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Abstract

Background: Anastomotic leak is one of the most feared complications of colorectal surgery, and probably linked to poor blood supply 
to the anastomotic site. Several technologies have been described for intraoperative assessment of bowel perfusion. This systematic 
review and meta-analysis aimed to evaluate the most frequently used bowel perfusion assessment modalities in elective colorectal 
procedures, and to assess their associated risk of anastomotic leak. Technologies included indocyanine green fluorescence 
angiography, diffuse reflectance spectroscopy, laser speckle contrast imaging, and hyperspectral imaging.

Methods: The review was preregistered with PROSPERO (CRD42021297299). A comprehensive literature search was performed using 
Embase, MEDLINE, Cochrane Library, Scopus, and Web of Science. The final search was undertaken on 29 July 2022. Data were 
extracted by two reviewers and the MINORS criteria were applied to assess the risk of bias.

Results: Some 66 eligible studies involving 11 560 participants were included. Indocyanine green fluorescence angiography was most 
used with 10 789 participants, followed by diffuse reflectance spectroscopy with 321, hyperspectral imaging with 265, and laser speckle 
contrast imaging with 185. In the meta-analysis, the total pooled effect of an intervention on anastomotic leak was 0.05 (95 per cent c.i. 
0.04 to 0.07) in comparison with 0.10 (0.08 to 0.12) without. Use of indocyanine green fluorescence angiography, hyperspectral imaging, 
or laser speckle contrast imaging was associated with a significant reduction in anastomotic leak.

Conclusion: Bowel perfusion assessment reduced the incidence of anastomotic leak, with intraoperative indocyanine green 
fluorescence angiography, hyperspectral imaging, and laser speckle contrast imaging all demonstrating comparable results.
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Background
Colorectal cancer is a common cancer with an increasing 
incidence1,2. For most patients, potentially curative treatment 
requires major surgical resection of the affected bowel. In 
England and Wales in 2018, this equated to around 19 000 of the 
31 000 cancers diagnosed3. After resection, when feasible, it is 
preferable to anastomose the remaining bowel4. It is generally 
accepted that a good blood supply is required to allow 
anastomotic healing. With inadequate blood supply, the 
anastomosis is likely to leak5,6.

Anastomotic leakage is a serious complication of colorectal 
resection associated with a significant increase in mortality and 
morbidity at 30 days after operation and beyond7. Leak rates in 
colorectal surgery are estimated at around 1–19 per cent and have 
a mortality rate of up to 35 per cent, depending on both patient 
and operative factors7. The relationship between hypoperfusion 
and an increased incidence of anastomotic leakage has been well 
documented, and is probably the most important risk factor for 
leakage5.

Several intraoperative techniques to measure tissue perfusion 
at the site of anastomosis have been described. One of the 
most researched methods is indocyanine green fluorescence 
angiography (ICG-FA). This procedure requires the injection of a 
dye and subjective intraoperative assessment of perfusion by the 
surgeon. Laser speckle contrast imaging (LSCI) is another 
technique described, whereby the movement of blood within the 
tissue changes the observed laser speckle pattern projected by 
the device, producing a contrast agent-free measurement of 
perfusion5. Another method gaining prominence is hyperspectral 
imaging (HSI). HSI does not require the use of any specific 
contrast product, but can offer a real-time analysis of perfusion 
using visible light, as well as near-infrared light in one 
commercial system This system enables each pixel to be 
analysed to provide an estimation of local tissue oxygenation8,9. 
A final perfusion method is diffuse reflectance spectroscopy 
(DRS), which analyses diffuse reflected light at discrete pinpoint 
locations in contact with the serosa of the bowel to identify 
colonic oxygen saturations10.
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The aim of this systematic review and meta-analysis 
was to assess the various types of intraoperative perfusion 
measurement and evaluate their impact on anastomotic leak 
rates after surgery.

Methods
Study design
This was a systematic review of all available data on the use of 
intraoperative bowel perfusion imaging during colorectal 
surgery. The study was registered with PROSPERO before 
initiation of searches (CRD42021297299, 9 December 2021). 
Expert surgeons, librarians, and statisticians were consulted on 
the study design, search methodology, and statistical analysis.

Inclusion and exclusion criteria
RCTs and comparative studies that used intraoperative perfusion 
assessment methods to identify bowel perfusion, and 
documented the rates of anastomotic leakage after surgery, 
were included. Procedures performed must have been elective 
and were not limited to minimally invasive surgery. All studies 
must have been clinical and related to humans, with both 
demographic and anastomotic leakage data available. A time 
limit of 21 years (2001–2022) was used to ensure that only 
relevant studies of intraoperative perfusion imaging were 
included in what is a relatively new intervention, first described 
in 199311. Participants in the studies must have been adults with 
a colorectal pathology requiring intervention. Only 
English-language studies were included. Studies were excluded 
if full articles were not accessible or they were systematic 
reviews or case reports. Where studies used multiple methods 
of perfusion assessment, only the modality that was used first 
was included as this was most likely to influence the decision 
regarding anastomotic site.

Outcomes
The primary outcome was the incidence of anastomotic leak 
within 30 days of major colorectal surgery involving intraoperative 
use of bowel perfusion imaging. Secondary outcomes included 
anastomotic site location changes, tissue oxygenation 
measurements, threshold of perfusion cut-offs, and sensitivities.

Search strategy
Sources searched included Embase, MEDLINE, Cochrane Library, 
Scopus, and Web of Science. The first literature search was 
undertaken on 28 December 2021, with subsequent searches 
carried out on 1 March 2021 and 29 July 2022. Searches were 
supplemented by reviews of studies included in relevant 
systematic reviews to that ensure all available studies were 
included. The following Boolean search terms were applied: 
(Ascending Colon OR Colon OR Sigmoid OR Colorectal Surgery 
OR Bowel) AND (Surgical Anastomosis OR Postoperative 
Complications OR Anastomotic Leak OR Postoperative 
Complications) AND (Perfusion OR Perfusion Index OR Perfusion 
Imaging OR Ischemia OR Imagery).

Data extraction
A data extraction template was completed by two researchers to 
collect study-level information for each study meeting the 
inclusion criteria. Data collected included: study data (study 
design, year, country), demographic data (number of patients 
included, age, sex, BMI), outcome data (operative focus, number 
of anastomotic leaks, perfusion modality used, site relocation 

data, definition of anastomotic leak used), and device data 
(specific device used, sensitivity, perfusion threshold). Any 
disagreements between reviewers were resolved through 
discussion. Where a case–control methodology had been used, 
the total number of participants was included as well as the 
case and control numbers.

Assessment of risk of bias in included studies
Methodological quality was assessed using the Methodological 
Index for Non-Randomized Studies (MINORS) scoring system12. 
The MINORS criteria were chosen to enable the assessment of 
both randomized and non-randomized studies. The MINORS 
criteria were modified to fit the characteristics of included 
studies; scoring criteria can be seen in the supplementary material. 
Publication bias was assessed using a funnel plot (supplementary 
material).

Statistical analysis
Results were subjected to a meta-analysis in which the main 
findings from the studies were combined and synthesized13,14. 
The main outcomes analysed were the number of patients with 
anastomotic leaks expressed as proportions of the total number 
of patients observed. A meta-analysis was performed using both 
a common-effect and random-effects models13. The estimation 
of effects and their confidence intervals was conducted on 
proportions transformed to logit units15; once estimations had 
been obtained, for reporting purposes, the results were converted 
back to the original units (proportions) to ease interpretation. 
Forest plots were produced to illustrate the results. Interstudy 
variance was estimated using the DerSimonian and Laird 
method16 as recommended by Wang15. Summary effect sizes 
were estimated as weighted means of the observed effects of 
individual studies. Once the results had been obtained, sensitivity 
analysis was performed. The magnitude of heterogeneity of study 
effects was quantified using the level of between-study variance 
represented by τ2. Q statistics were used, which form part of the 
formal test of the null hypothesis stating that τ2 = 0, with P 
values also reported in forest plots. P < 0.050 was considered to 
indicate a significant level of heterogeneity between studies. 
Heterogeneity was also measured in terms of the I2 index, which 
indicates the percentage of the total variability accounted for by 
between-study variance13. Significant levels of study 
heterogeneity were defined by values of I2 exceeding 50 per 
cent17. All the above mentioned indices and P values (Q statistics) 
were reviewed together as summary information from which the 
conclusions about the existence of an important level of 
heterogeneity among study effects were derived. All analyses 
were undertaken in R version 3.6.1 (R Foundation for Statistical 
Computing, Vienna, Austria).

Results
Study characteristics
The initial search yielded 2307 studies. After removal of 282 
duplicates, the titles and abstracts of the remaining 2025 
records were screened for appropriateness and a further 1799 
were excluded. A total of 226 studies were retrieved for full-text 
review by two independent researchers and 168 studies were 
excluded. After repeated searching, eight more studies were 
added and a total of 66 studies were included in this systematic 
review (Fig. 1)5–81,82. Related recent systematic reviews83–90 on 
intraoperative perfusion were also reviewed to ensure that no 
studies had been missed.
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The 66 included studies included data from 11 560 patients. A 
summary of each study, including patient characteristics, can 
be found in the supplementary material. Fifty-six studies were 
from a single centre and 10 were multicentre in design. Included 
studies were from a total of 17 nations and 1 study spanned 
multiple nations. Seventeen studies took place in Japan, 10 in 
the USA, 10 in Italy, 8 in Germany, and 3 in China; 2 or fewer 
were conducted by other nations.

Intraoperative perfusion measuring modalities in 
current use
The searches identified four methods of assessing intraoperative 
colonic perfusion that are currently in use. The most assessed 
intervention was ICG-FA with 10 789 patients enrolled in 52 studies, 
followed by DRS with 321 patients across 6 studies, HSI with 265 
patients across 5 studies, and LSCI with 185 patients across 3 
studies. ICG-FA uses near-infrared technology to fluoresce ICG. DRS 
uses diffuse light reflectance technology in contact with the bowel 
at discrete locations to give a serosal tissue oxygenation (StO2) value. 
LSCI uses speckle patterns and flow to assess perfusion at a 
distance using a camera system. HSI uses reflection of a light source 
to assess colonic perfusion (also StO2) at a distance. ICG-FA, HSI, and 
LSCI rely on blood flow to generate perfusion data, whereas DRS 
measures oxygenated and deoxygenated blood directly.

An overview of the devices used, along with the benefits and 
drawbacks of each technology, taken from the manufacturer’s 
information where available, is shown in Table 1.

Outcome assessment
The primary outcome was the variation in anastomotic leak rates 
across the different perfusion methods. The overall pooled 
incidence of anastomotic leak was 7.4 per cent across the four 
included groups when perfusion measurements were used, 
compared with 12.4 per cent in the control groups (Table 2).

Secondary outcomes included the rates of reoperation to resite the 
anastomosis, tissue oxygenation measurements, and threshold of 
perfusion cut-offs. The rate of resiting of the anastomotic 
transection margin and anastomosis ranged between 0 and 100 per 
cent across all groups within studies. DRS and ICG-FA were 
associated with similar relocation rates of 9.38 and 10.69 per cent 
respectively for studies that included these data. The impact of 
intraoperative assessment of tissue perfusion on duration of 
operation was reported infrequently. Of 21 ICG-FA studies, the 
mean increase in operating time was 5.4 (range –22 to 38.1) min. 
Only one LSCI study50 reported operating times, and documented 
an average increase of 56 min with intraoperative use of the 
technology. Reoperation rates were also variable across the groups. 
The reoperation rate was 14 per cent across 2 DRS studies, 0 per 
cent across 2 LSCI studies, and 4 per cent across 28 studies in the 
ICG-FA group. Reoperation rates were not reported for the HSI studies.

Meta-analysis
Detailed results of the meta-analysis are presented in a form of 
forest plot (Fig. 2). The pooled effects of anastomotic leak per 
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Fig. 1 PRISMA flow diagram showing selection of articles for review  

†Reasons for exclusion listed in supplementary material.

Renna et al. | 1133

http://academic.oup.com/bjs/article-lookup/doi/10.1093/bjs/znad154#supplementary-data
http://academic.oup.com/bjs/article-lookup/doi/10.1093/bjs/znad154#supplementary-data


case derived from the random-effects model was 0.05 (95 per cent 
c.i. 0.04 to 0.07). The effect derived from the common-effect model 
was very similar at 0.07 (0.06, 0.08). The estimated effects ranged 
from 0 to 0.3844. There was heterogeneity in the data (I2 = 69 per 
cent, τ2 = 0.5335, χ2 = 211.70, 65 d.f., P < 0.01). Figure 3 illustrates 
the effect each perfusion assessment modality on anastomotic 

leak rates. The effects of different modalities were estimated using 
a random-effects model with a modality factor included as 
categorical predictor. Different modalities in this equation were 
represented by dummy variables, with ICG-FA fixed as a reference 
category. The results of this analysis indicated that 19.8 per cent 
of the overall heterogeneity of studies related to the different 

Table 1 Benefits and drawbacks of technologies included in this review

Modality Devices used Benefits Drawbacks

ICG-FA Firefly™ robotic surgical system, 
Intuitive Surgical (L) 

Photodynamic Eye© PC6100 C9830–10, 
Hamamatsu (O) 

Novadaq SPY, Stryker© (O) 
SPY Elite System, Stryker© (O) 
PINPOINT Endoscopic Fluorescence 

Imaging System, Stryker© (L) 
1588 Advanced Imaging Modalities, 

Stryker© (L) 
D-light P system, Karl Storz© (L) 
IC-View, Pulsion Medical Systems© (O) 
VISERA ELITE2 system, Olympus© (L) 
Opto-cam 2100, Optomedic (L) 
HyperEye Medical System, Mizuho 
Medical Company (O) 
The Quest Artemis, Quest Medical 
Imaging© (O) 
VisionSense™ VS Iridium,  
Medtronic (L)

Visual markers of well perfused areas 
Many studies evaluating its use 
Many devices available

Lack of objective marker of blood supply 
Requires dark operating environment if not 
laparoscopic 
Requires injection of dye 
No standardized protocol, concentration, 
uptake time

DRS O2C, LEA-Medizintechnik© (O) 
T-Stat, Spectros Corporation© (L) 
IntraOx device, ViOptix© (L) 
INVOS, Medtronic© (L)

Gives quantitative value for oxygen 
levels 

No need for medications

Can only monitor a very localized area of bowel 
at one time 

Requires tissue contact 
Repeat measurements required across bowel 

for clinical decision-making for wide-field 
analysis 

Not all included devices have been cleared for 
commercial use 

Few validated studies
HSI TIVITA® Tissue system,  

Diaspective Vision© (O)
No medications required 
Can provide objective measurement 

of StO2 visually and numerically

Current systems not real time 
Open surgery system requires background light 

to be turned off 
Few validated studies 
Included system not laparoscopic

LSCI LSFG device, Softcare Co© (L) 
MoorFLPI-2, Moor Instruments© (L)

No medication required 
Demonstrates non-quantitative 

blood flow

System susceptible to tissue/imaging device 
motion 

Included systems not real time and images 
must be superimposed on an existing image 

Few validated studies

O, device used only for open surgery; L, device can be used laparoscopically. ICG-FA, indocyanine green fluorescence angiography; DRS, diffuse reflectance 
spectroscopy; HSI, hyperspectral imaging; StO2, serosal tissue oxygenation; LSCI, laser speckle contrast imaging. Further details of devices can be found in 
supplementary material. 
Intuitive Surgical (Sunnyvale, California (CA), United States), Hamamatsu (Shizuoka, Japan), Stryker (Kalamazoo, Michigan (Mich), United States), Karl Storz 
(Tuttlingen, Germany), Pulsion Medical Systems (Midlothian, UK), Olympus (Tokyo, Japan), Optomedic (Guangdong, China), HyperEye Medical System, Mizuho 
Medical Co. (Tokyo, Japan), Quest Medical Imaging (Wieringerwerf, The Netherlands), LEA-Medizintechnik (Tuttlingen, Germany), Spectros Corp. (Texas, TA, USA), 
ViOptix Inc (Newark, CA, United States), Medtronic (Dublin, Ireland), Diaspective Vision GmbH (Salzhaff, Germany), Softcare Co. (Japan), Moor Instruments (Devon, 
UK).

Table 2 Anastomotic leak rates across four perfusion measurement modalities

Modality No. of articles No. of participants No. of cases No. of controls No. with AL* Site relocation cases*

Cases Controls

ICG-FA 52 10 789 5739 5050 238 (4.1) 454 (9) 533 (10.7)
DRS 6 321 321 0 43 (13.4) – 3 (9.4)
HSI 5 265 265 0 21 (7.9) – 30 (60)
LSCI 3 185 71 114 3 (4.3) 18 (15.8) 0 (0)

Total 66 11 560 6396 5164 305 (7.4)† 472 (12.4)† 566 (20)†

*Values are n (%). †Average as opposed to total. Site relocation data consider only studies that documented the parameter. AL, anastomotic leak; ICG-FA, indocyanine 
green fluorescence angiography; DRS, diffuse reflectance spectroscopy; HSI, hyperspectral imaging; LSCI, laser speckle contrast imaging. Percentages may not total 
100% due to rounding.
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perfusion assessment modalities. The test of residual heterogeneity 
indicated that, after accounting for different modalities, there 
remained significant heterogeneity in the effects caused by other 
factors (QE (62 d.f.) = 172.8238, P < 0.001). All effects were 
significantly different from zero, indicating that the modalities 

tested reduced the risk of an adverse outcome (Table 3) which in 
this instance was anastomotic leak. The detailed subgroup effects, 
along with their 95 per cent confidence intervals and 
heterogeneity estimate, are presented in Table 3. The omnibus test 
for the equality of effects for different modalities indicated that 
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Proportions are shown with 95 per cent confidence intervals. ICG-FA, indocyanine green fluorescence angiography; DRS, diffuse reflectance spectroscopy; HSI, 
hyperspectral imaging; LSCI, laser speckle contrast imaging.
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Fig. 3 Continued

they also differed significantly between each other (QM (4 d.f.) =  
646.1490, P < 0.001). Further tests revealed that significant 
differences in results existed between ICG-FA and DRS, as well as 
between pairs HSI and DRS, and LSCI and DRS. The estimated 
effect for the pooled cohort of all control cases, where no 
perfusion assessment was used, was 0.10 (0.08, 0.12).

Because the data revealed a substantial level of heterogeneity, 
further procedures were employed, to search for possible 
explanations for the observed differences in effect sizes between 

studies. A subgroup analysis was used for this purpose. The 
main focus of the subgroup analysis was performance modality. 
The effects of other potential moderators were not a subject of 
interest here as a number of other meta-analyses are available 
in the literature87–91 . The summary effect sizes for each 
modality (ICG-FA, DRS, HSI, LSCI) were calculated and reported 
in a separate forest plot (Fig. 3). The final part of the statistical 
analysis was to investigate possible publication bias; the funnel 
plot was symmetrical (supplementary material)15.

Table 3 Results of meta-analysis investigating risk of anastomotic leak by perfusion assessment modality and overall

Modality AL estimates taken from random-effects model* Heterogeneity Weight (%)

I2 (%) τ2 χ2 P

All modalities 0.06 (0.05, 0.07) 69 0.4280 χ2
65 = 211.70 <0.01 100

ICG-FA 0.05 (0.04, 0.06) 67 0.4280 χ2
51 = 156.37 <0.01 78.2

DRS 0.14 (0.08, 0.24) 57 0.4280 χ2
5 = 11.55 0.04 11.5

HSI 0.08 (0.04, 0.16) 0 0.4280 χ2
4 = 3.8 0.43 7.7

LSCI 0.06 (0.02, 0.19) 0 0.4280 χ2
2 = 1.09 0.58 2.6

Control 0.10 (0.08, 0.12) 80 0.3464 χ2
32 = 162.52 <0.01 100

Values in parentheses are 95% confidence intervals. Amount of total heterogeneity accounted for by modalities (R2) = 19.8%. AL, anastomotic leak; ICG-FA, 
indocyanine green fluorescence angiography; DRS, diffuse reflectance spectroscopy; HSI, hyperspectral imaging; LSCI, laser speckle contrast imaging.
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Quality assessment
The average MINORS score for controlled trials was 18 (range 13– 
24) of 24. For non-controlled trials it was 11 (8–14) of 16. Most 
studies lost points for lack of blinding, or for not calculating 
study size or powers, and so were deemed to have a high risk of 
bias in these domains. The breakdown for individual categories 
is shown in Fig. 4. The greater the score for each domain, the 
less susceptible it is to bias. Full MINORS scores for each paper 
are documented in the supplementary material.

Discussion
This meta-analysis found that assessment of bowel perfusion 
before the formation of a colorectal anastomosis reduced the 
incidence of anastomotic leak. ICG-FA, DRS, LSCI, and HSI all 
reduced the risk of anastomotic leak occurring for the included 
populations.

This comprehensive review compared four methods of bowel 
perfusion assessment. The major limitation of the study pertained 
to the limited number of studies and case populations in all groups 
other than ICG-FA, meaning that studies describing other imaging 
modalities were potentially underpowered. With ICG-FA 
accounting for 78.2 per cent of all cases, the total anastomotic leak 
rate is likely to be skewed more towards the mean for ICG-FA, 
rather than the true mean across all studies. Additionally, MINORS 
scores for the included studies were low for blinding and study 
sizes. This is likely to have influenced the results in favour of the 
interventions investigated. Owing to the heterogeneity of the 
results, it was decided to rely on results obtained from 
random-effects model methodology as it incorporates more 
realistic assumptions about heterogeneity of effects across studies. 
The data sets from the DRS and ICG-FA groups demonstrated the 
most heterogeneity. Factors increasing study heterogeneity 
included different study methodologies, definitions of anastomotic 

leak, surgical techniques, and device use. Studies investigating HSI 
and LSCI had lower heterogeneity as they were trials of similar origin.

The current literature is conflicting regarding the efficacy of 
ICG-FA. Similar to other work, based on the present review, the 
authors propose that ICG-FA has a role in reducing the risk of 
anastomotic leak when deployed during operation for lower 
gastrointestinal cancers61,86,88,92. However, some of the larger 
case–control studies evaluating ICG-FA drew contrasting 
conclusions; some42,45 suggested a trend towards reduced 
anastomotic leak rates with the use of ICG-FA, whereas 
others19,32,77 demonstrated that ICG-FA could significantly 
reduce leakage rates. Of note, there are also a number of 
ongoing studies assessing the benefits of ICG-FA in reducing 
anastomotic leak rates in colorectal cancers, including 
EssentiAL93, IntAct, and AVOID.

The total random-effects results demonstrated that DRS was 
not as effective as HSI, LSCI, and ICG-FA in reducing the risk of 
anastomotic leak. This is also supported by the differences 
between DRS and the other imaging modalities in omnibus 
testing. A potential reason for this is that DRS looks at a very 
small area of tissue oxygenation and so lacks the overall picture 
that ICG-FA, HSI or LSCI may provide; further research to test 
this hypothesis is recommended.

At present, there is no consensus regarding the definition of 
reduced perfusion across all modalities. For ICG-FA, a visual 
marker of perfusion is generated and studies31,53,56,60,68 have used 
various uptake time cut-offs from 25 to 60 s, and differing 
volumes of ICG, to define optimal perfusion. However, this relies 
on an effective systemic vascular supply. There is also variation in 
the literature concerning the range of healthy tissue saturation 
levels. Mean colonic StO2 measurements from the DRS group 
indicated that a reduced risk of anastomotic leak was associated 
with a value of between 58 and 79.4 per cent, and that the lowest 
StO2 measurement for a viable anastomosis was 51 per cent10,35,40. 
Additionally, in the DRS group, it was proposed that an StO2 rise of 
2 per cent after anastomosis formation had to occur to avoid 

Clearly stated aim

Inclusion of consecutive patients

Prospective data collection

Appropriate endpoint

Unbiased assessment of endpoint

Appropriate follow-up duration

< 5% loss to follow-up

Prospective study size calculation

Adequate control group

Contemporary groups

Baseline population equivalence

Adequate statistical analysis

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Score

Fig. 4 Average (mean) MINORS scores for all studies 

The last four categories were only applicable to controlled trials. Maximum scores per category were 2 and minimum scores available were 0. MINORS, 
Methodological Index for Non-Randomized Studies.
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leakage10,38. The wide range of proposed healthy tissue saturation 
may be explained by the specific equipment used, with certain 
systems having lower cut-offs.

The lack of objective measurement with ICG-FA is an active 
area of research. One of the included studies considered the 
development of quantitative fluorescence measurement within 
ICG-FA, with the aim of measuring the fluorescence of ICG 
objectively and relaying it back to the surgeon for a 
strengthened anastomotic line. They proposed an arbitrary unit 
cut-off but were limited by hypertension and location of the 
anastomosis, as well as a lack of real-time evaluation as data 
were processed after operation34. The development of a 
quantitative cut-off for adequate perfusion and its validation 
during surgery would likely enhance its use and uptake.

There also remain drawbacks in implementing the other 
imaging methods investigated. DRS uses a probe-based 
measurement of serosal oxygenation, where only a small 
amount of tissue is measured; LSCI requires a separate camera 
system to view data that can be used for surgical visualization; 
and, at present, HSI has a near-to but not real-time laparoscopic 
system8. In the fields of HSI and LSCI, studies are being set up to 
assess whether wide-field imaging for perfusion measurements 
and concurrent tissue differentiation can reliably be performed 
in real time94,95.

Finally, none of the included perfusion assessment methods 
currently have validated protocols documented in the reviewed 
literature and no standard perfusion assessment modality exists 
for colorectal resection. LSCI, HSI, and DRS are emerging 
technologies, as evidenced by the smaller number of included 
studies and limited numbers of patients. Future work across all 
modalities will require the development of standardized protocols 
for ease of adoption and use. The use of adjunctive bowel perfusion 
measurement technologies is unlikely to negate the importance of 
surgical skill and experience, but rather should promote safer 
surgery during bowel resections, and surgical centres wishing to 
adopt new technology should take these factors into consideration.
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