 100603 5



FIG. 2. Integration of plasma and tissue proteomes discovers consistent changes of cytoskeletal proteins and metabolite inter-
conversion enzymes in early-stage ccRCC. A, Venn diagram of identified proteins in tissue and plasma datasets. Common differential
proteins: Proteins with fold change above 1.5 (RCC vs. Control) in both tissue and plasma. B, the distribution of the relative dominance of no
change (gray), agree (green), tissue-only (blue), plasma-only (orange), and disagree (red) proteins. Proteins were defined based on the con-
sistency or inconsistency between the tissue and plasma datasets. Agree proteins were those with same direction of change in both tissue and
plasma datasets. No change proteins, in both tissue and plasma, were not changed (within 1.5 fold change) between ccRCC and control.
Tissue-only proteins varied between ccRCC and control in tissue dataset (larger than 1.5 fold), but not in plasma (within 1.5 fold). Plasma-only
proteins varied in plasma (larger than 1.5 fold), but not in tissue (within 1.5 fold). Disagree genes performed opposite direction of change in tissue
and plasma. C, pathway enrichment of tissue-plasma agree proteins, tissue-only proteins, and plasma-only proteins. D, proteins varied
constantly in CPTAC tissue dataset, present tissue dataset, and plasma dataset. Overall, 54.5% of these “consistent proteins” were cytoskeletal
proteins and metabolites interconversion enzymes (marked in red and green). E and F, casual network analysis predicted the upstream regulator,
ITGAV, SERPINE1, HIF1, and DDX5, contributing to downstream protein upregulation and pathway disturbance associated with ccRCC

Liquid Biopsy for Cancer Investigation
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Integrative Analysis of Plasma and Tissue Proteomes

To investigate plasma proteins associated with ccRCC tu-
mor tissue, we analyzed plasma and tissue proteomic results
integratively. The tissue proteome covered majority of proteins
quantified in the plasma (75%, 621) (Fig. 2A). We applied a
cutoff (fold change >1.5) for the common proteins in the two
samples, resulting in 70 differential proteins (“common”
category) in both tissue and plasma, 262 only in tissue (“tissue
only” category), and 87 only in plasma (“plasma-only” cate-
gory) (Fig. 2B and supplemental Table S4A).
Comparison analysis of enriched pathway by the three

protein categories suggested that common proteome could
reflect tumor-associated function disturbance, including
cellular growth and development, intracellular and second
messenger signaling, and energy supply (gluconeogenesis)
(Fig. 2C and supplemental Table S4B).We further investigated
differential proteins with the same change trend in tissue and
plasma. Overall 45 out of 70 “common” proteins showed
consistent change trends. Additionally, these 45 proteins
were also quantified in CPTAC study and showed the same
change trend in ccRCC with present study (Fig. 2D). Protein
class analysis showed 54.5% of these 45 proteins were
cytoskeletal proteins and metabolites interconversion en-
zymes, mainly performed binding and catalytic functions,
which indicated that a substantial regulation of cytoskeletal
structure and energy metabolism in tumor tissue might be
detected in plasma.
These “common” proteins were further functionally analyzed

using casual network to explore the upregulator contributing to
functional disturbance. Hypoxia factor, HIF1, was found to
regulate ITGAV and SERPINE1, which might trigger upregula-
tion of cytoskeletal proteins, then involving in disorder of
pathways, including molecular mechanism of cancer, signaling
by rho family GTPases, remodeling of epithelial adherens
junction, hypoxia inducible factor (HIF)1A signaling, and regu-
lation of the epithelial-mesenchymal transition (EMT) pathway
(Fig. 2E). Additionally, a casual network regulating metabolic
pathways was found. DDX5 and miRNA let-7 probably
contributed to metabolic enzymes changes, which were
involved in energy metabolism including aspartate degrada-
tion, gluconeogenesis, glycolysis, and TCA cycle (Fig. 2F).
“Plasma-only” proteins were mainly involved in pathways

regulating immune response, including epithelial adherens
junction signaling, B cell receptor signaling, IL-15 signaling,
and systemic lupus erythematosus in B cell signaling
pathway (Fig. 2C and supplemental Table S4C). To further
identify specific plasma proteomic changes to biological
processes, we performed enrichment analyses for GOBP (Go
pathology. Molecular in red boxes: upregulated proteins in present study
molecular in orange boxes: predicted to be activated status; molecular
ontology for biological process) terms for plasma-only upregulated prote
renal cell carcinoma; CPTAC, Clinical Proteomic Tumor Analysis Conso
for biological process) terms using “plasma-only” proteins by
ClueGo in Cytoscape. The largest cluster of enriched terms
for upregulated proteins was related to actin filament orga-
nization and phagocytosis (Fig. 2G). Conversely, the down-
regulated proteins were annotated to antioxidant activity,
humoral immune response, and cytoskeleton organization
(Fig. 2H).

Integrative Analysis of Urine and Tissue Proteomes

Using similar strategy, we further investigated urine prote-
ome changes associated with ccRCC. The tissue proteome
covered 67.6% of proteins (1889) quantified in the urine
(Fig. 3A). Comparison analysis resulted in 108 common dif-
ferential proteins (“common” category), 870 only in tissue
(“tissue-only” category), and 74 only in urine (“urine-only”
category) (Fig. 3B and supplemental Table S5A).
IPA enrichment analysis showed that “common” proteins

were mainly involved in pathways regulating cell growth/
development (actin cytoskeleton signaling, CDC42 signaling,
and Th2 pathway) and intracellular and second messenger
signaling (RHOGDI signaling, signaling by Rho Family
GTPase, and glucocorticoid receptor signaling) (Fig. 3C).
“Common” proteins might provide proxy for tumor-associated
variations in urine. Overall 48 out of 108 “common” proteins
showed consistent change trend in tissue and urine. Addi-
tionally, these 48 proteins were also quantified in CPTAC
study and showed the same change trend (Fig. 3D). Cell
adhesion molecules (ITGB4, TGFBI) and defense proteins
(IGHV3-9, HLA-DRA, HLA-DPA1, IGHV6-1, and IGHV3-64D)
were upregulated, while cell adhesion molecules (ALCAM,
CDH11, CDH1) were downregulated. GO functional enrich-
ment analysis showed that these proteins were mainly about
molecular function of binding and catalyzing. Further canoni-
cal pathway analysis showed that these proteins were mainly
involved in immune response regulation through RHOGDI
signaling, pathogen-induced cytokine storm signaling
pathway, ILK signaling, etc. Additionally, small molecular
pathway, including GDP-mannose biosynthesis, superoxide
radicals degradation, vitamin-C transport, and glycolysis, also
showed that they are significantly enriched (supplemental
Fig. S4). These results suggested that urine proteome
changes could reflect immune response and metabolism
dysfunction occurred in tissue.
We further performed casual network analysis to explore

upregulators of tissue-urine common proteins. Activation of
signal transduction inhibitor, ARRB2, was predicted as the
upregulator molecule. Activation of cell adhesion and defense
molecule could induce dysfunction of epithelial-mesenchymal
. Molecular in green boxes: downregulated proteins in present study;
in blue boxes: predicted to be inhibited status. G and H, GOBP (Go
ins(G) and plasma-only downregulated proteins(H). ccRCC, clear cell
rtium.
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FIG. 3. Integration of urine and tissue proteomes discovers consistent changes of cell adhesion molecular and immunity proteins in
early-stage ccRCC. A, Venn diagram of identified proteins in tissue and urine datasets. Common differential proteins: Proteins with fold change
above 1.5 (RCC vs. Control) in both tissue and urine. B, the distribution of the relative dominance of no change (gray), agree (green), tissue-only
(blue), urine-only (orange), and disagree (red) proteins. Proteins were defined based on the consistency or inconsistency between the tissue and
urine datasets. Agree proteins were those with the same direction of change in both tissue and urine datasets. No change proteins, in both tissue
and urine, were not changed (within 1.5 fold change) between ccRCC and control. Tissue-only proteins varied between ccRCC and control in
tissue dataset (larger than 1.5 fold), but not in urine (within 1.5 fold). Urine-only proteins varied in urine (larger than 1.5 fold), but not in tissue
(within 1.5 fold). Disagree genes performed opposite direction of change in tissue and urine. C, pathway enrichment of tissue-urine agree
proteins, tissue-only proteins, and urine-only proteins. D, proteins varied constantly in CPTAC tissue dataset, present tissue dataset, and urine
dataset. Cell adhesion molecular and defense proteins account for the most (marked in green and red). E, casual network analysis predicted
ARRB2 as the upregulator of downstream molecular and pathway disturbance. Molecular in red boxes: upregulated proteins in present study.
Molecular in green boxes: downregulated proteins in present study; molecular in orange boxes: predicted to be activated status; molecular in
grass green boxes: predicted to be inhibited status. F, GOBP (Go ontology for biological process) terms for urine-only upregulated proteins.
ccRCC, clear cell renal cell carcinoma; CPTAC, Clinical Proteomic Tumor Analysis Consortium.
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transition pathway, further regulating tumor-associated varia-
tions (21) (Fig. 3E).
“Urine-only” proteins were mainly involved in pathways

regulating immune response (Clathrin-mediated endocytosis
signaling, granulocyte adhesion and diapedesis, leukocyte
8 Mol Cell Proteomics (2023) 22(8) 100603
extravasation signaling, and agranulocyte adhesion and dia-
pedesis) and intracellular and second messenger signaling.
But tumor-associated metabolic pathway did not show
significantly enriched in urine proteome. To further identify
specific urine proteomic changes to biological processes, we



FIG. 4. Integration of plasma and urine proteomes. A, Venn diagram of identified proteins in urine and plasma datasets. Common dif-
ferential proteins: Proteins with fold change above 1.5 (RCC vs. Control) in both plasma and urine. B, the distribution of the relative dominance of
no change (gray), agree (green), plasma-only (blue), urine-only (orange), and disagree (red) proteins. Proteins were defined based on the con-
sistency or inconsistency between the urine and plasma datasets. Agree proteins were those with same direction of change in both urine and
plasma datasets. No change proteins, in both urine and plasma, were not changed (within 1.5 fold change) between ccRCC and control. Urine-
only proteins varied between ccRCC and control in Urine dataset (larger than 1.5 fold), but not in plasma (within 1.5 fold). Plasma-only proteins
varied in plasma (larger than 1.5 fold), but not in urine (within 1.5 fold). Disagree genes performed opposite direction of change in urine and
plasma. C, pathway enrichment of plasma-urine agree proteins, plasma-only proteins, and urine-only proteins. D, proteins varied constantly in
urine and plasma dataset. These proteins were mainly adhesion molecular and transporter molecular (marked in green and blue). ccRCC, clear
cell renal cell carcinoma.

Liquid Biopsy for Cancer Investigation
performed enrichment analyses for GOBP terms using “urine-
only” proteins. GOBP terms showed that several terms were
enriched in the upregulated proteins, including antigen pro-
cessing and leukocyte degranulation (Fig. 3F).

Integrative Analysis of Plasma and Urine Proteomes

Integration of plasma and urine proteome results showed
that 84.2% of plasma proteins (696 ones) were also quantified
in urine (Fig. 4A), with 21 common differential proteins
(“common” category), 146 only in plasma (“plasma-only”
category), and 79 only in urine (“urine-only” category) (Fig. 4B
and supplemental Table S6).
IPA enrichment analysis showed that plasma-urine “com-

mon” proteins and “plasma-only” proteins showed similar
enriched pathways, including cellular growth/development
and intracellular/second messenger signaling. Additionally,
immune response was significantly enriched for “plasma-only”
and “urine-only” proteins through different pathways. Path-
ways of B cell receptor signaling, Fcy receptor-mediated
phagocytosis in macrophages and monocytes, and IL-15
signaling were enriched in plasma, while granulocyte
Mol Cell Proteomics (2023) 22(8) 100603 9
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adhesion and diapedesis and leukocyte extravasation
signaling were enriched in urine (Fig. 4C).
Overall 12 out of 21 common proteins showed consistent

change trend. The main three protein classes were cytoskel-
etal proteins (ACTN1, MYH9, MYL9), adhesion molecular
(TGFBI, CDH1), and transporter molecules (ATP5F1B,
ATP5F1A). GO enrichment showed these proteins were mainly
about binding and catalyzing (Fig. 4D).

Integrative Analysis of Tissue, Plasma, and Urine
Proteomes

According to above integrative analysis, it is evident that both
blood and urine are decent proxies of tumoral function changes.
In plasma, cytoskeletal proteins and metabolic enzymes
expressed differently in early-stage RCC, while in urine, adhe-
sion molecular and defense proteins showed different expres-
sion level. Differential proteins in plasma and urine both reflect
function of binding and catalytic activity of tumor tissue. Pro-
teins only changed in biofluids could reflect immune response
variations triggered by tumor, perhaps through different regu-
lation mechanism. Plasma proteins involved in actin cytoskel-
eton, B cell signaling and urine proteins involved in granulocyte
adhesion, leukocyte extravasation signaling showed specific
differential expression levels. (Fig. 5A and Table 1).
Integration of the three proteomic analyses (tissue, plasma,

and urine), we discovered 27 common proteins showing dif-
ferential levels (fold change >1.5) in at least two omic matrices
(Fig. 5B). GO enrichment analysis showed these proteins were
mainly cytoskeletal proteins, metabolite interconversion en-
zymes, and protein-binding modulator. Functions of these
proteins were binding and catalyzing (Fig. 5, C and D).
Further protein-protein interaction analysis was performed

using these common differential proteins. And a network
regulating tumor cell invasion and migration was discovered.
Downregulation of nucleoprotein, PARK7 and H1C4, trigger
changes of cytoplasmic proteins, including MYH9, SOD2,
ARPC1B, CORO1A, TUBB, HSPB1, and GOT1, and mem-
brane protein (CDH1). Downregulation of CDH1 activates
extracellular proteins, including APOC1, FGG, TGFBI, and
GPI. Interaction of these proteins regulates tumor cell invasion
and migration, which plays vital role during ccRCC occurrence
and progression (Fig. 5E).

Potential Biofluid Biomarkers for ccRCC Prediction

We evaluated the discriminatory performance of differential
proteins in plasma and urine. Nonparameter wilcoxon rank-
sum test was performed for significance evaluation of pro-
teins between ccRCC and HC. Differential proteins were
ranked by the - log 10 (adjusted p value) (Fig. 6, A and B).
Next, we evaluated proteins as input variables and identified
the most important features for ccRCC distinction using the
random forest algorithm. Proteins were ranked by the mean
decrease accuracy value (Fig. 6, C and D). The top 20 proteins
in the two models were chosen as potential biomarkers. These
10 Mol Cell Proteomics (2023) 22(8) 100603
potential biomarkers were used to construct prediction model
using logistic regression algorithm. And proteins showing no
significant contribution (p > 0.05) to the model were further
excluded.
Finally, three plasma proteins, FGFR1, GOT1, FGFBP2, and

three urinary proteins, CETP, SEZ6L2, COX5B, showed good
performance for ccRCC prediction. A plasma protein signature
consisted of FGFR1, GOT1, and FGFBP2 and a urinary protein
signature consisted of CETP, SEZ6L2, and COX5B were built
using logistic regression algorithm. The above plasma protein
panel achieved 92.6% specificity and 96.3% sensitivity with
an AUC of 0.981 (Fig. 6E and supplemental Table S7A). And
urinary proteins panel achieved similar results (92.6% speci-
ficity, 92.6% sensitivity, an AUC of 0.970) (Fig. 6F and
supplemental Table S7B). Further, LOOCV method was used
for model validation. For plasma panel, the LOOCV achieved
the AUC, sensitivity, and specificity of 0.944, 0.889, and
0.963. For urine panel, the LOOCV achieved the AUC, sensi-
tivity, and specificity of 0.938, 0.926, and 0.852 (supplemental
Table S7).
To visualize the protein performance on ccRCC diagnosis

prediction, with a specificity of 95%, the cutoff values of each
protein and panel were used in the samples. The above
plasma panel led to a sensitivity of 92.6% (Fig. 6G and
supplemental Table S7C). And the above urine panel led to a
sensitivity of 85.2% (Fig. 6G and supplemental Table S7D).
The panel could achieve higher sensitivity than a single protein
in both plasma and urine.

DISCUSSION

Analysis of tumor tissues is the most direct method to
identify dys-regulated protein. Comparing with NATs facili-
tates comparative proteomic profiling to identify differential
proteins, with the end goal of delineating the aberrant cellular
processes associated with ccRCC. Biofluid biopsy could
offer a minimally invasive strategy for repeat sampling to
monitor disease progression and would be more represen-
tative of the molecular features associated with tumor gen-
esis (22, 23). In present study, we described a combined
analysis of tumor-plasma-urine proteome based on early-
stage ccRCC patients and matched controls. This study
would not only provide the molecular changes in tumor tis-
sue, plasma, and urine but define to what extent the biofluid
proteome might reflect the tissue proteome change in the
tumor early stage

Plasma Proteome Reflect Tumor-Associated Changes

The comparison of the plasma and tumor tissue proteome
showed that in plasma, cytoskeletal proteins and metabolite
conversion enzymes showed consistent change trend with
tumor tissue. Cytoskeletal proteins performed vital functions
during cancer mechanism (24). In present study, cytoskeletal
proteins were involved in ccRCC-associated cell growth and
development pathways (remodeling of epithelial adherens



FIG. 5. Integration of tissue, plasma, and urine proteomes. A, summary of molecular and pathway variations transferred from tissue to
plasma and urine in early-stage ccRCC. B, proteins varied constantly in CPTAC tissue dataset, present tissue dataset, plasma dataset, and urine
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TABLE 1
Enriched pathway and function in plasma and urine

Function Enriched pathway in plasma Enriched pathway in urine

Common with tissue Plasma only Common with tissue Urine only
Cellular growth and
development

Actin cytoskeleton
signaling

Actin cytoskeleton
signaling

Axonal guidance signaling CDC42 signaling
Germ cell-sertoli cell
junction signaling

Th2 pathway

Integrin signaling
Remodeling of epithelial
adherens junctions

Immune response Phagosome formation Epithelial adherens
junction signaling

Phagosome formation Clathrin-mediated
endocytosis signaling

B cell receptor signaling Neuroinflammation
signaling pathway

Granulocyte adhesion and
diapedesis

IL-15 signaling Leukocyte extravasation
signaling

Systemic lupus
erythematosus in B
cell signaling
pathway

Agranulocyte adhesion and
diapedesis

Intracellular and second
messenger signaling

RHOA signaling RHOGDI signaling
Actin nucleation by
ARP-WASP complex

Signaling by Rho family
GTPases

RAC signaling Glucocorticoid receptor
signaling

Calcium signaling
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junction), immune response pathways (regulation of the EMT
pathway, signaling by Rho family GTPases), and cell injury
pathways (HIF1A signaling).
Among them, epithelial adherens junction and EMT pathway

profoundly impacted prognosis and immunotherapy of ccRCC
(25). Several studies showed that EMT could induce the for-
mation of tumor cells during early-stage tumor formation and
metastasis, accompanied by specific connective tissue dam-
age and the release of tumor cells into surrounding tissues or
blood (26).
Cell injury pathways, HIF1a signaling, was another pathway

reflected by plasma proteome. Aberrant accumulation of
HIF1a was a consequence event induced by loss of von
Hippel-Lindau disease tumor suppressor (VHL) in ccRCC (REF
TCGA), which in turn resulted in uncontrolled activation of
HIFα-target genes that regulated angiogenesis, glycolysis,
and apoptosis. In present plasma proteome, a possible HIF1-
serpine1–regulated mechanism was proposed (Fig. 2E). Ca-
sual network revealed that HIF-1 act with TP53 through
transmembrane receptor, ITGAV. It was reported that HIF-1
facilitated cellular adaptation to mild and moderate hypoxia,
while Tp53 was activated to induce apoptosis under severe
hypoxia (27).
dataset. C and D, protein class and molecular function of 27 commonly
trend in early-stage ccRCC. E, network of these “tissue-plasma-urine c
inhibit tumor cell death, thus promoting ccRCC progression. Red, upre
ccRCC, clear cell renal cell carcinoma; CPTAC, Clinical Proteomic Tumo
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Additionally, tumor-associated energy metabolic pathways
were discovered to be changed in plasma. The landmark
TCGA and CPTAC analysis of ccRCC highlighted a key role
for metabolic alteration in ccRCC progression (16, 17). Casual
network of present plasma proteome suggested that an ATP-
dependent RNA helicase DDX5 was probably the upregulator
of energy metabolism. Downregulation of malate dehydroge-
nase 1 and creatine kinase M-type could reduce oxidative
phosphorylation process through regulation of mitochondrial
NADH supply for oxidative phosphorylation (28). Upregulation
of GPI contributed to the glycolytic flux increasing by cata-
lyzing the conversion of glucose-6-phosphate to fructose-6-
phosphate (29). These changes indicated that tumor-
associated early metabolism changes could be reflected in
plasma.
Except for the changes consistent with tumor tissue pro-

teome, plasma proteome also reflected some specific
pathway changes. These changes could be the body
response to tumor, indirectly associated with tumor occur-
rence. “Plasma-only” proteins were involved in oxidative
stress response, humoral immune response, actin filament
organization, and cytoskeleton organization. Actin cytoskel-
eton plays a central role in regulating immune response,
differential proteins in tissue, plasma, and urine with the same change
onsistent proteins” activate tumor cell invasion and migration, while
gulated proteins; green, downregulated proteins; blue, no detected.
r Analysis Consortium.



FIG. 6. Potential plasma and urine biomarkers for ccRCC. A and B, the top 20 proteins with the lowest FDR values in plasma (A) and urine
(B). C and D, the top 20 proteins with the highest mean decrease accuracy value of random forest model in plasma and urine. E and F, ROC
curve of plasma panel (E) and urine panel (F) for the diagnostic model for ccRCC. G, discriminant results heat map of plasma FGFR1, GOT1,
FGFBP2, the plasma panel, urine CETP, SEZ6L2, COX5B, and the urine panel for ccRCC and HC samples using the cutoff value with a
specificity of 95%. Red: positive with a specificity of 95%. ccRCC, clear cell renal cell carcinoma; FDR, false discovery rate; HC, healthy
controls.
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including B cell antigen uptake, polarization and presentation,
as well as B cell migration and interaction with T cells (30).
Recent studies have suggested a potential role for B cells in
the development and progression of ccRCC. It suggested that
infiltrated B lymphocytes are present in all stages of RCC,
playing a major role in determining tumor formation and
advancement, as an essential part in the tumor microenvi-
ronment (31). Some evidence proves that B cells can exert a
direct or indirect effect on CD8+T cells, acting as a provider of
antigen-presenting cells and release cytokines to help T cells
perform their duties in tumor sites (32, 33). Moreovver, it was
reported that RCC tissues could recruit more B cells than the
surrounding normal renal tissues from human clinical RCC
samples. Tumor-educated B cells could significantly increase
the RCC cell migration and invasion through activation of IL-
1β/HIF-2α signals in RCC cells, which could induce the
downstream Notch1 signaling pathway (34). However, depth
mechanism need to be further investigated. Actin cytoskel-
eton of immune cells has been recognized as a central
mediator of the formation and maturation of the immunolog-
ical synapse and its signaling and cytolytic activities (35).
Additionally, oxidative stress response was enriched for
“plasma-only” proteins. Many cytoskeletal proteins are sen-
sitive to reactive oxygen species, and redox regulation has
emerged as a pivotal modulator of the actin cytoskeleton and
its associated proteins (36). Oxidative stress can effectively
Mol Cell Proteomics (2023) 22(8) 100603 13
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induce the occurrence of autophagy in cells because malig-
nant tumor cells need to re-use their organelles to maintain
growth (37). ccRCC-induced immune response could be re-
flected in plasma proteome through actin cytoskeleton and
oxidative stress disorders.

Urine Proteome Reflect Tumor-Associated Pathway

In urine, cell adhesion molecules and defense proteins
showed consistent change trend with tissue, suggesting
tumor-associated pathway disorder might be reflected in
urine. Pathways involved in cell growth and development
(actin cytoskeleton signaling, CDC42 signaling), immune
response (phagosome formation), and intracellular messenger
signaling (signaling by Rho family GTPase) showed signifi-
cantly changed.
Rho family proteins Cdc42 are closely concerned with

regulating cell migration, invasion, and cytoskeleton assem-
bling (38). It was suggested that the enhanced migration and
invasion of cells in ccRCC were due to Cdc42 and RhoA ac-
tivity of Rho family, and actin cytoskeletal reorganization
alteration may be involved (39). Autophagy is an important
regulatory process promoting the disposal of unnecessary or
degraded cellular components, tightly linked to almost all
cellular processes. It involves the formation of phagosomes
that sequester cytoplasmic material and deliver it to lyso-
somes for degradation (40). During ccRCC development, it
tends to disrupt the regulation of the balance between this
process and apoptosis, permitting prolonged cell survival and
increased replication (41).
In present urine proteome, casual network analysis

discovered an upregulator, ARRB2, contributed to urine pro-
teins’ changes through promoting activity of AKT and EGFR.
Immunity proteins FGG and HLA-DRA showed up in ccRCC
urine, indicating increased inflammation and oxidative stress
during ccRCC (42). It was previously reported that FGG is
susceptible to oxidation and responsible for coagulation
anomalies in renal disease through influencing fibrin formation
and properties (43). However, more research at the molecular
level is needed to determine the mechanisms.
Proteins only changed in urine were involved in immune

response, perhaps through different molecular mechanism
with plasma. Pathways of endocytosis signaling, granulocyte
adhesion/diapedesis, and leukocyte extravasation signaling
showed significantly enriched, reflecting innate and adaptive
immune response in urine. Leukocyte extravasation is a
multistep process implicated in tumor. This process is
essential to get leukocytes to the site of tumor but is also one
of the main steps in the metastatic cascade in which cancer
cells leave the primary tumor and migrate to target sites
through the vascular route (44). It has been reported that
leukocytes are much more complex cells having not only
effector functions in the innate immune response but also the
capacity of modulating the adaptive immune response, via
direct interaction with or by producing cytokines that affect
14 Mol Cell Proteomics (2023) 22(8) 100603
dendritic cells and lymphocytes (45). Conclusively, proteins
only changed in biofluid could reflect immune response vari-
ations from different regulation mechanism.

Integration Analysis of Tissue, Plasma and Urine Proteome

Molecules showing consistent change trend in the three
analyses would provide evidences that tumor tissue-
associated variations could be reflected in biofluids. Total 27
consistent molecules were involved in the activation of tumor
cell invasion and migration. Activation of nucleus regulators,
PARK7 and H4C1, contribute to changes of cytoskeletal
proteins and metabolite conversion enzymes in cytoplasm
and adhesion molecular in plasma membrane. As shown in
Figure 5E, adhesion molecular, CDH1, was the hub molecular
of the network activating tumor cell invasion and migration
and inhibiting tumor cell death. Independent studies have
shown a direct correlation between VHL loss and the
expression of cadherin in ccRCC. The loss of cadherin was
observed in premalignant foci of VHL patients, which
concomitantly showed increased CA9 expression (inferring a
loss of VHL), suggesting cadherin loss to be an early patho-
genic event (46). Evidences showed that cadherin depletion
could promote kidney epithelial cells migration and invasion.
Knockdown of cadherin in human kidney epithelial cells
increased the migration potential in a wound-healing assay
and increased the invasive potential of VHL-restored ccRCC
cells in a matrigel invasion assay (46). Appreciable changes in
the behavior of renal epithelial cells through manipulating a
single gene among a myriad of genes implicated the potential
value of CDH1 during ccRCC progression.
The clinical use of proteomics in cancer diagnosis has

evolved from the direct evaluation of tumor tissue searching
for prognostic biomarkers to the use of biofluids as proxies for
changes in the cancer of interest. Although it is widely
accepted that the latter liquid biopsy approach is more readily
translatable to the clinical use, there is no available evidences
or studies showing the accuracy of biofluids as a reflection of
proteomics changes within tumor tissues. Referring to the
concept behind the use of biofluid molecules for cancer
diagnosis in clinic, for example, blood prostate specific anti-
gen tests for prostate cancer diagnosis and urine NMP22 test
for bladder cancer diagnosis, we assumed that changes in the
blood and urine proteomics could accurately reflect alter-
ations in the tumor tissue. In this study, we performed a
comprehensive proteomics analysis of tissue, plasma, and
urine of early-stage ccRCC simultaneously. In the light of the
results, it is evident that both blood and urine are decent
proxies of tumoral function changes.

Plasma and Urine Proteins Showed Potential Value for
ccRCC Prediction

Utilizing biofluids would offer a minimally invasive strategy
to predict and monitor disease and possibly be more repre-
sentative of the molecular features associated with
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tumorigenesis. With the goal of identifying candidates for early
detection of ccRCC, we applied statistical approach to select
potential plasma and urine proteins to construct the optional
prediction model. The results revealed that a panel of plasma
proteins, FGFR1, GOT1, and FGFBP2, could predict ccRCC
with high accuracy (specificity: 92.6%, sensitivity: 96.3%,
AUC: 0.981). FGFR1 is a fibroblast growth factor receptor.
FGFR1 overexpression has been identified in primary ccRCC
(47), and FGFR1 overexpression was shown to be related to a
reduced survival outcome in ccRCC patients receiving sor-
afenib treatment (48). Recent study indicated FGFR1 may be
involved in tumor angiogenesis and may represent a prom-
ising therapeutic target in metastatic ccRCC (49). GOT1 is a
ferroptosis-related gene. It has been reported that GOT1 was
associated with overall survival (OS) of ccRCC (50) and
inferred to be related to tumor immunity in ccRCC (51).
Urinary protein panel achieved similar performance for

ccRCC prediction. A protein panel consisted of CETP,
SEZ6L2, and COX5B achieved the AUC of 0.970, sensitivity of
92.6%, and specificity of 92.6%. CETP is one of the most
potent endogenous negative regulators of HDL-cholesterol.
Cholesterol levels and oxidative stress are key contributors
to endothelial damage. It has been indicated that CETP
expression negatively impacts endothelial cell function
through reducing expression levels of adhesion molecular,
intercellular cell adhesion molecule-1, and vascular cell
adhesion molecule-1, and diminishing monocyte adhesion
(52). Cell adhesion molecular in present study showed
decreased expression level in ccRCC, probably resulting from
CETP regulation through lipid metabolism pathway. Tissue
mitochondrial respiratory chain protein, COX5B has been re-
ported as a potential biomarker for ccRCC (53). ccRCC is
characterized by increased glycolysis and reduced activity of
the mitochondrial respiratory chain, explained by the VHL–HIF
pathway (54). It has recently been shown that COX5B is
directly targeted by HIF-1 (55).
Biological fluids such as blood and urine serve as common

sources of biomarkers. Blood is often considered to be the
ideal source for protein candidates, for that the network of
arteries, veins, and capillaries that come in contact with or-
gans offers a means for proteins that are secreted, shed, or
otherwise released by tumor tissues to be circulated (56).
Changes in blood biomarker levels are unlikely to persist long
enough for detection due to homeostasis regulation (57).
Therefore, detection of early molecular changes in blood is
probably a challenging task. In contrast, urine is the place
that most of the wastes in blood are dumped into and thus
tolerates changes to a much higher degree. Therefore, early
molecular changes are more likely to be magnified and
detectable in urine (58, 59). In addition, urine is easily ob-
tained, relatively simple in composition relative to blood.
Accumulated changes in urine are not likely to be masked,
and some molecular species which are difficult to detect in
blood may be detected in urine. In present study, the results
showed that plasma and urine molecular showed similar
performance for ccRCC discrimination, having potential
value for ccRCC early biomarker selection. The potential
values for ccRCC diagnosis need further validation using
larger cohorts in future work.
CONCLUSION

In conclusion, this study represents for the first time an in-
tegrated proteomics evaluation of tumor, including tissue and
biofluids (plasma and urine). Biofluid proteins could reflect
mechanism with tumorigenesis. Our study suggested that
tumor-associated function changes could be shown up in
blood and urine. Differential proteins found in plasma and urine
both reflect the binding and catalytic activity of tumor tissue.
Plasma and urine cytoskeletal proteins and metabolite con-
version enzymes could result in the discovery of novel diag-
nostic targets of RCC. Integrative analysis of plasma/urine with
tissue could discover potential biomarkers of RCC with high
specificity. Plasma proteins, FGFR1, GOT1, FGFBP2, and
urinary proteins, CETP, SEZ6L2, COX5B, could serve as po-
tential biomarkers for early prediction of RCC. However,
several limitations existed. First, considering for the relative
small size of sample, the p values were not corrected to obtain
more differential proteins to perform functional analysis. Thus,
function molecular in plasma and urine should be further vali-
dated using cell lines to evaluate the influence on tumor cell
biological behavior. Moreover, function experiments on mice
model would be performed to validate the potential mechanism
of these molecular during tumorigenesis. Above function,
validation work were our next work and would be presented in
the future. Second, due to the small sample size, the tentatively
proposed potential biomarkers need to be further validated
using larger cohorts from multiple centers. Third, missing value
imputation may lead to inflated p value in differential protein
analysis; thus, differential molecular with high degree of
missing value need to be further validated using tissue sample.
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