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Abstract

Regulated cell death (RCD) is essential for successful systemic cancer therapy. Yet, the 

engagement of RCD pathways does not inevitably result in cell death. Instead, RCD pathways 

can take part in diverse biological processes if the cells survive. Consequently, these surviving 

cells, for which we propose the term ‘flatliners’, harbor important functions. These evolutionarily 

conserved responses can be exploited by cancer cells to promote their own survival and growth, 

with challenges and opportunities for cancer therapy.

Introduction

The term regulated cell death (RCD), occurring as a result of a molecular pathway, has 

replaced “programmed cell death,” as the latter was specifically coined to refer to cell 

death that occurs at defined times during development1. RCD shapes the physiological 

development of tissues and organs, maintains homeostasis, and plays various roles in 

multiple disease processes2,3. The molecular machineries of RCD can be initiated by diverse 

mechanical, biological, physical, and chemical stresses, and are influenced by various 

cell intrinsic and extrinsic signals. This is opposed to “accidental” cell death, which is 

an immediate fatal response to severe physical, mechanical, or chemical damage, and is 

often referred to as “necrosis”4. The molecular events of RCD pathways and the resulting 

phenotypic changes have been related to various clinical outcomes, particularly in the 

context of cancer.

While evading cell death has been identified as a hallmark of cancer5, this is often 

mis-interpreted as suggesting that cancer cells are resistant to RCD. This is incorrect, as 
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highlighted by studies showing that cancer cells can be “primed for death,” and the response 

to conventional therapy correlates with such priming6. It is therefore understood that a 

hallmark of cancer is an ability of the cell to evade those RCD mechanisms that are engaged 

to suppress the oncogenic process, not necessarily RCD in general.

The engagement of RCD does not inevitably result in cell death. Cells that survive the 

activation of an RCD pathway can undergo changes that influence their behavior and/or that 

of surrounding cells. These may include genomic instability leading to high mutational 

burden7,8 and pro- or anti-tumor immune responses9. Moreover, preclinical research 

provides evidence that sublethal engagement of RCD leads to phenotypic adaptations 

including epithelial mesenchymal transition (EMT) and altered interaction within the cell’s 

microenvironment10–13. Consequently, sublethal engagement of cell death contributes to 

metastasis, invasiveness, and therapy-unresponsiveness, but can also present vulnerabilities 

that might be harnessed for cancer treatment13–16.

Herein, we introduce the term “flatliner” to represent a cell that has engaged a core 

RCD mechanism but manages to survive, in analogy to a patient who “flatlines” but 

is resuscitated. For cells, this is distinct from resistance to or evasion from signals that 

normally induce cell death. We propose that engaged cell death pathways do not always 

lead to cell death, and flatliners that survive may have altered properties. We elaborate 

how cancer cells resist therapy, with particular focus on the molecular mechanisms that 

underly the evasion of cell death following activation of an RCD pathway, and how survival 

of flatliners may account for phenomena associated with cancer persistence. Further, we 

assess how our knowledge and recent advances in the cell death field translate into our 

understanding of cancer progression and relapse, and how this may undercover novel 

therapeutic opportunities.

Finally, we discuss the potential relationship of flatliners to drug-tolerant persister 

cells, characterized as cancer cells without resistance-associated mutations that survive 

treatment14,17. These definitions are distinct: while both processes are transient (cells revert 

to the parental drug sensitivity over time), flatliners have demonstrably engaged a core 

cell death pathway and survived, while persister cells are defined only by their transient 

drug-tolerant state. While we argue that, at least in some cases, engagement of a core cell 

death machinery can induce the persister cell phenotype, the distinct definitions of each are 

important.

RCD pathways in cancer

In the following section we briefly survey four common RCD pathways: apoptosis, 

necroptosis, pyroptosis and ferroptosis, and discuss the molecular mechanisms that underlie 

their evasion.

Apoptosis

Apoptosis refers to cell death associated with the activation of Cysteine-Aspartate proteases 

(caspases) mediating cleavage of target proteins, leading to fragmentation of cellular 

DNA, nuclear condensation, membrane blebbing, and rapid clearance prior to loss of 
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plasma membrane integrity18. The biochemical and morphological changes associated with 

apoptosis are orchestrated by the activity of the executioner caspases, caspase-3 and −7, 

which cleave hundreds of substrates, including those responsible for the changes mentioned 

above19,20. For example, inter-nucleosomal double strand DNA breaks during apoptosis are 

caused by the caspase-activated nuclease (CAD). Another protein, inhibitor of CAD (iCAD) 

acts as a chaperone to bind and inhibit CAD while folding it into an active nuclease. The 

executioner caspases cleave iCAD, allowing the active CAD to cause DNA fragmentation21.

The executioner caspases are activated by initiator caspases (e.g., caspase-8 and −9), which 

cleave the inactive, dimeric executioners to activate them. The initiator caspases are not 

activated by cleavage, but instead, by binding and oligomerization of the inactive monomers 

on activated adapter proteins. These adapters and initiator caspases define the apoptotic 

pathways (Figure 1).

In the mitochondrial, or intrinsic pathway of apoptosis, the adapter is apoptotic protease 

activating factor-1 (APAF1), which binds and thereby activates the initiator caspase, 

caspase-9, which in turn cleaves and thereby activates the executioner caspases19. The 

latter are inhibited, however, by X-linked inhibitor of apoptosis (XIAP). The activation 

of APAF1 occurs following mitochondrial outer membrane permeabilization (MOMP), 

releasing cytochrome c from the mitochondrial inter-membrane space, which induces the 

activation and oligomerization of APAF1. In addition, proteins that interfere with XIAP are 

also released upon MOMP, de-repressing the executioner caspases and allowing apoptosis 

to proceed22. Extensive MOMP in a cell can result in a mitochondrial energetic catastrophe 

that usually ends in cell death even if the executioner caspase activation is insufficient23.

MOMP is caused by the action of the pro-apoptotic effectors of the BCL-2 family, e.g. 

BAX and BAK. These are antagonized by the anti-apoptotic BCL-2 proteins, e.g., BCL-2, 

BCL-XL, and MCL-1. A third type of BCL-2 protein, the BH3-only proteins function to 

inhibit the anti-apoptotic proteins and/or activate the pro-apoptotic effectors. The functions 

of the BCL-2 proteins have been reviewed elsewhere24. Engagement of apoptosis in cancer 

cells is triggered by many chemotherapeutic drugs and radiation therapies, which results 

in the activation of BAX and BAK through increased function of BH3-only proteins and 

decreased anti-apoptotic BCL-2 protein function25. Cells that are poised to undergo MOMP 

(“primed for death”) are associated with better prognosis in response to conventional 

therapy6 and dynamic BH3 profiling, in which drugs are tested for their ability to prime 

cells for induction of MOMP by BH3 peptides, has shown promise in predicting therapeutic 

efficacy26.

One way for cancer cells to survive in the face of chemotherapeutic insult is to prevent 

engagement of the cell death pathways via mutation or other mechanisms that permanently 

disrupt the action of the drug, referred to as resistance. This is distinct from survival 

following engagement of such a pathway and is not considered further herein. Previously, 

MOMP was widely considered a “point of no return” for cells, but we now know that cells 

can survive a degree of MOMP and sublethal caspase activation16,27 (Figure 2). It has been 

observed that not all mitochondria necessarily release cytochrome c upon stimulation with 

chemotherapeutic agents (incomplete MOMP; iMOMP). iMOMP allows for repopulation of 
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cells with healthy mitochondria and increased clonogenic survival once the death-inducing 

stress is removed. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) overexpression 

has also been shown to promote clonogenic survival in cells displaying iMOMP promoting 

increased glycolysis and a transient increase in mitochondrial mass28. In another study, the 

repair of double-strand DNA breaks induced upon caspase-mediated activation of CAD was 

noted as a requirement for cancer cell survival8. Widespread MOMP, followed by extensive 

apoptotic caspase activation normally is lethal, but cells that engage the mitochondrial 

apoptosis pathway can survive.

A second pathway of apoptosis involves the activation of the initiator caspase, caspase-8, 

by its adapter, FADD. This can occur upon ligation of death receptors of the TNF receptor 

family, e.g. TNFR1, FAS (CD95), and TRAIL receptors, and is often referred to as the death 

receptor, or extrinsic pathway of apoptosis (although other, intrinsic mechanisms, including 

non-death receptor processes exist to activate FADD-caspase-8 29). Active caspase-8 cleaves 

and thereby activates the executioner caspases.

Flice-like inhibitor of apoptosis, cFLIPL, (herein, FLIP) resembles caspase-8 but lacks a 

catalytic cysteine. If FLIP is present, it binds to a monomer of FADD-bound caspase-8, 

preventing oligomerization of the latter and thus prevents apoptosis30. However, the 

caspase-8-FLIP heterodimer is proteolytically active and performs other functions, as 

discussed below. The extent to which caspase-8 and death receptor signaling contribute 

to cancer is not well understood.

The death receptor pathway of apoptosis appears to be an important mechanism for anti-

tumor immunity, as cytotoxic lymphocytes deploy death receptor ligands (FAS/CD95, 

TRAIL) as one way they kill cancer cells. Caspase-8 is mutated or silenced in some 

cancers31. However, whether this represents an immune evasion mechanism or an escape 

from a tumor suppressor mechanism is not clear. Intriguingly, most cancers express FAS32 

and many express receptors for TRAIL33, suggesting that such receptors may have roles 

beyond cell death that are important in cancer maintenance34.

Cells that activate the death receptor pathway can survive, suggesting that low levels 

of executioner caspase activation are tolerated35. Survival following engagement of 

apoptosis and activation of executioner caspases has been termed anastasis (defined as 

cell survival despite activation of executioner caspases)36. Using a fluorescent marker of 

caspase-mediated cleavage, studies in flies indicated that many cells in the developing 

animals display evidence of caspase activation without apparent cell death37. Studies 

in primary and transformed mammalian cells revealed features of anastasis following 

induction of apoptosis, including DNA damage, oncogenic transformation, and induced 

gene signatures36. Although MOMP was not assessed in these studies, evidence (discussed 

above) strongly suggests that cells can survive MOMP, and thus might be considered to have 

undergone anastasis15,16.

Necroptosis

While necrosis often refers to uncontrolled cell death, we now recognize that there are 

regulated forms of necrosis. Among these is necroptosis38, in which receptor-interacting 
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kinase-3 (RIPK3) phosphorylates mixed-lineage kinase-like (MLKL) (Figure 1), which 

then oligomerizes and incorporates into the cell membrane forming a large pore, inducing 

necroptosis. Three proteins are known to bind and thereby activate RIPK3: RIPK1, TRIF, 

and ZBP139. These, in turn, are activated by ligation of death receptors, some toll-like 

receptors, and interferon receptors, respectively. RIPK1 however, associates not only with 

RIPK3 but also with FADD, and in the absence of FLIP, can cause apoptosis via activation 

of caspase-8 40. If FLIP is present, apoptosis is blocked, while the catalytic activity 

of FADD-caspase-8-FLIP cleaves RIPK1 and associated RIPK3, preventing necroptosis. 

Inhibition of caspase-8 or genetic ablation of either FADD or caspase-8 allows necroptosis 

to proceed. Such inhibition can occur due to viral caspase inhibitors41. That necroptosis 

proceeds in the presence of intact caspase-8 signaling has been noted in pathological 

settings, but the precise mechanisms remain unclear.

Multiple key necroptotic proteins are downregulated in various cancers. MLKL expression 

is often decreased in AML42, while RIPK3 protein levels are decreased in breast cancer 

and colorectal cancer and low levels correlate with worse overall survival in colorectal 

cancer43,44. Further, RIPK1, RIPK3, and phosphorylated MLKL levels correlate with better 

overall survival and CD8+ T cell infiltration in hepatocellular carcinoma45. Conversely, 

cancer cells can apparently induce necroptosis in host endothelial cells via DR6 and thereby 

promote metastasis46.

Negative regulation of necroptosis occurs via post-translational modifications on necroptotic 

proteins, reviewed elsewhere47. In addition, cells can delay or prevent necroptosis through 

membrane repair mechanisms. One membrane repair mechanism is mediated by endosomal 

sorting complexes required for transport (ESCRT) proteins. The ESCRT subcomplexes 

(ESCRT-0, -I, -II, -III) are the only machinery known in eukaryotic cells that can deform 

membrane on the distal side48. This machinery has multiple functions in the cell in addition 

to membrane repair49. Recruitment of the ESCRT-III machinery mediates abscission of 

the damaged plasma membrane to restore plasma membrane integrity. Cells undergoing 

necroptosis were able to survive in the presence of ESCRT-mediated membrane repair 

when the necroptotic stimulus was removed (Figure 3), whereas if ESCRT activity was 

blocked, cells which had activated MLKL were not able to survive (i.e., become necroptotic 

flatliners)50. This prolonged survival was necessary for production of cytokines and allowed 

for enhanced CD8 T-cell cross-priming by necroptotic tumor cells in vivo10,12.

Pyroptosis

Pyroptosis refers to a lytic cell death driven by inflammatory caspase activation leading 

to gasdermin-dependent pore formation in the plasma membrane, mostly in the context of 

infection and inflammation51 (Figure 1). Certain bacterial components such as cytosolic 

LPS can directly activate the inflammatory caspase 11 (caspase-4 and caspase-5 in humans), 

while other stimuli can cause the formation of various inflammasomes that can activate 

caspase-152. Gasdermin D was identified as the crucial cleaved substrate downstream 

of caspase-11, and caspase-1, which mediates pore formation in the plasma membrane 

and initiates lytic cell death51. Other gasdermin family members have been reported 

to be activated by caspase-3 and −751, caspase-853, Granzyme A54, or a streptococcal 
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exotoxin55,56. The cleaved gasdermin then inserts into the plasma membrane creating 

pores57,58 which, in the case of Gasdermin D, selectively release mature IL-1 cytokines, 

which are cleaved by active caspase-151,58.

Gasdermin E, which is activated by caspase-3 and -7, was identified as a tumor suppressor 

downregulated in many tumors59–61. Chemotherapeutic drugs are able to activate Gasdermin 

E via caspase-3-dependent cleavage to induce cancer cell death60. Induction of pyroptosis 

in tumor cells promoted induction of a robust anti-tumor immune response and protective 

immunity against a re-challenge with the same tumor cells61,62. While gasdermin-mediated 

pore formation leads to water influx and collapse of the ionic gradient across the plasma 

membrane, rupture of the cells and the release of large cytosolic molecules is mediated by 

ninjurin-1 (NINJ1)63. Plasma membrane rupture (PMR) occurs downstream of gasdermin 

or MLKL activation as well as late after apoptosis induction upon cleavage of Gasdermin 

E by executioner caspases (also called secondary necrosis). Deletion of NINJ1 delays PMR 

after MLKL activation but does not block it. The mechanisms of how NINJ1 is activated 

and induces PMR are unknown63. It is possible that cells lacking NINJ1 can survive the 

activation of gasdermins (and thus, pyroptosis), although this has not been formally tested.

Gasdermin D-mediated pore formation during pyroptosis is also regulated by ESCRT-

mediated membrane repair. Calcium flux through gasdermin pores recruits the ESCRT 

machinery to the site of pore formation where membrane pieces containing pores are shed 

to repair the plasma membrane, prolonging survival. ESCRT-deficient macrophages secreted 

more pro-inflammatory cytokines upon activation of caspase-1 compared to membrane 

repair proficient cells64. This mechanism can be exploited to increase anti-tumor immunity. 

Co-delivery of gasdermin and a calcium-chelating agent (to inhibit membrane repair) 

markedly increased efficacy of PD1-blocking antibodies in various murine tumor models65.

The induction of pyroptosis may be an avenue towards therapeutic treatment of AML66. 

Further, evidence suggests that the activation of Gasdermin E promotes effective anti-cancer 

immunity62. One study suggests that one of the inflammasomes (NLRP3) is active in 

glucocorticoid-resistant B-ALL67. The active Caspase-1 cleaves and thereby inactivates the 

glucocorticoid receptor, rendering the cells resistant to glucocorticoid treatment. Inhibition 

of Caspase-1 or disruption of the NLRP3 inflammasome restored glucocorticoid sensitivity 

in these cells, yet how they remain alive despite demonstrable Caspase-1 activity is 

unknown.

Ferroptosis

Another form of RCD is ferroptosis, resulting from accumulation of toxic lipid peroxides 

as a consequence of the iron-dependent Fenton reaction68,69. Most of the regulation of 

ferroptosis centers around activity of the selenoenzyme, glutathione peroxidase 4 (GPX4)70. 

GPX4 detoxifies oxidized lipid species (L-OOH) into nontoxic lipid alcohols (L-OH), a 

mechanism to prevent lipid peroxidation in the plasma membrane and subsequent cell death. 

Thus, GPX4 is a potent inhibitor of ferroptosis, and GPX4 inhibition drives ferroptosis. 

One mechanism of GPX4 inhibition occurs via depletion of its regenerative substrate, 

glutathione (GSH)70 which occurs through inhibition of the upstream cysteine/glutamate 

transporter (xc-)71. In addition to GPX4, tetrahydrobiopterin (BH4), synthesized by GTP-
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cyclohydrolase-1 (GCH1), serves as an antioxidant which synergizes with vitamin E to 

prevent lipid oxidation and subsequent cell death from ferroptosis72. Another negative 

regulator of ferroptosis, ferroptosis suppressor protein 1 (FSP1) can protect from GPX4 

inhibition by regenerating CoQ10, allowing suppression of peroxy radicals in lipid bilayers 
73,74.

Many experimental and approved cancer therapeutics are thought to kill cancer cells via 

ferroptosis75, although in the majority of such reports, the term is invoked when lipid 

peroxidation is observed, and reactive oxygen scavengers reduce killing in vitro.

While ferroptosis does not involve a dedicated membrane perforation mechanism, ESCRT-

mediated membrane repair delays the kinetics of ferroptotic cell death76. Although little 

is known about sub-lethal activation of ferroptosis in cancer, various reports (elaborated 

below) suggest that cancer cells which survive activation of other cell death pathways have 

increased sensitivity to ferroptosis13,77. Thus, the interconnectivity between RCD pathways 

(reviewed in78) allows for acquired vulnerabilities.

Drug Tolerant Persister cells

The concepts described for antibiotic-tolerant bacterial ‘persisters’ 79 translate to drug-

tolerant persister cancer cells (DTPs), defined as a population of genetically identical cells 

that survive a cell death-inducing, therapeutic treatment. The phenomenon of persistence 

is distinct from that of drug resistance, in that drug tolerance in persister cells is transient 

and reverts to the parental, drug-sensitive state over time. These DTPs have been described 

in cell lines representing a wide variety of cancers in response to a variety of treatments, 

primarily targeted therapies and chemotherapies80. For example, DTPs have been described 

in AML patient samples and mouse models in response to BET inhibitors81,82, and in 

patient melanoma samples and cell lines following treatment with BRAF and/or MAP kinase 

inhibitors83–85.

There are several characteristics displayed by DTPs, including decreased cell proliferation, a 

change in cell identity (usually defined by gene expression changes), adaptation of cellular 

metabolism, and modification of the tumor microenvironment. For most settings, it is 

unknown if the persisting population was preexistent (i.e. developed independent of the 

selective pressure) or if they are a response to drug treatment. Slow cycling persister cells 

which survive treatment with an EGFR inhibitor are pre-existing in a population of PC9 lung 

cancer cells. Using a single cell barcode tracking system coupled to a fluorescent cell cycle 

tracker, the proliferative capacity was largely predetermined in the same population of PC9 

lung cancer cells and the size of clones surviving and expanding upon treatment was similar 

across experiments. This suggests the presence of a pre-existing state in a population of 

cells, existing independently of selection pressure, which allows for persistence in the face 

of therapy14. It is important to note, however, that this does not preclude an inductive effect 

of the treatment on the persister phenotype; a pre-existing population may be in a state that 

is responsive to such an effect. This idea is further supported by considering another feature 

of DTPs, sensitivity to ferroptosis.
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Some cancer cells are constitutively sensitive to ferroptosis induction by inhibition of GPX4, 

while others are not. Studies of DTPs derived from a wide variety of human cancer cell lines 

showed that DTPs generated by a variety of therapeutics become dependent on GPX4 for 

survival70,86. A GPX4 inhibitor induced ferroptosis in these DTPs, however, pretreatment of 

the parental cells with a GPX4 inhibitor had no effect on their generation87. Therefore, the 

GPX4-dependent DTPs were not a pre-existing population in the parental cells, but instead, 

were induced by the therapeutic treatment. Validation of such an effect from patient samples 

is lacking, however.

Changes in metabolism are another feature of DTPs that survive anti-cancer therapies. DTPs 

change their metabolism towards mitochondrial oxidative respiration rather than glycolysis, 

which resembles respiration in untransformed cells88. KRASG12D-mutated mouse pancreatic 

ductal adenocarcinoma cancer persister cells that survive ablation of the oncogene increase 

mitochondrial biogenesis and oxidative phosphorylation89. Similar results were obtained in 

BRAFV600E-mutated melanoma cells that persist following treatment with cisplatin or the 

BRAF inhibitor, vemurafenib90 or AML cells that persist following cytarabine treatment91. 

Utilization of alternate metabolic pathways such as fatty acid oxidation has been described 

in triple negative breast cancer cells92,93, HER2 positive breast cancer cells94 and melanoma 

cells95. For different cells, upregulation of the fatty acid transporter CD36 seems to be a 

key mechanism to allow changes in metabolism94,95. These results suggest that a switch in 

metabolism towards a more oxidative state is associated with dormancy and chemotherapy 

resistance in DTPs.

In general, all treatments that result in DTPs induce apoptosis via the mitochondrial 

pathway. This raises the possibility that DTPs are a result of non-lethal effects of engaging 

this apoptosis pathway. However, activation of apoptosis in surviving cells was not measured 

in any of these studies. A recent review provided evidence in support of the hypothesis that 

anastasis may contribute to tumor relapse following therapy, suggesting that drug persistent 

cancer cells may represent cells that had undergone anastasis96. Cells that “recover” from 

apoptosis induced by ethyl alcohol can display stem-like properties97, and cells that survive 

MOMP following treatment with BH3 mimetic drugs display transient, increased drug 

tolerance in vitro, and increased invasiveness and metastasis in vivo13.

The consequences of sublethal cell death engagement: Hallmarks of 

flatliners

In the following section we discuss the features of flatliners and their possible relationship to 

DTPs.

Genomic instability

A frequently described consequence of flatliner survival is genetic alteration that can take 

place upon sublethal activation of caspases, mainly via the caspase-activated nuclease, CAD 

(Figure 4). Emerging evidence revealed that limited caspase activation, initiated by death 

receptor signaling98,99 or by iMOMP16,100 can result in the sublethal activation of CAD and 
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cause mutagenesis. As noted above, survival following activation of CAD has been shown to 

depend on the repair of double-stranded DNA breaks8.

Reactive oxygen species (ROS) are potential contributors to DNA damage-induced genomic 

alterations during sublethal mitochondrial cell death. Mechanistically, MOMP and the 

activation of executioner caspases can result in the cleavage of NADH–ubiquinone 

oxidoreductase 75 kDa subunit (NDUFS1), an essential part of complex I, resulting in 

a drop in ΔΨm, a rapid reduction in ATP synthesis and an increase in ROS101,102. The 

tumorigenic effects of mitochondrial ROS have been demonstrated in mouse models with 

heterogeneous deletion of genes that encode crucial mitochondrial proteins, causing an 

increase in ROS103–105.

It is likely that a combination of DNA damage by activation of CAD and/or ROS production, 

together with an impaired DNA-damage response (DDR) increases the risk for oncogenic 

genomic changes106. Proteins involved in nonhomologous end joining (NHEJ) and 

homologous recombination (HR) are potential substrates of caspases and might be degraded 

during limited caspase activity107. Tumor-specific expression of transcription factors that are 

involved in both DDR and downregulation of apoptosis-associated genes can also potentially 

promote flatliners with high mutational burden. For example, the transcription factor BRN2 

reprograms the DDR, promoting the more error-prone Ku-dependent NHEJ at the expense 

of HR, and simultaneously suppresses apoptosis in malignant melanoma cells upon various 

treatments such as UVB, chemotherapy, and vemurafenib108. If BRN2 contributes to the 

survival of some flatliners, reprogramming could contribute to genomic instability in these 

cells, a possibility that has not yet been tested.

Proliferation versus dormancy

In vitro and ex vivo data point to distinct heterogeneous subpopulations in untreated 

and treated cancers, including fast cycling/proliferative, slow cycling/quiescent, or non-

cycling/senescent cells109. Apoptosis-induced flatliners can display a pro-proliferative state 

which relies on the caspase 3-dependent upregulation of prostaglandin E2 (PGE2)110,111. 

Conversely, patient-derived xenografts of colorectal cancer which were treated with 

chemotherapy revealed cancer cells that entered the DTP state, characterized by slow cycling 

tumor cells112. Other evidence suggests that subpopulations of DTP cells with different 

proliferative states exist, which mainly differ in their antioxidant gene programs and fatty 

acid oxidation14.

Cellular senescence can be evoked by diverse intra- or extracellular stresses, including 

mitochondrial damage, oxidative stress, irreparable DNA damage, and oncogene 

activation113. The permeabilization of the mitochondrial inner membrane in some 

mitochondria undergoing MOMP114,115 can lead to release of mitochondrial DNA (mtDNA) 

to the cytoplasm. This causes activation of the cytosolic cGAS-STING pathway, which 

connects DNA damage and cytosolic DNA-sensing to senescence, and the senescence 

associated secretory phenotype (SASP)116. Apoptosis-inducing treatments, such as radiation 

and chemotherapy, often result in a cGAS -dependent release of cytokines and chemokines 

involved in SASP, such as IFN-β, IL1β, IL-6 and IL-8117 and induce type I interferon 

(IFN) responses (Figure 4). The removal of mitochondria abrogates the senescent phenotype 
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induced by various drugs or irradiation118. In addition, cleavage and inactivation of 

mediators in the IFN pathway by caspases can prevent such activation, and cells induced 

to undergo the mitochondrial pathway of apoptosis activate STING and IFN responses if 

caspases are inhibited119–122. It is therefore possible that flatliners with limited caspase 

activation engage STING signaling. The sublethal engagement of MOMP via BH3-mimetics 

can engage cytokine production by human epithelial cells123 and the inhibition of caspase 

activation enabled type I IFN responses and anti-tumoral immunity in in vivo experiments of 

cancer treatment11,124.

Metastatic potential

An increased metastatic potential of flatliners following engagement of the death receptor 

pathway of apoptosis has been studied in the context of diverse cancers125–127. Commonly, a 

crucial role of canonical NF-κB signaling for invasion and migration has been found in this 

setting. Death receptor-induced and cellular IAP (cIAP)-mediated activation of RIPK1 leads 

to the stabilization and activation of the NFκB1/RelA complex (Figure 5).

Interestingly, highly metastatic apoptosis flatliners engage a pro-invasion program that is 

promoted by a sublethal caspase-activation15,100,128 (Figure 4). An aggressive phenotype of 

apoptosis flatliners with increased metastatic capacity can also be promoted by iMOMP 

independently of caspase activation via the activation of the induced stress response 

(ISR) and ATF413. The ISR pathway generates transcription signatures consistent with 

invasiveness and metastasis or that have a documented impact on cell motility.

Intriguingly, there are indications that sublethal apoptosis engagement has a role in tissue 

regeneration and wound healing for metazoans129,130. This feature of apoptosis flatliners 

can rely not only on the auto- and paracrine activity of factors released, such as FGF2 

or PGE2, but also on the increased motility of cells that survived the engagement of 

apoptosis15,129–131. It is possible that at the limits of damage in a wounded tissue, cells that 

engage apoptosis but survive play important roles in the repair process.

Inflammatory outcomes

The three forms of regulated necrosis considered herein (necroptosis, pyroptosis and 

ferroptosis) have been recognized for their role in inflammatory signaling132. In the absence 

of pathogens, dying cells release pro-inflammatory damage-associated molecular patterns 

(DAMPs, which can act as an adjuvant for adaptive immune responses when combined 

with neo-epitope mediated antigenicity133. This might elicit superior anti-tumor immunity, 

as combinations of immune checkpoint blockade and chemotherapies or targeted therapies 

indicate134,135. However, little is known about the impact of sublethal engagement of these 

pathways on inflammatory signaling, without cell death.

The role of ferroptosis in cancer immunity remains hypothetical in the context of flatliners. 

If, indeed, apoptotic flatliners and/or persister cells (which may often be the same thing, 

see above) are more dependent on GPX4 for survival, perturbations in GPX4 function may 

induce ferroptosis in such cells in vivo. One consideration is that a decrease in GPX4 

activity leads to an upregulation of prostaglandins, including prostaglandin E2 (PGE2)136. 

While PGE2 has not been studied in the context of immunogenicity of ferroptotic cancer 
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cells, there is a body of evidence for its immunosuppressive functions137–139. Ferroptotic 

cancer cells suppress dendritic cell function and adaptive immune responses despite the 

release of DAMPs140, and while the molecular events that shape this response have yet to be 

defined, it is possible that these are mediated via PGE2 or other prostaglandins.

More evident is the contribution of sublethal necroptosis to anti-cancer immunity. RIPK1 

activates NF-κB signaling within a dying cell, leading to transcriptional upregulation of 

inflammatory cytokines, including IL6 and CXCL1, and promoting anti-tumor immunity12 

(Figure 5). For efficient cross-priming cells relied on both RIPK1 and NF-κB activation. The 

ESCRTIII machinery allows cells that have engaged necroptosis to continue this intracellular 

signaling, leading to production and release of immune mediators and inducing adaptive 

immunity50.

In stark contrast to regulated necrosis, apoptosis has been considered as an immunologically 

silent cell death program141. This dogmatic view has been challenged in recent years, 

owing to evolved experimental approaches and increasing refinement of the characteristics 

of immunogenic cell death133. Early upstream initiation of the pro-inflammatory and 

pro-survival signals via the TNFR death receptor family offers an intriguing opportunity 

to prevent lethal events, and instead to function as a messenger to its environment. 

Interestingly, FAS/CD95-induced cytokine production requires RIPK1 as well as the 

downstream XIAP142. Cell survival and tumorigenesis have been widely associated with 

cIAPs, but this function is mostly attributed to their potential to activate the canonical 

NF-κB pathway143,144.

In contrast to their activating role in the canonical NF-κB pathway, cIAPs negatively 

regulate non-canonical NF-κB signaling145, which was demonstrated in the context of 

pharmaceutical IAP antagonism using SMAC-mimetic drugs 146 and as a consequence of 

MOMP in the absence of caspases11. In the latter setting, the release of IAP antagonists 

(such as SMAC/DIABLO) upon MOMP act to inhibit not only XIAP, but also cIAPs, 

and can thereby engage non-canonical NF-κB signaling (Figure 5). In this pathway, 

inhibition of cIAPs (e.g. via CD40 or LTbR-receptor) leads to NF-κB-inducing kinase 

(NIK) stabilization, followed by its binding and activation of the kinase IKKα and thereby 

initiation of the NFκB2/RelB complex.

NF-κB stabilization can also be a direct effect of translation reprogramming in apoptosis 

flatliners, where upon eIF2α phosphorylation the short-lived NFκB inhibitor IκB is 

no longer synthesized147–149 (Figure 5). In addition, cells also trigger inflammatory 

signaling mediated directly by ATF4, which drives the transcription of several cytokines 

including IL-8 and CCL213,150,151. However, in vivo experiments so far indicate that a 

pro-inflammatory role for flatliners of the intrinsic pathway of apoptosis can only be 

achieved in the absence of caspase activity152 or if apoptosis is followed by secondary 

necrosis via Gasdermin E60,153 (Figure 1). Yet, Gasdermin E is frequently downregulated in 

cancers154–156.
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Acquired sensitivities of flatliners enable therapies

Does the survival of flatliners contribute to minimal residual disease in treated cancer 

patients? If so, then acquired vulnerabilities of such cells may invigorate cancer therapies. 

In a study of BH3 mimetic-induced DTPs, a BAX, BAK, and ATF4 gene signature in 

these surviving flatliners was identified in a publicly available data set from lung cancers 

with minimal residual disease, but not in those that were treatment naïve or progressed post-

treatment13. Therefore, targeting flatliner survival, may impact minimal residual disease.

In this regard, the expression of ATF4 as a consequence of the ISR may represent 

a therapeutic target. Studies have indicated that ATF4 is required for the DTP 

phenotypes13,157,158 and an inhibitor of the ISR, by stabilizing eIF2B, was effective in 

preventing DTP generation in vitro13. Activators of eIF2B are in preclinical development 

and may have benefit to limit persistence and residual disease159–161.

The observation that repair of double-strand DNA breaks is necessary for survival of cells 

that have engaged caspase activation and CAD function8 suggests an approach to limiting 

the emergence of DTPs. Studies of EGFR mutant non-small cell lung cancer cell lines and 

patient xenografts showed that the generation of DTPs following targeted therapies was 

blocked by an inhibitor of ataxia-telangiectasia mutated (ATM). Rare patients who harbor 

ATM mutations in such cancers showed better prognosis than those whose cancers had 

functional ATM, highlighting the possible application of ATM inhibitors to prevent relapse8.

Another approach is to harness the increased sensitivity towards ferroptosis in DTPs, 

which has been established in experimental settings for kinase inhibitor-treated cancer 

cells86,87,162. While the regulation of ferroptosis appears to be an attractive target to 

treat susceptible cancer types70 and metastatic outburst163, several hurdles, including the 

bioavailability and drug stability of specific ferroptosis-inducing small molecules164, must 

be addressed before clinical use is possible.

Preclinical research on organoids and xenografts revealed that diapause-like adaptation 

of DTP cancer cells is associated with suppressed MYC activity and can be targeted by 

CDK9 inhibition, a cyclin-dependent kinase that is involved in transcriptional control165. 

Diverse CDK9 inhibitors are currently in clinical trials166 and combinational therapy with 

the BH3-mimetic Venetoclax showed promising results in certain murine tumor models167.

Inhibition of the PGE2 signaling pathway, which may be increased in surviving flatliners 

(see above) appears to be promising due to its involvement in many processes, including 

tumor cell proliferation and repopulation as well as chemoresistance and pro-tumoral 

immunity. In murine experimental settings, neutralizing antibodies against PGE2 or the 

administration of the cyclooxygenase-2 (COX2) inhibitor celecoxib could successfully 

abrogate chemoresistance-associated, early tumor repopulation111. Celecoxib has been 

beneficial in the context of sporadic colorectal adenomas168 and its value in combinational 

therapies for cancer treatment is under clinical investigation169.
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CONCLUSIONS

Flatliner cells that survive the engagement of RCD pathways in response to therapy have the 

properties ascribed to cancer DTPs, and thus, the goal of most cancer therapies (to induce 

RCD in cancer cells) directly brings about the cellular changes that we seek to avoid. By 

recognizing this relationship and how it occurs, we can identify ways to prevent flatliners 

and thus limit DTP generation and, at least in some cases, minimal residual disease and 

relapse in cancer.
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Figure 1: Cell death pathways.
Intrinsic Apoptosis: Upon cellular stress, Bax & Bak permeabilize the outer membrane 

of the mitochondria releasing many proteins including cytochrome c and SMAC into 

the cytoplasm. Pro-survival BCL-2 family members (represented by BCL-XL*) can 

prevent MOMP. Upon the release of cytochrome c, Apaf-1 binds to initiator caspase 

(caspase-9) forming the “apoptosome”. This apoptosome then cleaves the executioner 

caspases (caspase-3 and −7) leading the proteolytic cleavage of many substrates including 

the ICAD which activates CAD. CAD then cleaves nuclear DNA and induces apoptotic cell 

Kalkavan et al. Page 21

Nat Cancer. Author manuscript; available in PMC 2024 June 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



death. Additionally, MOMP-induced release of SMAC inhibits XIAP and thereby releases 

the break on caspase-3. Extrinsic Apoptosis: After activation of a death receptor (e.g. FAS), 

the FADD adaptor recruits and activates caspase-8. Activated caspase-8, if not inhibited by 

cFLIP binding, then directly cleaves caspase-3 and induces cell death as described above. 

Additionally, caspase-8 can also cleave BID which induces MOMP directly or by activation 

of BAX. Pyroptosis: Direct binding of LPS to inflammatory caspase-11 (caspase 4,5 in 

humans) leads to cleavage of GsdmD releasing the N-terminus (GsdmD-N). The GsdmD-

N then forms an oligomer on phospholipid-membranes, permeabilizing it and inducing 

pyroptotic cell death. Alternatively, PAMPs and DAMPs can activate the inflammasome 

which can mediate inflammatory caspase-1 cleavage of GsdmD termed the “canonical 

inflammasome” pathway. Caspase-1 can also process Pro-IL-1β into IL-1β which is released 

via GsdmD pores. In addition to GsdmD-dependent pyroptosis, GsdmE, after cleavage from 

executioner caspase-3, can also lead to pore formation via it’s released N-terminal fragment 

(GsdmE-N). Both GsdmD and GsdmE pores can be repaired via the ESCRT complex. 

NINJ1 mediates cell rupture. Necroptosis: Upon stimulation of a death receptor, RIPK1 is 

activated and forms an oligomer with RIPK3, activating it (if Caspase 8 is inhibited). RIPK3 

then phosphorylates MLKL which oligomerizes and forms a pore in the plasma membrane. 

Alternatively, activation of ZBP1 or TRIF can also activate RIPK3 leading to necroptosis. 

ESCRT proteins can repair MLKL pores. NINJ1 mediates cell rupture. Ferroptosis: Fe2+ 

reacts with hydrogen peroxide during fenton reaction, thereby generating hydroxyl radicals 

(•OH), which oxidize PUFAs. The resulting toxic oxidized lipids (L-OOH) can integrate into 

phospholipid membranes and thereby lead to necrotic cell death. The selenoenzyme GPX4 

can directly detoxify L-OOH. Glutathione reduces GPX4 to replenish the antioxidant pool, 

thereby getting oxidized itself into glutathione disulfate (GSSG). NADPH from the pentose 

phosphate pathway reduces GSH. The xc– transporter exports glutamate and imports cystine 

into the cytosol. Cystine is then converted into cysteine, and then synthesized together with 

glutamine and glycine to glutathione. BH4, as produced by GCH1, is also able to decrease 

levels of oxidized lipids. FSP1 is able to generate CoQ which acts as an antioxidant capable 

of inhibiting ferroptosis.

* Bcl-xL is shown as a representative of “pro-survival” BCL-2 family members

* Caspase-11 in mice, Caspase-4,5 in humans.

Kalkavan et al. Page 22

Nat Cancer. Author manuscript; available in PMC 2024 June 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: Apoptosis induction and survival
A If apoptotic caspases are inhibited induction of incomplete MOMP leads to release of 

mitochondrial DNA from permeabilized mitochondria. This stimulated activation of the 

cGAS-STING pathway and production of pro-inflammatory cytokines. Cells harboring 

enough healthy mitochondria can expand these mitochondria and survive even after 

engagement of apoptosis.

B Low levels of MOMP (miMOMP) engage sublethal levels of caspase activation, which 

can mediate DNA damage through activation of CAD.
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Figure 3: ESCRT mediated membrane repair of plasma membrane damage.
Calcium influx through gasdermin D or MLKL pores as well as plasma membrane (PM) 

damaged by lipid peroxidation leads to recruitment of ALIX through ALG-2. This promotes 

assembly of the ESCRT-III machinery at the site of calcium influx. Subsequently, VPS4 

mediates abscission of the damaged pieces of PM, restoring its integrity.
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Figure 4: Non-lethal outcomes for apoptosis flatliners.
Illustration of evident consequences of the sublethal engagement of the intrinsic pathway 

of apoptosis and their main molecular players. The release of PGE2 relays inhibitory 

effects on T cells and dendritic cells. PGE2 can promote a pro-proliferative state and 

cell survival. NF-κB engages pro-survival signaling. Sublethal cytochrome c release can 

activate the ISR and thereby ATF4 translation. ATF4 impacts on various signaling pathways 

that lead to an escape from cell death, an increased sensitivity towards ferroptosis and a 

metastatic phenotype. Latter can also be promoted by sublethal caspase activation followed 

by subsequent initiation of the JNK-AP1 pathway. ROS and CAD can cause DNA damage, 

leading to genome instability and mutation. The cytosolic release of mtDNA can activate the 

cGAS-STING pathway, which promotes senescence and a senescence-associated secretory 

phenotype (SASP).
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Figure 5: Activation of NF-κB signaling.
The canonical NF-κB signaling pathway can be promoted via receptor-mediated activation 

(e.g. via TNF-receptor) or engagement of the ISR. Receptor activation leads to the 

recruitment of adaptor proteins to form and activate a complex including cIAP and RIPK1. 

In turn, RIPK1 engages the IKK complex, which induces the proteasomal degradation 

of IkB. This then allows for the stabilization and nuclear localization of the NF-κB1/

RelA heterodimer. Nuclear localization leads to the transcription of proinflammatory 

cytokines such as TNF, IL-1b, and IL-6. Activation of the ISR followed by translational 

reprogramming can lead to NF-κB stabilization due to discontinuation of IκB generation, 

which is a short-lived NFκB-inhibitor.

The non-canonical NF-κB signaling pathway can be engaged by the inhibition of cIAPs, 

which occurs either upon receptor engagement (e.g. via CD40 or LTbR) or by SMAC, 

which is released during MOMP. This results in the stabilization of NIK, which is then free 

to activate IKKα, resulting in NF-κB2/RelB activation and transcription of noncanonical 

NF-κB associated genes, such as CXCL12 and CXCL13.
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Conclusively, upon specific receptor activation cIAPs engage the canonical NF-κB signaling 

pathway while inhibiting the non-canonical. Vice versa, inactivation of cIAPs promotes 

non-canonical NF-κB signaling through NIK stabilization while inhibiting the canonical 

pathway.
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