

HHS Public Access

Author manuscript *Schizophr Res.* Author manuscript; available in PMC 2023 August 11.

Published in final edited form as: Schizophr Res. 2012 September ; 140(1-3): 159–168. doi:10.1016/j.schres.2012.03.017.

Acute and Maintenance Effects of Non-Pharmacologic Interventions for Antipsychotic Associated Weight Gain and Metabolic Abnormalities: A Meta-analytic Comparison of Randomized Controlled Trials

Jacqueline Caemmerer, Ed.M.^a, Christoph U. Correll, MD^{b,c,d,e}, Lawrence Maayan, MD^{a,f} ^aNathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962.

^bThe Zucker Hillside Hospital, Division of Psychiatry Research, Glen Oaks, New York, USA;

^cAlbert Einstein College of Medicine, Bronx, New York, USA;

^dHofstra North Shore LIJ I School of Medicine, Hempstead, New York, USA;

eFeinstein Institute for Medical Research, Manhasset, New York, USA;

^fNew York University School of Medicine Child Study Center, New York, New York, USA

Abstract

OBJECTIVE—To evaluate the efficacy of non-pharmacological interventions for antipsychoticassociated weight gain.

METHODS—Systematic literature search and meta-analysis of randomized controlled trials comparing behavioral interventions with control groups to ameliorate antipsychotic-associated weight gain.

RESULTS—Across 17 studies (n=810, mean age: 38.8 years, 52.7% male, 40.8% White, 85.6% with schizophrenia-spectrum disorders), non-pharmacological interventions led to a significant reduction in weight (-3.12kg; CI: -4.03, -2.21, p<0.0001) and body mass index (BMI) (-0.94kg/m²; CI: -1.45, -0.43, p=0.0003) compared with control groups. Intervention benefits extended to all secondary outcomes, except for high density-lipoprotein-cholesterol and systolic blood pressure. Compared to controls, intervention patients experienced significant decreases in waist circumference (WMD=-3.58cm, CI:-5.51,-1.66, p=0.03), percent body fat (WMD=-2.82%, CI:-5.35,-0.30, p=0.03), glucose (WMD=-5.79mg/dL,

Corresponding author: Lawrence Maayan, MD, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, Lawrence.maayan@gmail.com, PHONE: 845-398-6637.

Drs. Correll and Maayan contributed equally to the manuscript

Contributors: Mrs. Caemmerer undertook the literature search, statistical analysis, and wrote the first draft of the manuscript. Drs. Correll and Maayan designed the meta-analysis, provided intellectual guidance and contributed to the procurement of studies to be included in the meta-analysis and to later drafts of the manuscript. All authors contributed significantly to and have approved the final manuscript.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CI:-9.73,-1.86, p=0.004), insulin (WMD=-4.93uIU/ml, CI:-7.64,-2.23, p=0.0004), total cholesterol (WMD=-20.98mg/dL, CI:-33.78,-8.19; p=0.001), low density-lipoprotein-cholesterol (WMD=-22.06mg/dL, CI:-37.80,-6.32, p=0.006) and triglycerides (WMD=-61.68mg/dL, CI: -92.77,-30.59, p=0.0001), and less weight gain 7% (29.7% vs. 61.3%; RR=-0.52, CI: -0.35,-0.78, p=0.002; number-needed-to-treat=4). Up to 12 months after the intervention ended (mean=3.6 months), benefits endured regarding weight (WMD=-3.48kg, CI: -6.37, -0.58, p=0.02), but not BMI (p=0.40). Subgroup analyses showed superiority of non-pharmacological interventions irrespective of treatment duration, individual or group, cognitive behavioral or nutritional interventions, or prevention versus intervention trials. However, weight and BMI were significantly improved only in outpatient trials (p<0.0001), but not in inpatient or mixed samples (p=0.09-0.96).

CONCLUSION—Behavioral interventions effectively prevented and reduced antipsychoticassociated weight gain and cardiometabolic perturbations, at least in outpatients agreeing to participate in trials aimed at improving physical health. Effective treatments ranged from nutritional interventions to cognitive behavioral therapy.

Keywords

antipsychotics; adverse effects; weight gain; metabolic syndrome; behavioral; diet; exercise; healthy lifestyle; intervention; treatment; CBT; nutritional interventions

1. INTRODUCTION

Antipsychotic efficacy for psychotic disorders (Leucht et al., 2009), bipolar disorder (Correll et al., 2010), major depressive disorders (Nelson and Papakostas, 2009) and irritability/ aggression associated with autism (Correll et al., 2011a), as well as off–label use in other psychiatric conditions (Maher et al., 2011) is counterbalanced by significant weight gain and cardiometabolic risk (Allison et al., 1999; American Diabetes Association, 2004; Lieberman et al., 2005; De Hert et al., 2011a; Kahn et al., 2008). This weight gain is problematic as it may adversely affect adherence, quality of life (Allison, 2003), and especially, cardiovascular morbidity and mortality (Newcomer, 2005; Correll et al., 2011b; De Hert et al., 2011b).

Pharmacologic interventions to ameliorate antipsychotic weight gain have had moderate success. Out of 15 agents examined in a recent meta-analysis, only five showed significant benefit versus placebo, and three were already taken off the market due to adverse effects (fenfluramine, sibutramine, reboxetine). Metformin and topiramate reduced antipsychotic-related weight gain compared to placebo by 2.5–3 kg after 8–12 weeks of treatment (Maayan et al., 2010). Pharmacologic interventions can cause additional side effects (Maayan and Correll, 2010). Metformin carries a risk of lactic acidosis, particularly in the elderly and in those with compromised renal function (Chang et al., 2002), and its use can be limited by nausea, vomiting and diarrhea. Topiramate has been associated with cognitive blunting (Narula et al., 2010).

Conversely, non-pharmacological interventions do not have such side effects and have shown promise. In a meta-analysis of 10 randomized controlled (RCTs) (n=482) Alvarez-

Jimenez et al. (2008) reported that non-pharmacological interventions led to 2.56 kg less weight gain and 0.91kg/m² less BMI increase than the control condition and that nutritional counseling was equivalent to cognitive behavioral therapy (CBT). While this meta-analysis provided support for non-pharmacological interventions, the small number of studies precluded secondary analyses regarding metabolic outcomes, and the mediating impact of treatment duration. A more recent, systematic review included the same10 RCTs plus 6 additional, but non-randomized studies (Gabriele et al., 2009), reporting similar results.

The current study expands upon the prior publications (Alvarez-Jimenez et al., 2008; Gabriele et al., 2009) by (1) including additional RCTs , and (2) analyzing effects on insulin, glucose, high density lipoprotein (HDL), low density lipoprotein (LDL), total cholesterol, triglycerides, and systolic blood pressure. addition we also aimed to assess maintenance effects after the behavioral interventions ended.

2. MATERIALS AND METHODS

2.1 Search

A literature search was conducted in PsycInfo, Medline, PubMed, CINAHL, and the Cochrane Library using the following search terms: 'weight,' 'antipsychotic,' and 'intervention' plus 'behavioral,' 'psychoeducation,' 'exercise,' or 'cognitive'. Reference lists of relevant articles were searched for additional studies. When required data was missing, first/corresponding authors were contacted for additional information.

Included in this meta-analysis were RCTs of non-pharmacological interventions aimed at preventing or reducing antipsychotic associated weight gain (see Figure 1 for the search results and flow).

2.2 Data Extraction and Outcomes

All data were extracted by one author and verified at a later point by a second author. Inconsistencies were reviewed and resolved.

2.3 Calculations and Analyses

Data were analyzed using randomized effects models in Review Manager 5.0 (RevMan 5.0.24 (PC version), Cochrane Collaboration, Oxford, UK). All tests were two-sided and a was set at 0.05. For continuous outcomes, the weighted mean difference (WMD) with 95% confidence intervals (CI) was calculated. For dichotomous outcomes, Risk Ratio (RR) +/– CI was calculated and number-needed-to-treat (NNT) was derived by dividing 1 by the risk difference. Study heterogeneity was measured using the I-squared statistic, with I-squared > 50% indicating significant heterogeneity.

The co-primary outcomes were (a) body weight and (b) body mass index (BMI). Secondary outcomes included change in waist circumference, body fat percentage, total, HDL-, and LDL-cholesterol, triglycerides, fasting glucose, insulin, and systolic sitting blood pressure and all-cause discontinuation.

To examine potential moderator variables, five *a priori* planned sensitivity analyses were conducted: (1) CBT (N=6) vs. nutritional and/or exercise interventions (N=11); (2) trial duration 3 months (N=9) vs. trial duration >3 months (N=8); (3) prevention trials (i.e., non-pharmacologic intervention initiated within 4 weeks of starting the antipsychotic: N=6) vs. intervention trials (i.e., non-pharmacologic intervention initiated after antipsychotic weight gain had occurred: N=11); (4) individual interventions (N=5) vs. group interventions (N=12); and (5) inpatient status (N=3) vs. mixed (N=2) vs. outpatient status (N=12).

3. RESULTS

We identified 17 RCTs, including 810 participants, that had a comparison group (Table 1). Data were extracted from an 18th publication (Alvarez-Jimenez et al. 2010) for follow-up information on an active treatment study (Alvarez-Jimenez et al. 2006). Treatment duration ranged from 8-72 weeks (8 studies (47%) with >12 week duration, mean: 19.6 weeks). Treatment involved CBT (N=7, 41%) and nutritional and/or exercise interventions (N=10, 59%). Participants' mean age was 38.1 years in the intervention group and 37.2 years in the control group. Overall, 52.3% of the participants in the intervention group and 54.9% in the control group were men. In the intervention group, 47% of the participants were Caucasian, 36% were Asian, 10.7% were African American, 0.8% were Hispanic, and 5.5% were reported as "Other". In the control group, 51.3% of the participants were Caucasian, 31.7% were Asian, 10.9% were African American, 3% were Hispanic, and 3.9% were reported as "Other" (8 studies with data). Trials were conducted in the USA (N=6), Europe (N=5), Asia (N=3), Australia (N=1), Canada (N=1), and Israel (N=1). The mean BMI was 29.6 kg/m² for the intervention group and 28.5 kg/m^2 for the control group. Out of the 810 participants, 423 (52.2%) were diagnosed with schizophrenia, schizoaffective disorder, or schizophreniform (85.6% of patients with diagnostic information), 46 (5.7%) were diagnosed with unipolar or bipolar disorder, and in 341 patients (42.1%) diagnostic information was missing.

All but three studies included weight data (82%), with 57% of those studies (N=8) reporting weight change data and 43% (N=6) providing endpoint weight. Similarly, 94% of the studies (N=16) reported BMI data, with 44% of the studies (N=7) reporting BMI change data and 56% (N=9) reporting endpoint BMI. Only 6 studies (35%) reported change or endpoint for glucose and waist circumference, 5 studies (29%) provided total cholesterol endpoint data, 4 (24%) reported end point data in HDL-cholesterol and triglycerides, 3 (18%) reported change or end point in LDL-cholesterol, insulin, body fat percentage, and weight gain 7%, and 2 studies (12%) reported endpoint for systolic sitting blood pressure.

In six studies, changes in weight and/or BMI change were reported 2–12 months (mean: 3.6 months for weight, 5.8 months for BMI) after the intervention ended.

3.1 Co-primary Outcomes

Non-pharmacological interventions were associated with a pooled weight change of -3.12 kg (CI: -4.03, -2.21; p<0.0001; I²: 42%) (Figure 2) and a pooled BMI change of -0.94 kg/m² (CI: -1.45, -0.43; p=0.0003; I²: 75%) compared to controls (see Figure 3).

3.2 Secondary Outcomes

3.2.1 Waist circumference, percent body fat, and weight gain 7%,—The waist circumference in the intervention group decreased significantly compared with the control group (N=6, n=349, WMD= -3.58 cm, CI: -5.51, -1.66, p=0.03; I²=65%). Percentage of body fat decreased significantly in the intervention group compared with controls (N= 3, n=83, WMD= -2.82 %, CI: -5.35, -0.30, p=0.03; I²=0%). Lastly, in the intervention group significantly less patients gained 7% compared to the control group (N= 3, n=126, 29.7% vs. 61.3%; RR= -.52, CI: -0.35, -0.78, p=0.002; I²=67%, NNT=4).

3.2.2 Insulin and Glucose—Compared with the control group, insulin levels (N=3, n=150, WMD= -4.93 uIU/ml, CI: -7.64, -2.23, p=0.0004; I²=0%) and fasting glucose levels (N=6, n=348, WMD= -5.79 mg/dL, CI: -9.73, -1.86, p=0.004; I²=58%) were significantly lower in the intervention group.

3.2.3 Blood lipids—Total cholesterol decreased significantly in the intervention group compared to control group (N=5, n=273, WMD= -20.98 mg/dL, CI: -33.78, -8.19; p=0.001; I²=41%) (Figure 4). The same was true for LDL-cholesterol (N=3, n=200, WMD= -22.06 mg/dL, CI: -37.80, -6.32; p=0.006; I²=58%) (Figure 4) and triglycerides (N=4, n=253, WMD= -61.68 mg/dL, CI: -92.77, -30.59; p=0.0001; I²=0%) (Figure 4). Conversely, group differences were not significant regarding HDL-cholesterol (N=4, n=220, WMD=2.89 mg/dL, CI: -5.67, 11.45, p=0.51; I²=85%) (Figure 4).

3.2.4 Systolic blood pressure—No significant group differences existed for systolic blood pressure (N=2, n=128, WMD=-3.88, CI: -8.79, 1.03, p=0.12; I²=0%).

3.2.5 All-cause discontinuation—All-cause discontinuation rates were similar between treatment (16.6%) and control groups (15.1%) (N=15, n=858; RR: 1.03, CI: 0.68–1.56, p=0.88; I=30%).

3.3 Sensitivity Analyses

Across five sensitivity analyses to determine the effects of potential moderators, no significant subgroup differences emerged, except that weight and BMI were only significantly improved in outpatient trials (p<0.0001), but not in inpatient or mixed samples (p=0.09–0.96) (Table 2).

There were numerically larger reductions for nutritional and/or exercise interventions compared to CBT regarding weight (-3.76 kg (CI: -4.78, -2.74) vs. -1.95 kg (-3.26, -0.64)) and BMI $(-1.04 \text{ kg/m}^2 (-1.66, -0.42) \text{ vs.} -0.64 \text{ kg/m}^2 (-1.14, -0.14))$.

3.4 Maintenance Effects after Discontinuation of the Intervention

Across 5 studies with follow-up data after the end of the weight loss intervention, significantly greater weight loss persisted in favor of the intervention group compared to control group after a mean of 3.6 months (range: 2–12 months) (N=5, n=220, WMD=-3.48kg, CI: -6.37, -0.58, p=0.02; I²=4%) (Figure 5). However, the five studies which included BMI follow-up data (two of which were different from those reporting

weight outcomes), did not show continued benefit for treatment over the control group (N=5 n=211 WMD= -0.72 kg/m², CI: -2.36, 0.93, p=0.40, I²=53%) (Figure 5).

3.5 Publication Bias

Funnel plots for studies reporting on weight change (Supplemental Figure 1) or BMI change (Supplemental Figure 2) showed no evidence of publication bias.

4. DISCUSSION

In this to date largest meta-analysis of 17 studies, including 810 participants, nonpharmacologic interventions were significantly more effective than the respective control condition regarding the reduction in weight and all metabolic parameters, except for HDLcholesterol and systolic blood pressure. The interventions resulted in 3.12 kg less weight gain and a 0.94 kg/m² lower BMI unit increase compared to the control conditions. In addition, at least regarding body weight, beneficial effects endured for a mean of 3.6 months after the intervention ended. Although the same benefit was not shown for BMI, data on maintenance effects were relatively scarce, suggesting that additional studies are needed to further clarify the degree and duration of potentially enduring benefits of non-pharmacologic interventions beyond the active treatment phase.

Although study methodologies and samples differed, the magnitude of weight and BMI advantage for behavioral interventions was generally comparable to that achieved with the two available weight loss medications, metformin and topiramate, when added to antipsychotic medications. In a recent meta-analysis, metformin (N=7, n=334) was associated with 2.94 kg less weight gain and 1.36 kg/m² less BMI increase than placebo (Maayan et al. 2010). For topiramate, the weight loss was 2.52 kg compared to placebo (Maayan et al., 2010). In addition, the NNT of 4 for less weight gain of at least 7% with behavioral interventions is also similar to the NNT of 3 for metformin (Maayan et al., 2010). However, the only direct head-to-head comparison of a non-pharmacologic intervention with metformin showed that metformin outperformed the behavioral intervention (-3.2 kg [95% CI: -3.9, -2.5] vs. -1.4 kg [95% CI: -2.0, -0.7]), while combined metformin and behavioral intervention was even more effective (-4.7 kg [95% CI: -5.7, -3.4]) (Wu et al. 2008). As this was an inpatient study and most non-pharmacologic intervention trials were conducted in outpatient settings, this research deserves replication.

In addition to the significant results regarding change in weight and BMI, our study demonstrated for the first time in a pooled meta-analysis that non-pharmacological interventions decrease waist circumference, total body fat percentage, glucose levels, insulin levels, total and LDL-cholesterol, and triglyceride levels compared to the control conditions. These differences are not only statistically, but also clinically relevant, especially for waist circumference and triglyceride changes, because of their role as cardiometabolic risk factors (Haffner, 2006). For example, insulin resistance and increased LDL-cholesterol are primary targets of coronary artery disease prevention (Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults, 2001). Unfortunately, only five studies measured HDL-cholesterol and two measured systolic blood pressure. This made it difficult to fully explore these factors and the results for these two metabolic outcomes were non-

significant. However, it is also known that HDL-cholesterol is less readily affected by changes in weight, as exercise levels seem to affect HDL-cholesterol the most (Correll et al., 2011b). Nevertheless, it is crucial for future studies to examine the impact of interventions on all cardiometabolic factors. This should also include measures of insulin resistance, inflammatory markers and coagulation factors, which were generally not assessed.

Importantly, the superiority of behavioral interventions for antipsychotic-associated weight gain was independent of treatment modality, treatment duration, group versus individual treatment, and prevention versus intervention design. We cannot exclude that some of these factors may show differences, given larger groups, as a non-significant trend was observed in that nutritional interventions produced a slightly larger effect size than CBT. While this speaks favorably for simpler nutritional interventions, a closer analysis reveals overlapping aspects of each intervention. Specifically, components of CBT included psychoeducation, self-monitoring, teaching behavioral change strategies and/or cognitive restructuring. Nutritional and/or exercise interventions consisted of supervised exercise programs, psychoeducation regarding healthy lifestyles, and/or nutritionist and dietician consultations. However, many CBT programs also included dietary and even exercise management, while many of the nutritional and/or exercise programs utilized behavioral techniques, such as reinforcers to encourage compliance and self-monitoring. Therefore, the distinction between the two treatment modalities is not clearly demarcated, making comparisons difficult.

Treatment setting however, did play a role in outcome, as only outpatients, but not inpatients and mixed in- and outpatient samples, showed significant benefits from the behavioral interventions compared to the control conditions in the pooled analyses. This discrepancy could be due to the lower number of inpatient trials and participants compared to outpatient trials, reducing the power to find significant differences. Conversely, it is also possible that a more controlled food delivery in inpatient settings may confer advantages for the control condition. However, it is also possible that more acutely ill patients are less likely to comply with the behavioral intervention or that there are less opportunities for exercise during an inpatient stay.

Although our results suggest that behavioral treatments are potentially comparable to metformin and topiramate in reducing antipsychotic related weight gain, it needs to be borne in mind that this is an indirect comparison only and that patients agreeing to each of these interventions may differ. However, our results also show that individuals with schizophrenia and other psychiatric illnesses can respond well to behavioral weight loss programs and that interventions may not need to be much more complicated than nutritional counseling. This suggests further, that at least in individuals motivated to initiate a non-pharmacologic intervention program, non-pharmacologic interventions should be tried first, before attempting pharmacologic augmentation strategies. In fact, a recent 1-year study suggested that compared to the obese in the general population, psychiatric outpatients with psychotropic medication related obesity referred to a cognitive behavioral weight management program were less likely to drop out of that program, leading to greater weight loss, at least in last-observation-carried-forward analyses (Zhang et al., in press). In our analyses, the all-cause discontinuation rates were low in both the behavioral

intervention and control groups (17% and 15%), almost 50% lower than the rates found for pharmacologic weight loss interventions in antipsychotic treated patients (23% and 22%, respectively) (Maayan et al., 2010). This finding underscores that there are at least subgroups of psychiatric patients in whom behavioral weight management approaches are acceptable and effective. For some patients, especially those in whom a switch to a lower risk antipsychotic (Mukundan et al., 2010; Stroup et al., 2011) may not be an option and who do not normalize cardiovascular risk markers sufficiently with non-pharmacologic interventions alone, combined treatment with a pharmacologic agent might also be an option (Wu et al., 2008).

The results of this meta-analysis have to be interpreted in light of its limitations. Although we were able to add another 7 RCTs (70.0%) and 328 patients (68.0%) to the previous meta-analysis, the number of studies and participants is still relatively small. In addition, studies only lasted between 8 and 24 weeks and while there were data to assess enduring maintenance effects for weight and BMI 2-12 months following the cessation of treatment, these came from only five studies for each of these outcomes. Moreover, while we were able to report on metabolic outcomes, our conclusions are clearly limited in that area because only 6/17 studies reported these and other secondary outcomes. Furthermore, there are no behavioral studies in youth, a group particularly vulnerable to antipsychotic weight gain (Correll et al., 2009; De Hert et al., 2011; Maayan and Correll, 2011). We were also not able to investigate the effect of diagnosis on outcome, as in 42.1% of patients diagnostic information was not available. In addition, the sensitivity analyses found that only outpatients benefitted from the intervention. This may be partially explained by the lack of insight and possible lower likelihood of agreement of some acutely ill patients, who are more likely to hospitalized, to participate in behavioral interventions. Therefore, motivational factors predicting agreement and success with behavioral weight loss interventions should be investigated in future studies. Further, treatment adherence was not formally assessed. Finally, relevant outcomes, including insulin resistance, inflammatory and coagulation factors, were not reported and only one study compared directly non-pharmacologic vs. pharmacologic weight loss interventions in patients treated with antipsychotics (Wu et al., 2008). Nevertheless, this is the largest meta-analysis of non-pharmacologic interventions for antipsychotic-induced weight gain and metabolic complications, an important area in the clinical care of patients requiring antipsychotics.

Future studies of behavioral interventions should include larger samples, last longer and assess participants' maintenance of weight loss after cessation of the intervention, possibly compared against infrequent booster sessions. Maintenance studies also need to focus on metabolic outcomes. Moreover, a broader range of cardiometabolic risk markers, as well as mechanisms and predictors of weight loss should also be investigated. In addition, it would be valuable to assess if an improvement in aspects of the physical health of those affected by antipsychotic-associated weight gain has a positive effect on psychiatric outcomes. As mentioned above, more studies are needed in high-risk samples, such as first episode and pediatric patients, and motivational factors predicting or preventing successful participation in behavioral weight management programs for antipsychotic related weight gain require investigation. Fianlly, studies are needed that directly compare the effectiveness of pharmacological, non-pharmacological, and combined treatments. At a minimum, more

placebo-controlled, pharmacologic intervention trials should have a behavioral intervention arm for comparison in order to further inform clinical practice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements:

The authors wish to thank Allison Larr of the Nathan Kline Institute and Constance Moussouris of the Columbia University Postbaccalaureate Premedical Program for their assistance with the preparation of this manuscript.

Conflict of Interest:

Mrs. Caemmerer has nothing to disclose.

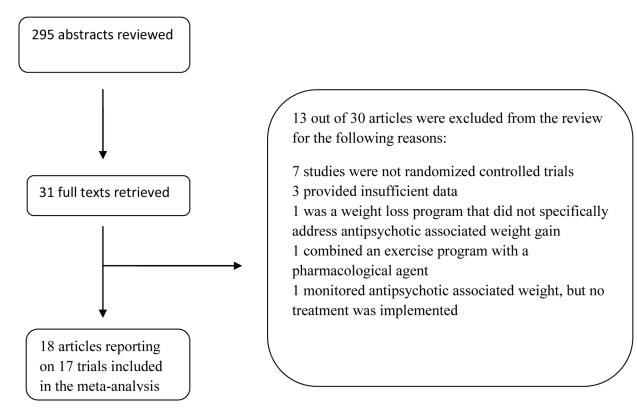
Dr. Maayan has received research support from Eli Lilly and Pfizer.

Dr. Correll has been a consultant and/or advisor to or has received honoraria from: Actelion, Alexza; AstraZeneca, Biotis, Bristol-Myers Squibb, Cephalon, Desitin, Eli Lilly, GSK, IntraCellular Therapies, Lundbeck, Medavante, Medscape, Merck, Novartis, Ortho-McNeill/Janssen/J&J, Otsuka, Pfizer, ProPhase, and Sunovion. He has received grant support from BMS, Feinstein Institute for Medical Research, Janssen/J&J, National Institute of Mental Health (NIMH), National Alliance for Research in Schizophrenia and Depression (NARSAD), and Otsuka.

ROLE OF FUNDING SOURCE:

Supported in parts by The Zucker Hillside Hospital National Institute of Mental Health (NIMH) Advanced Center for Intervention and Services Research for the Study of Schizophrenia (MH MH090590) and by the Stanley Medical Research Institute Award 07TGF-1112. The NIMH and Stanley Medical Research Institute had no further role in study design, collection, analysis, interpretation of data, writing of the report, and in the decision to submit the paper for publication.

REFERENCES


- Allison DB, Mackell JA, McDonnell DD 2003. The impact of weight gain on quality of life among persons with schizophrenia. Psychiatr. Serv 54 (4) 565–567. [PubMed: 12663847]
- Allison DB, Mentore JL, Heo M et al. 1999. Antipsychotic-induced weight gain: A comprehensive research synthesis. Am J Psychiatry. 156 (11) 1686–1696. [PubMed: 10553730]
- Alvarez-Jimenez M, Martinez-Garcia O, Perez-Iglesias R, Ramirez ML, Vazquez-Barquero JL, Crespo-Facorro B, 2010. Prevention of Antipsychotic-Induced Weight Gain with Early Behavioral Intervention in First Episode Psychosis: 2-Year Results if a Randomized Controlled Trial. Schizophrenia Research 116 16–19. [PubMed: 19896336]
- Alvarez-Jimenez M, Hetrick SE, Gonzalez-Blanch C, Gleeson JF, McGorry PD, 2008. Nonpharmacological management of antipsychotic-induced weight gain: Systematic review and metaanalysis of randomised controlled trials. Br. J. Psychiatry 193 101–07. [PubMed: 18669990]
- Alvarez-Jimenez M, Gonzalez-Blanch C, Vazquez-Barquero JL, Perez-Iglesias R, Martinez-Garcia O, Perez-Pardal T, Ramirez-Bonilla ML, Crespo-Facorro B, 2006. Attenuation of antipsychotic-inducted weight gain with early behavioral intervention in drug-naïve first-episode psychosis patients: A randomized controlled trial, J. Clin. Psychiatry 67 1253–1260. [PubMed: 16965204]
- American Diabetes Association, American Psychiatric Association, American Association of Clinical Endocrinologists, North American Association for the Study of Obesity, 2004. Consensus development conference on antipsychotic drugs and obesity and diabetes. J. Clin. Psychiatry 65(2) 267–272. [PubMed: 15003083]
- Beebe LH, Tian L, Morris N, Goodwin A, Allen SS, Kuldau J, 2005. Effects of exercise on mental and physical health parameters of persons with schizophrenia. Issues in Ment. Health Nurs 26 661–676.

- Brar JS, Ganguli R, Pandina G, Turkoz I, Berry S, Mahmoud R, 2005. Effects of behavioral therapy on weight loss in overweight and obese patients with schizophreniaor schizoaffective disorder. J. Clin. Psychiatry 66, 205–212. [PubMed: 15705006]
- Colton CW, Manderscheid RW, 2006. Congruencies in increased mortality rates, years of potential life lost, and causes of death among public mental health clients in eight states. Prev. Chronic Dis 3 (2) A42. [PubMed: 16539783]
- Cordes J, Thunker J, Regenbrecht JZ, Correll CU, Schmidt-Kraepelin C, Lange-Asschenfeldt C, Agelink MW, Kahl KG, Gaebel W, Klimke A, Hauner H, In Press. Can an early weight management program (WMP) prevent olanzapine-induced disturbances in body weight, blood glucose and lipid metabolism? Twenty-four and 48-week results from a 6-month randomized trial. World J. of Biol. Psychia
- Correll CU, Sheridan EM, DelBello MP 2010. Antipsychotic and mood stabilizer efficacy and tolerability in pediatric and adult patients with bipolar I mania: a comparative analysis of acute, randomized, placebo-controlled trials. Bipolar Disord. 12 (2): 116–141. [PubMed: 20402706]
- Correll CU, Kratochvil CJ, March J, 2011a. Developments in Pediatric Psychopharmacology: Focus on Stimulants, Antidepressants and Antipsychotics. J Clin Psychiatry. 72 (5):655–670. [PubMed: 21658348]
- Correll CU, Lencz T, Malhotra AK, 2011b. Antipsychotic drugs and obesity. Trends Mol Med. 17 (2) 97–107. [PubMed: 21185230]
- De Hert M, Correll CU, Bobes J, Cetkovich-Bakmas M, Cohen D, Asai I, Detraux J, Gautam S, Möller HJ, Ndetei DM, Newcomer JM, Uwakwe R, Leucht S, 2011a. Physical illness in patients with severe mental disorders. I. Prevalence, impact of medications and disparities in health care. World Psychiatry 10 (1) 52–77. [PubMed: 21379357]
- De Hert M, Detraux J, van Winkel R, Yu W, Correll CU, 2011b. Metabolic and cardiovascular adverse effects associated with antipsychotic drugs. Nat Rev Endocrinol 8(2) 114–26. [PubMed: 22009159]
- Evans S, Newton R, Higgins S, 2005. Nutritional intervention to prevent weight gain in patients commenced on olanzapine: A randomized controlled trial. Aust. N Z J. Psychiatry 39 479–486. [PubMed: 15943650]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. 2001. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on detection, evaluation, and treatment of high blood cholesterol In Adults (adult treatment panel III). JAMA 285 (19) 2486–97. [PubMed: 11368702]
- Gabriele JM, Dubbert PM, Reeves RR, 2009. Efficacy of behavioural interventions in managing atypical antipsychotic weight gain. Obes. Rev 10 442–455. [PubMed: 19389059]
- Haffner SM, 2006. Relationship of metabolic risk factors and development of cardiovascular disease and diabetes. Obesity. 14 121–127.
- Kahn RS, Fleischhacker WW, Boter H et al. 2008. Effectiveness of antipsychotic drugs in first-episode schizophrenia and schizophreniform disorder: An open randomised clinical trial. Lancet. 371 (9618) 1085–1097. [PubMed: 18374841]
- Khazaal Y, Fresard E, Rabia S, Chatton A, Rothen S, Pomini V, Grasset F, Borgeat F, Zullino D, 2007. Cognitive behavioural therapy for weight gain associated with antipsychotic drugs. Schizophr. Res 169–177.
- Kwon JS, Choi JS, Bahk WM, Kim CY, Kim CH, Shin YC, Park BJ, Oh CG, 2006. Weight management program from treatment-emergent weight gain in olanzapine-treated patients with schizophrenia or schizoaffective disorder: A 12-week randomized controlled clinical trial. J. Clin. Psychiatry 67 547–553. [PubMed: 16669719]
- Lieberman JA, Stroup TS, McEvoy JPet al., 2005. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N. Engl. J. Med 353 (12) 1209–1223. [PubMed: 16172203]
- Leucht S, Arbter D, Engel RR, Kissling W, Davis JM, 2009. How effective are second-generation antipsychotic drugs? A meta-analysis of placebo-controlled trials. Mol Psychiatry. 14 (4) 429–47. [PubMed: 18180760]
- Littrell KH, Hilligoss NM, Kirshner CD, Petty RG, Johnson CG, 2003. The effects of an educational intervention on antipsychotic-induced weight gain. J. of Nurs. Scholarship 3 (23) 7–241.

- Maayan L, Correll CU, Weight gain and metabolic risks associated with antipsychotic medications in children and adolescents. 2011, J. Child and Adol. Psychopharmacology;21(6):517–35.
- Maayan L, Correll CU, 2010. Management of antipsychotic-related weight gain. Expert Rev. of Neurother 10 175–1200.
- Maayan L, Vakhrusheva J, Correll CU, 2010. Effectiveness of medications used to attenuate antipsychotic-related weight gain and metabolic abnormalities: A systematic review and metaanalysis. Neuropsychopharmacology. 35 1520–1530. [PubMed: 20336059]
- Maher AR, Maglione M, Bagley S, Suttorp M, Hu JH, Ewing B, Wang Z, Timmer M, Sultzer D, Shekelle PG, 2011. Efficacy and comparative effectiveness of atypical antipsychotic medications for off-label uses in adults: a systematic review and meta-analysis. JAMA 306 (12) 1359–69. [PubMed: 21954480]
- Mauri M, Simnocini M, Castrogiovianni S, Iovieno N, Dell'Agnello G, Quadrigli M, Rossi A, Donda P, Fagiolini A, Cassano GB, 2008. A psychoeducational program for weight loss in patients who have experienced weight gain during antipsychotic treatment with olanzapine. Pharmacopsychiatry. 41 17–23. [PubMed: 18203047]
- McKibbin CL, Patterson TL, Norman G, Patrick K, Jin H, Roesch S, Mudaliar S, Barrio C, O'Hanlon K, Griver K, Sirkin A, Jeste DV, 2006. A lifestyle intervention for older schizophrenia patients with diabetes mellitus: A randomized controlled trial. Schizophr. Res 86 36–44. [PubMed: 16842977]
- Melamed Y, Stein-Reisner O, Gelkopf M, Levi G, Sivan T, Ilievici G, Rosenberg R, Weizman A, Bleich A, 2008. Multi-modal weight control intervention for people with persistent mental disorders. Psychiatr. Rehabil. J 31 194–200. [PubMed: 18194946]
- Mukundan A, Faulkner G, Cohn T, Remington G, 2010. Antipsychotic switching for people with schizophrenia who have neuroleptic-induced weight or metabolic problems. Cochrane Database Syst Rev. (12): CD006629.
- Narula PK, Rehan HS, Unni KE, Gupta N 2010. Topiramate for prevention of olanzapine associated weight gain and metabolic dysfunction in schizophrenia: A double-blind, placebo-controlled trial. Schizophr. Res 118 (1–3) 218–223. [PubMed: 20207521]
- Nelson JC, Papakostas GI., 2009. Atypical antipsychotic augmentation in major depressive disorder: a meta-analysis of placebo-controlled randomized trials. Am J Psychiatry. 166 (9):980–91. [PubMed: 19687129]
- Newcomer JW 2005. Second-generation (atypical) antipsychotics and metabolic effects: A comprehensive literature review. CNS Drugs. 19 (Suppl. 1) 1–93.
- Parks J, Svendsen D, Singer P, Forti M, 2006. Morbidity and Mortality in People with Serious Mental Illness. Alexandria, VA: National Association of State Mental Health Program Directors (NASMHPD) Medical Directors Council.
- Poulin MJ, Chaput JP, Simard V, Vicent P, Bernier J, Gauthier Y, Lanctot G, Saindon J, Vincent A, Gagnon S, Tremblay A, 2007. Management of antipsychotic-induced weight gain: Prospective naturalistic study of the effectiveness of a supervised exercise programme. Aust. N Z J. Psychiatry 41, 980–989. [PubMed: 17999270]
- Scocco P, Longo R, Caon F, 2006. Weight change in treatment with olanzapine and a psychoeducational approach. Eat. Behav 7, 115–124. [PubMed: 16600840]
- Skrinar GS, Huxley NA, Hutchinson DS, Menninger E, Glew P, 2005. The role of a fitness intervention on people with serious psychiatric disabilities. Psychiatr. Rehabil. J 29, 122–127. [PubMed: 16268007]
- Stroup TS, McEvoy JP, Ring KD, Hamer RH, LaVange LM, Swartz MS, Rosenheck RA, Perkins DO, Nussbaum AM, Lieberman JA; Schizophrenia Trials Network. 2011. A randomized trial examining the effectiveness of switching from olanzapine, quetiapine, or risperidone to aripiprazole to reduce metabolic risk: comparison of antipsychotics for metabolic problems (CAMP). Am J Psychiatry. 168 (9) 947–56. [PubMed: 21768610]
- Weber M, Wyne K, 2006. A cognitive/behavioral group intervention for weight loss in patients treated with atypical antipsychotics. Schizophr. Res 83 95–101. [PubMed: 16507343]

- Wu RR, Zhao JP, Jin H, Fang MS, Guo XF, et al., 2008. Lifestyle intervention and metformin for treatment of anti-psychotic induced weight gain: A randomized controlled trial. JAMA. 185–193. [PubMed: 18182600]
- Wu MK, Wang CK, Bai YM, Huang CY, Lee SD, 2007. Outcomes of obese, clozapine-treated inpatients with schizophrenia placed on a six-month diet and physical activity program. Psychiatr. Serv 58 544–550. [PubMed: 17412858]
- Zhang JP, Weiss J, McCardle M, Kofman M, Rosendahl E, Maayan L, Convit A, Manu P, Kane JM, Correll CU, In Press. Effectiveness of a cognitive behavioral weight management intervention in obese patients with psychotic disorders compared to patients with non-psychotic disorders or no psychiatric disorders: Results from a 12-month, real-world study. J Clin Psychopharmacol.

Caemmerer et al.

Figure 1: Flow chart of systematic review

		erimental			Control			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.59.1 Prevention trials									
Alvarez-Jimenez 2006	4.1	3.99	28	6.98	4.5	33	9.6%	-2.88 [-5.01, -0.75]	
Cordes et al 2011	3.4	4.2	13	4.5	6.1	18	4.8%	-1.10 [-4.73, 2.53]	_• ⊢
Evans 2005	2	3.6	23	6	2.6	11	9.7%	-4.00 [-6.13, -1.87]	
Littrell 2003	0.81	8.97	35	7.17	9.16	35	3.8%	-6.36 [-10.61, -2.11]	
Poulin 2007	84.4	18.2	59	88.8	12.3	51	2.3%	-4.40 [-10.14, 1.34]	
Scocco 2005	0.99	3.34	10	2.96	3.08	8	6.4%	-1.97 [-4.94, 1.00]	
Subtotal (95% CI)			168			156	36.6%	-3.23 [-4.41, -2.04]	i 🔶
Heterogeneity: Tau ² = 0.	00; Chi ² =	4.87, df =	5 (P =	0.43); l ² =	= 0%				
Test for overall effect: Z :	= 5.35 (P <	< 0.00001)						
1.59.2 Intervention tria	ls								
Brar 2005	-2	3.79	34	-1.1	3.11	37	12.4%	-0.90 [-2.52, 0.72]	∣
Khazaal 2007	88	14.9	31	83.5	17.2	30	1.2%	4.50 [-3.59, 12.59]	
Kwon 2006	-3.94	3.63	29	-1.48	1.88	14	12.2%	-2.46 [-4.11, -0.81]	
Mauri 2008	-3.6	2.6	15	0.2	2.9	18	10.9%	-3.80 [-5.68, -1.92]	
McKibbin 2006	98.5213	21.228	28	99.2924	16.919	29	0.8%	-0.77 [-10.76, 9.22]	
Weber 2006	84.1848	6.54236	8	90.4667	7.35393	7	1.5%	-6.28 [-13.37, 0.81]	
Wu 2007	-4.2	4.4	28	1	3.4	25	9.8%	-5.20 [-7.31, -3.09]	
Wu 2008	63.4	2.6	32	67.2	2.6	32	14.5%	-3.80 [-5.07, -2.53]	-
Subtotal (95% CI)			205			192	63.4%	-3.04 [-4.39, -1.68]	i ◆
Heterogeneity: $Tau^2 = 1$.	82; Chi ² =	17.54, df	= 7 (P	$= 0.01$; I^2	= 60%				
Test for overall effect: Z									
Total (95% CI)			373			348	100.0%	-3.12 [-4.03, -2.21]	♦
Heterogeneity: $Tau^2 = 1$.	08; Chi ² =	22.46, df	= 13 (F	P = 0.05):	$l^2 = 42\%$				
Test for overall effect: Z :								,	-20 -10 0 10 2
Test for subgroup differe				- 0.84)	2 - 0%			1	Favours experimental Favours control

Figure 2:

Differences in weight (kg) between behavioral interventions and control groups and separately analyzed by prevention and intervention trials.

Chudu an Cubanaun	Mean	perimenta	Total		Control	Total	Mainht	Mean Difference	Mean Difference IV, Random, 95% Cl
Study or Subgroup 1.60.1 Prevention tria		20	Total	Mean	20	Total	weight	IV, Random, 95% C	
Alvarez-Jimenez 2006	1.4	1.34	28	2.39	1.53	33	9.2%	-0.99 [-1.71, -0.27]	
Cordes et al 2011	28.4	2.7	13	26.7	3.6	18	3.6%	1.70 [-0.52, 3.92]	
Evans 2005	0.7	1.2	23	2	0.9	11	9.2%	-1.30 [-2.02, -0.58]	
Littrell 2003	0.13	1.34	35	1.01	1.39	35	9.6%	-0.88 [-1.52, -0.24]	
Poulin 2007	30.1	6	59	32.9	6.7	51	3.2%	-2.80 [-5.19, -0.41]	
Subtotal (95% CI)			158			148	34.7%	-0.96 [-1.62, -0.31]	•
Heterogeneity: Tau ² = (0.26; Chi ²	= 8.66, df	= 4 (P	= 0.07); l ²	= 54%				
Test for overall effect: 2	2 = 2.89 (P = 0.004)							
1.60.2 Intervention tria	als								
Bebee 2005	31.27	8.55	4	29.93	4.74	6	0.3%	1.34 [-7.86, 10.54]	· · · · · · · · · · · · · · · · · · ·
Brar 2005	-0.9	1.38	34	-0.5	1.19	37	9.7%	-0.40 [-1.00, 0.20]	i +
Khazaal 2007	31	5.4	31	28.5	4.8	30	2.9%	2.50 [-0.06, 5.06]	i +
Kwon 2006	-1.5	1.34	29	-0.59	0.73	14	9.6%	-0.91 [-1.53, -0.29]	-
Mauri 2008	-1.3	0.9	15	0	1.1	18	9.4%	-1.30 [-1.98, -0.62]	-
McKibbin 2006	32.9	6.6	28	33.9	6.6	29	1.8%	-1.00 [-4.43, 2.43]	i —+
Melamed 2008	31.3	4.1	28	30.4	3.4	31	4.3%	0.90 [-1.03, 2.83]	i +
Skrinar 2005	32.3	7.6	9	32.3	4.1	11	0.8%	0.00 [-5.52, 5.52]	i — — — —
Neber 2006	32.05	1.04608	8	32.7571	1.22455	7	7.1%	-0.71 [-1.87, 0.45]	i -+
Nu 2007	-1.59	1.66	28	0.35	1.3	25	8.8%	-1.94 [-2.74, -1.14]	
Nu 2008	23.1	0.85	32	25.4	0.85	32	10.5%	-2.30 [-2.72, -1.88]	
Subtotal (95% CI)			246			240	65.3%	-0.89 [-1.59, -0.18]	♦
Heterogeneity: Tau ² = (0.80: Chi ²	= 49.13, c	f = 10	(P < 0.000	001); l ² = 8	0%			
Test for overall effect: 2	,	,							
Fotal (95% CI)			404			388	100.0%	-0.94 [-1.45, -0.43]	•
Heterogeneity: Tau ² = () 60 [.] Chi ²	= 60 59 c	f = 15	(P < 0.000	$(01)^{\cdot} ^2 = 7$	5%			
Test for overall effect: 2				. 5.000		• • •			-20 -10 0 10 Favours experimental Favours control

Figure 3:

Differences in body mass index (kg/m²) between behavioral interventions and control

groups and separately analyzed by prevention and intervention trials.

		erimenta			Control			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.2.1 Total cholester	ol								
Mauri 2008	198.9	47.6	15	209.9	40.3	18	13.1%	-11.00 [-41.44, 19.44]	
McKibbin 2006	160.1	36.4	28	186.2	42.2	29	22.1%	-26.10 [-46.54, -5.66]	
Poulin 2007	184.47	37.83	59	220.35	39.39	51	30.8%	-35.88 [-50.37, -21.39]	
Skrinar 2005	198.9	37.9	9	207.9	41.7	11	10.6%	-9.00 [-43.93, 25.93]	
Wu 2007	159.2	36.9	28	166.8	35.2	25	23.4%	-7.60 [-27.02, 11.82]	
Subtotal (95% CI)			139			134	100.0%	-20.98 [-33.78, -8.19]	◆
Heterogeneity: Tau ² =				4 (P = 0	.15); I ² =	41%			
Test for overall effect:	Z = 3.21	(P = 0.0)	01)						
1.2.2 LDL-cholester	ы								
Mauri 2008	127.8	34.8	15	136.6	33	18	25.6%	-8.80 [-32.09, 14.49]	
McKibbin 2006	91.7	31.6	28	108.4	36.7	29	33.4%	-16.70 [-34.46, 1.06]	
Poulin 2007	112.71	33.15	59	147.42	37.83	51	41.0%	-34.71 [-48.10, -21.32]	
Subtotal (95% CI)			102			98	100.0%	-22.06 [-37.80, -6.32]	•
Heterogeneity: Tau ² =	110.73;	$Chi^2 = 4.$	72, df :	= 2 (P =	0.09); l ² :	= 58%			
Test for overall effect:									
1.2.3 Triglycerides									
Mauri 2008	133.3	67.3	15	195.2	106.9	18	26.9%	-61.90 [-121.89, -1.91]	←
McKibbin 2006	188.5	133.6	28	215.3	112	29	23.5%	-26.80 [-90.91, 37.31]	
Poulin 2007	145.07	139.73	59	217.16	140.62	51	35.0%	-72.09 [-124.63, -19.55]	← ∎ ───
Wu 2007	146.8	90.9	28	239.3	188.9	25		-92.50 [-173.84, -11.16]	
Subtotal (95% CI)			130			123	100.0%	-61.68 [-92.77, -30.59]	
Heterogeneity: Tau ² =				B (P = 0.6)	$(51); ^2 = 0$)%			
Test for overall effect:	Z = 3.89	(P = 0.0)	001)						
1.2.4 HDL-cholester									
Mauri 2008	44.4	13.9	15	38.5	4.4	18	25.1%	5.90 [-1.42, 13.22]	
McKibbin 2006	34.9	9.5	28	38.8	11	29	27.4%	-3.90 [-9.23, 1.43]	
Poulin 2007	51.09	15.21	59	39.39	11.7	51	27.8%	11.70 [6.66, 16.74]	
Skrinar 2005 Subtotal (95% CI)	43.9	11.9	9 111	47.8	14.4	11 109	19.7% 100.0%	-3.90 [-15.43, 7.63] 2.89 [-5.67, 11.45]	
Heterogeneity: Tau ² =				= 3 (P =	0.0002);	$l^2 = 85$	%		
Test for overall effect:	Z = 0.66	(P = 0.5	1)						
									avours experimental Favours control

Figure 4:

Differences in total, LDL- and HDL-cholesterol as well as triglycerides change (mg/dL) between behavioral interventions and control groups.

	Exp	eriment	tal	al Control Mean Differen		Mean Difference	Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Alvarez-Jimenez 2010	6.32	5.94	13	8.98	5.61	23	47.5%	-2.66 [-6.62, 1.30]	
Cordes et al 2011	88.9	16.6	11	89	12.1	14	6.1%	-0.10 [-11.78, 11.58]	
Evans 2005	2	5	11	9.9	7.4	8	22.7%	-7.90 [-13.82, -1.98]	
Khazaal 2007	87.4	14.8	31	86	17.4	30	12.4%	1.40 [-6.72, 9.52]	
Littrell 2003	81.1	14.98	35	86.27	20.67	35	11.4%	-5.17 [-13.63, 3.29]	
Total (95% CI)			101			110	100.0%	-3.48 [-6.37, -0.58]	•
Heterogeneity: Tau ² = 0.	.51; Chi ²	= 4.17,	df = 4	(P = 0.3	8); I ² = -	4%			
Test for overall effect: Z = 2.35 (P = 0.02)								F	-20 -10 0 10 20 avours experimental Favours control

	Expe	erimen	tal	Co	Control			Mean Difference	Mean Differen	ce
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% C	IV, Random, 959	% CI
Cordes et al 2011	30.2	4.2	11	29.8	4.3	13	14.6%	0.40 [-3.01, 3.81]		
Evans 2005	0.8	1.8	11	3.2	2.2	8	26.0%	-2.40 [-4.26, -0.54]]	
Khazaal 2007	30.8	5.3	31	29.3	4.6	30	20.6%	1.50 [-0.99, 3.99]] +	
Littrell 2003	26.27	3.76	35	28.54	6	35	21.7%	-2.27 [-4.62, 0.08]]	
Melamed 2008	31.6	4.8	21	31.4	4.4	16	17.1%	0.20 [-2.78, 3.18]] –	
Total (95% CI)			109			102	100.0%	-0.72 [-2.36, 0.93]	↓ ◆	
Heterogeneity: Tau ² =	1.82; Ch	ni² = 8.4	15, df =	4 (P =	0.08)	; l² = 53	3%		-20 -10 0	10 20
Test for overall effect: Z = 0.85 (P = 0.40)										urs control

Figure 5:

Differences in weight (kg) and body mass index (kg/m^2) between behavioral interventions and control groups during follow up after the end of the intervention.

_
SC
Ω
σ
÷

Author Manuscript

Author Manuscript

~
θ
ō
a.

Design and Patient Characteristics of Studies of Non-pharmacologic Interventions for Antipsychotic-related Weight Gain and Metabolic Abnormalities

Caemmerer et al.

Weight (kg) or BMI (kg/m ²) [n] ⁴	4.10±3.99* [28] after 24 week follow up: 6.32±5.94	6.98±4.50 [33] after 24 week follow up: 8.98±5.61	**BMI: Baseline: 32.51±7.39 Endpoint: 31.27±8.55 [4]	Baseline: 30.07±4.54 End point: 29.93±4.74 [6]	-2.0±3.79 [34]	-1. 1±3. 11 [37]	Baseline: 81. 9± 15.1 Endpoint (week 48 after 24 week follow up): 88.9±16.6 Change during intervention (week 24):3.4±4.2 [13]	Baseline: 79.0±15.0 Endpoint (week 48 after 24 week follow up): 89.0±12.1 Change during intervention (week 24): 4.5±6.1[18]			
Anti-psychotic Dose (daily dose)	Olanzapine 13.1 ±3. 3 mg/day, Risperidone 4.2±0.9 mg/day, Haloperidol	4.9±1.4 mg/αay	Atypicals (90%), typicals (20%)	Switched from olanzapine to	risperidone	Started new treatment with olanzapine					
Diagnosis [n ₍ /n _p] ³	Psychotic disorder [28/33]		Schizophrenia		Schizophrenia and schizoaffective disorders	[34/3/]	Schizophrenia and schizoaffective disorders				
White (%)			Total: 80		52.9	45.9					
Male (%)	71.4	78.8	Total: 80		47.1	35.1	30.7	61.1			
Age (yrs)	26.0±15.5	27.5±8.5	Overall: Mean: 52 Range: 40-	40.0 ± 10.1	40.5 ± 10.6	44.1±7.5	40.7±11.7				
N2	28	33	4	9	34	37	13	18			
Group	Early behavioral intervention	Control	Exercise intervention	Behavioral treatment	Control	Prevention	Control				
Duration (weeks)			16	14		24 + 24 week follow up					
Design	Cognitive Behavioral Therapy		Exercise Program	Cognitive Behavioral Therapy		Weight Management Program					
Study	Álvarez- Jiménez et al., 2006	Álvarez- Jiménez et al., 2010	Bebee et al., 2005		Brar et al., 2005		Cordes et al., 2011				

Weight (kg) or BMI (kg/m ²) [n] ⁴	2.0±3.6* [29] After Follow up: 2.0±5.0* [11]	6.0±2.6 [22] After Follow up: 9.9±7.4* [8]	Baseline: 90.9±16.6 After 12 week intervention: 88.0±14.9 Endpoint after 12 week follow up: 87.4±14.8 [31]	Baseline: 84.3±17.2 After 12 week intervention: 83.5±17.2 [30] Endpoint after 12 week follow up: 83.5±17.4 [30]	3.94±3.63* [33]	-1.48±1.88 [15]	0.81±8.97 [35] after follow up 0.06±9.43* [35] 7.17±9.16 [35] after follow up	9.57±12.98 [35]	$-3.6\pm2.6^{*}$	0.2 ± 2.9	2.30±5.70* [28]	3.10±4.60 [29]
Anti-psychotic Dose W (daily dose) B	Olanzapine 13.9±3.3 A mg/day 10.6±4.8 A mg/day 2	A	Olanzapine, ritsperaidone, clozapine, quetiapine, amisulpride E4 E4 E4 E4 E4			1	Olanzapine [35/35] 0 5-20 mg/day 0. 7 7	.6	Olanzapine 5–20 mg/day		* >	(arriprazote, ziprasidone) [7/6]; 3 Atypical with moderate weight moderate weight (13/14]; Atypical with
Diagnosis [n ₍ /n _p] ³	Schizophrenia [9/3], schizoaffective disorder [4/6], schizophrenoform	psychosis [4/0], bipolar disorder [4/4], depression [2/3]	Schizophrenia and schizoaffective [25/20], bipolar [1/4], schizotypal [2/2], depression and personality disorders [3/4]			[51/25] Schizophrenia and schizoaffective disorders [35/35]			Bipolar I [41], Bipolar II [2], Schizoaffective [5], Depression [1]		Schizophrenia and schizoaffective disorder and type-2 diabetes	meutus (29/28)
White (%)							74.3	74.3			50	72.4
Male (%)	38	50	42	30.3	33.3	62.9	60.0	46.7	38.9	67.9	62.1	
Age (yrs)	34.6±9.6	33.6±11.6	43.0±9.8 38.3±10.4			29.8 ± 6.1	33.7±9.2	34.5 ± 10.0	Total: Mean: 38.9 Range: 19-	60	53.1±10.4	54.8±8.2
N^2	29	22	31	30	33	15	35	35	15	18	28	29
Group	Nutritional Counseling	Control	CBT	Control	Weight management	Control	Nutritional Counseling	Control	Psychoeducational	Control	Diabetes Awareness Rehabilitation Training	Control
Duration (weeks)	12 +12 week follow up		12 + 12 week follow-up				16+8 week follow up		12		24	
Design	Nutritional Counseling Program		Cognitive Behavioral Therapy				Nutritional Counseling Program		Psychoeducational Program		Cognitive Behavioral Therapy	
Study	Evans et al., 2005		Khazaal et al., 2007				Littrell et al., 2003		Mauri et al., 2008		McKibbin et al., 2006	

Weight (kg) or BMI (kg/m ²) [n] ⁴		Baseline: Baseline: 90.9±16.6 After 12 week intervention: 80.914.9 Baseline: 87.4±14.8 [31] Baseline: 84.3±17.2 After 12 week follow up: 83.5±17.2 After 12 week follow up: 83.5±17.2 [30] Endpoint after 12 week follow up: 83.5±17.2 [30] Endpoint after 12 week follow up: 83.5±17.4 [30]		3.94±3.63* [33]	-1.48±1.88 [15]	0.81±8.97 [35] after follow up 0.06±9.43* [35] 7.17±9.16 [35] after follow up	9.57±12.98 [35]	-3.6±2.6*	0.2 ± 2.9	2.30±5.70* [28]	3.10±4.60 [29]
Anti-psychotic Dose (daily dose)	high weight gain liability (clozapine, olanzapine) [8/9]	Olanzapine, risperidone, clozapine, quetiapine, amisulpride	Olanzapine 5–20 mg/day		Olanzapine [35/35] 5–20 mg/day		Olanzapine 5–20 mg/day		Typical or atypical with low weight liability	(artpiprazote, ziprasione) [7/6]; Atypical with moderate weight moderate weight juetiapine) [13/14]; Atypical with high weight gain liability (clozapine, olanzapine) [8/9]	
Diagnosis [n _t /n _p] ³		Schizophrenia and schizoaffective [25/20], bipolar [1/4], schizotypal [2/2], depression and personality disorders [3/4]	Schizophrenia and schizoaffective disorders	[c1/cc]	Schizophrenia and schizoaffective disorders [35/35]		Bipolar I [41], Bipolar II [2], Schizoaffective [5], Depression [1]		Schizophrenia and schizoaffective disorder and type-2 diabetes	meutus (29/20)	
White (%)		I I				74.3	74.3			50	72.4
Male (%)		42	50			62.9	60.0	46.7	38.9	67.9	62.1
Age (yrs)		43.0±9.8 38.3±10.4			29.8 ± 6.1	33.7±9.2	34.5 ± 10.0	Total: Mean: 38.9 Range: 19-	60	<i>5</i> 3.1±10.4	54.8±8.2
N2		31	30	33	15	35	35	15	18	28	29
Group		CBT			Control	Nutritional Counseling	Control	Psychoeducational	Control	Diabetes Awareness Rehabilitation Training	Control
Duration (weeks)		12 + 12 week follow-up				16 + 8 week follow up		12		24	
Design		Cognitive Behavioral Therapy				Nutritional Counseling Program		Psychoeducational Program		Cognitive Behavioral Therapy	
Study		Khazaal et al., 2007				Littrell et al., 2003		Mauri et al., 2008		McKibbin et al., 2006	

Schizophr Res. Author manuscript; available in PMC 2023 August 11.

Caemmerer et al.

Author Manuscript

Author Manuscript

Weight (kg) or BMI (kg/m ²) [n] ⁴	**BMI: Baseline: 34.1 ± 4.8 After 12 week intervention: 31.6±4.8 Endpoint after 52 week follow-up: 31.3±4.1 [28]	Baseline: 30.6±3.2 After 12 week intervention: 31.4±4.4 Endpoint after 52 week follow-up: 30.4±3.4 [31]	-3.1* [59]	3.6 [51]	0.99±3.34 [9]	2.96±3.08 [8]	** <u>BMI:</u> Baseline: 33.0±6.7 Endpoint: 32.3±7.6 [9]	Baseline: 31.8±3.9 Endpoint: 32.3±4.1 [11]	-2.45±2.97 [8]	-0.62 ± 3.34 [9]	$-4.2\pm4.4^{*}$ [28]	1.0 ± 3.4 [25]	$-1.4\pm0.6^{*}$ [32]	3.1±0.7 [32]
Anti-psychotic Dose (daily dose)	First or second generation or both		Clozapine,	Ulanzapine, Risperidone, Quetiapine	Olanzapine		Any antipsychotic		Olanzapine, Risperidone,	ziprasidone, Quetiapine	Clozapine [28/25]	ouo mg/aay	Clozapine [9/10],	Clainzapine [10/7], Risperidone [6/8], Sulpiride [7/7]
Diagnosis [n _t /n _p] ³	Schizophrenia and schizoaffective disorders [-/-]	Schizophrenia [19/15], Schizoaffective [19/17], Bipolar [21/19]		Schizophrenia and schizoaffective disorders [9/8]		Mood or psychotic disorder		Schizophrenia and schizoaffective disorders	[6/0]	Schizophrenia [28/25]		Schizophrenia [32/32]		
White (%)			100	100					25.0	33.3	0	0	0	0
Male (%)	Total: 72.9			51	33.3	87.5			37.5	22.2	68	77	53	50
Age (yrs)	Total mean: 46.2±11.9			35.3±5.2	51.7±12.4	39.2±9.9	39.7±8.17	36.3±11.3		I	42.2±7.5	39.0±6.7	$26.4{\pm}1.6$	25.8±1.7
N ²	28	31	59	51	6	8	6	11	8	6	28	25	32	32
Group	Nutritional Counseling	Control	Diet and exercise	Control	Psychoeducational intervention/ nutritional counseling	Control	Healthy Lifestyle	Control	Cognitive/ behavioral	Control	Diet and exercise	Control	Diet and exercise	Control
Duration (weeks)	12 + 52 week follow-up		72		8		12		16		24		12	
Design	Nutrition & Exercise Program	Nutritional &	Exercise Program	Psychoeducational & Nutritional Counseling		Psychoeducational & Exercise Program		Cognitive Behavioral Therapy		Nutritional &	Exercise Program	Nutritional &	Exercise Luestyle Program	
Study	Melamed et al., 2008	Poulin et al.,	/ 007	Scocco et al., 2006		Skrinar et al., 2005		Weber & Wyne, 2006		Wu et al.,	/007	Wu et al.,	<u>8007</u>	

Author Manuscript Author Manuscript

All values represent mean \pm standard deviation, unless otherwise stated or it was not reported.

 $^2N=$ total number of subjects randomized in the study.

 $\mathcal{J}_{[n_l/n_p]}$ = number of subjects in the treatment group/number of subjects in the placebo group with the diagnosis.

 $\frac{4}{[n]}$ = number of subjects included in analysis.

 \mathcal{S}_{\ldots} , indicates data were not provided.

 $\widetilde{\epsilon}$ summary data are presented as total number of participants in treatment and placebo groups for the above intervention.

7The overall percentage in % Male and % White categories is calculated using studies with available data only. If the data was not reported for that trial, the trial was not utilized in the summary statistic and its population was not included in the overall calculation.

*** Bebee et al. (2005), Melamed et al. (2008), Skrinar (2005) reported only means for BMI endpoint data, and not weight mean change.

Table 2:

Variables	
Moderator	
of Potential	
Analyses	
Five Sensitivity	

Sensitivity Analysis	Outcomes	Number of Studies	u	Mean Difference	95% C.I.	P value
Cognitive-behavioral	Weight (kg)	6	308	-1.95	-3.26, -0.64	0.003
	BMI (kg/m ²)	6	308	-0.64	-1.14, -0.14	0.01
Nutrition and/or exercise	Wt (kg)	8	413	-3.78	-4.57, -2.98	<0.00001
	BMI (kg/m ²)	10	484	-1.22	-1.87, -0.56	0.003
Trial duration $ months$	Weight (kg)	7	314	-3.23	-4.04, -2.42	<0.00001
	BMI (kg/m ²)	8	375	-0.96	-1.67, -0.25	0.008
Trial duration > 3 months	Weight (kg)	7	407	-2.96	-5.09, -0.82	0.007
	BMI (kg/m ²)	8	417	-0.89	-1.58, -0.19	0.01
Prevention	Weight (kg)	6	324	-2.98	-4.20, -1.76	<0.00001
	BMI (kg/m ²)	5	306	-0.96	-1.62, -0.31	0.004
Intervention	Weight (kg)	8	397	-3.04	-4.39, -1.68	<0.00001
	BMI (kg/m ²)	11	486	-0.89	-1.59, -0.18	0.01
Group treatment	Weight (kg)	6	501	-2.82	-4.58, -1.05	0.002
	BMI (kg/m ²)	12	590	-0.66	-1.29, -0.04	0.04
Individual treatment	Weight (kg)	5	220	-3.24	-4.05, -2.44	<0.00001
	BMI (kg/m ²)	7	202	-1.40	-2.16, -0.65	0.0003
Inpatients	Weight (kg)	2	84	-3.43	-7.41, 0.55	60.0
	BMI (kg/m ²)	3	143	0.06	-2.44, 2.57	0.96
Mixed (Both inpatients and outpatients)	Weight (kg)	1	71	-0.90	-2.52, 0.72	0.28
	BMI (kg/m ²)	2	91	-0.40	-0.99, 0.20	0.20
Outpatients	Weight (kg)	11	566	-3.30	-4.03, -2.58	<0.00001
	BMI (kg/m ²)	11	596	-1.29	-1.81, -0.77	<0.00001