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ABSTRACT
A growing amount of evidence has supported that gut microbiota plays a vital role in the 
reproductive endocrine system throughout a woman’s whole life, and gut microbial β- 
glucuronidase (gmGUS) is a key factor in regulating host estrogen metabolism. Moreover, estrogen 
levels also influence the composition as well as the diversity of gut microbiota. In normal condition, 
the gmGUS-estrogen crosstalk maintains body homeostasis of physiological estrogen level. Once 
this homeostasis is broken, the estrogen metabolism will be disturbed, resulting in estrogen- 
related diseases, such as gynecological cancers, menopausal syndrome, etc. together with gut 
microbial dysbiosis, which may accelerate these pathological processes. In this review, we highlight 
the regulatory role of gmGUS on the physical estrogen metabolism and estrogen-related diseases, 
summarize the present evidence of the interaction between gmGUS and estrogen metabolism, 
and unwrap the potential mechanisms behind them. Finally, gmGUS may become a potential 
biomarker for early diagnosis of estrogen-induced diseases. Regulating gmGUS activity or trans-
planting gmGUS-producing microbes shows promise for treating estrogen-related diseases.
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Introduction

As a sex hormone, estrogen plays an important 
role throughout a woman’s lifetime. It not only 
has the physiological effect of promoting repro-
ductive organs and maintaining female secondary 
sexual characteristics, but also has obvious effects 
on the metabolic process, cardiovascular system 
and bone growth and maturation. Estrogen meta-
bolism is the main process in the regulation of 
circulating estrogen levels. Abnormalities in 
estrogen metabolism can lead to disruption of 
estrogen levels in the body and estrogen-related 
diseases as a result.

The human gut microbiota is a mature endocrine 
organ that can play both local and long-distance 
roles involving metabolites, immunologic messen-
gers, and hormonal intermediates.1,2 Since decades 
ago, people have found that gut microbiota plays 
a central regulatory role in estrogen metabolism.3 

Emerging evidence suggests an interaction between 

estrogen metabolism and gut microbiota4, which 
means the estrogen level also influences the home-
ostasis of the gut microbiome. Estrobolome is the 
aggregate of enteric bacterial genes capable of meta-
bolizing estrogens.5 The GUS gene of estrobolome 
encodes gut microbial β-glucuronidase (gmGUS), 
which is the functional member of the 
estrobolome.6 The gmGUS enzyme plays a main 
regulatory role in physiological estrogen metabolism 
as well as estrogen-mediated diseases7,8 and is an 
important mediator for gut microbiota – host inter-
action correlating gut microbiome and breast 
cancer.9 This review discusses the current research 
linking estrogen metabolism and gut microbiota, 
focusing on how both crosstalk through the gut 
microbial β-glucuronidase in estrogen-driven dis-
eases. Furthermore, based on the gut microbial reg-
ulatory mechanism of estrogen metabolism, we 
propose several potential treatments for estrogen- 
driven diseases.

CONTACT Linhua Zhao melonzhao@163.com Institute of Metabolic Diseases, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, 
Beijing, China
#These authors contributed equally: Shiwan Hu and Qiyou Ding.

GUT MICROBES                                              
2023, VOL. 15, NO. 1, 2236749 
https://doi.org/10.1080/19490976.2023.2236749

© 2023 The Author(s). Published with license by Taylor & Francis Group, LLC.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which 
permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been 
published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/19490976.2023.2236749&domain=pdf&date_stamp=2023-08-09


Physiological process of estrogen metabolism

Estrogen is primarily produced mainly in the ovar-
ies, and others in adrenal glands, and adipose tis-
sue. Estrogen consists of estrone (E1), estradiol 
(E2), and estriol (E3). E1 and E2 are mainly synthe-
sized by the ovaries and E3 is the main metabolite 
of E1 and E2 degradation in the liver. There are 
both free and conjugated forms of estrogen circu-
lating in the bloodstream, with the conjugated 
form predominating, but the biologically active 
form of estrogen in the blood is the former. E2 is 
the most biologically active estrogen in the female 
body and an important indicator in blood draw 
tests. E1 and E2 can be converted into each other. 
Usually, E2 is converted into E1, and E1 is excreted 
through a series of metabolic degradation, which 
exerts the lowest biological effect.

Estrogen remains inactive in circulation mostly by 
binding to plasma proteins, primarily sex-binding 
globulin (SHBG). Once it is deconjugated, the free- 
form estrogen will regain biological activity. By com-
bining with estrogen receptors (ERs) all over the 
body,10 estrogen plays a vital role in regulating phy-
siologic processes. Thus, stable estrogen levels in the 
female body are important for maintaining body 
homeostasis.

In addition to estrogen production, estrogen 
metabolism is also important for the homeostasis 
of estrogen levels. Estrogen metabolism occurs 
both in the liver and other target tissues like the 
breast, but mainly in the liver through a two-stage 
reaction. The first stage is mainly the hydroxyla-
tion hydrolysis reaction of cellular P450 enzymes. 
Maternal estrogens (E1 and E2) can be irreversi-
bly hydroxylated at positions C-2, C-4, or C-16 of 
the steroid ring. The second stage is a methylation 
reaction, aldehyde condensation reaction, and 
sulfation reaction, in which the maternal estrogen 
and its metabolites can be further modified by 
binding to sulfate or glucuronic acid portions, 
and then discharged through urine or bile. The 
conjugation form of estrogen excreted in bile 
ultimately passes into the intestine. Here, it is 
deconjugated by bacterial species with gmGUS 
activity and subsequently reabsorbed through 
the gut mucosa and into the portal vein for enter-
ohepatic recycling (Figure 1). Studies of women 
injected with radiolabeled estrogen showed that 

about 65% of E2,11 48% of E1,11 and 23% of E312 

were recovered in bile, and about 10% to 15% of 
E1, E2 and E3 existed in the conjugated form in 
feces,13 which suggests that the majority of decon-
jugated estrogens are reabsorbed through decon-
jugation activity. If the ratio of reabsorption to 
excretion is disrupted, the estrogen level in the 
body may fluctuate significantly and further lead 
to estrogen-related diseases.

Gut microbiota and estrogen

Plottel and Blaser have speculated that there is an 
important functional estrobolome, which is 
a collection of genes with the capability of metabo-
lizing estrogen in the human body.5 In the intest-
inal tract, certain gut bacteria express certain genes 
from the estrobolome and produce the enzyme 
encoded by these genes. These enzymes can con-
vert the conjugated estrogen into the free form and 
exert biological effects. Both the increased number 
of bacteria with estrobolome and the increased 
activity of these gene-encoding enzymes can accel-
erate the early dissociation and hydroxylation of 
estrogens in the intestine so that the free estrogens 
could increase significantly in enterohepatic circu-
lation and maintain at a physiological level. 
Therefore, estrobolome is an important mediator 
in remaining body estrogen levels.

In the human estrobolome, the β-glucuronidase 
gene, also called the GUS gene, was first identified 
in Escherichia coli and other Enterobacteriaceae in 
1934.7 In 1944, it was initially demonstrated that β- 
glucuronidase participated in physiological estro-
gen metabolism.14 The GUS gene encoding protein 
is a member of the glycoside hydrolase 2 (GH2) 
family, which includes β-glucuronidases, β- 
mannosidases, and β-galactosidases.15 Gut micro-
biota-derived β−glucuronidases and β−galactosi-
dases participate in estrogen metabolism in the 
human body.16 The β−glucuronidase is involved 
in the disposition of many endogenous and exo-
genous compounds17 and it is the most studied 
enzyme in estrogenic metabolism and estrogen- 
driven diseases, especially in gynecological 
cancers.18 The β-galactosidase is also a kind of 
significant biomarker whose overexpression is clo-
sely associated with the progression of breast 
tumors.19 It has been summarized that 60 bacterial 
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genera colonizing the human intestinal tract 
encode β-glucuronidase and/or β-galactosidase.20

Recently, Human Microbiome Project GI data-
base has obtained an human intestinal β- 
glucuronidase atlas, which has identified about 279 
GUS genes and 93.5% of them were taxonomically 
classified as Bacteroidetes (52%), Firmicutes (43%), 
Verrucomicrobia (1.5%) and Proteobacteria 
(0.5%).21,22 According to the differences in struc-
tural characteristics and biocatalytic properties, 
GUS genes are divided into seven categories, which 
are Loop 1 (L1), Mini-Loop 1 (mL1), Loop2 (L2), 
Mini-Loop 2 (mL2), Mini-Loop 1, 2 (mL1, 2), No 
Loop (NL) and No Coverage (NC) groups.21,23 The 
majority of intestinal GUS belongs to the category 
NL (57.3%), followed by mL1, L2, L1, mL2, NC, and 
mL1,2 in decreasing order.21 For GUS belonging to 
the mL1 and NL categories, the presence of the 
signal peptide is phylum-dependent: it is absent in 
Firmicutes and present in Bacteroidetes.24 For the 
gmGUS enzyme activity from human feces, there are 
40 different bacterial strains have been screened, 

representing the dominant bacterial groups, and β- 
glucuronidase activity was found in some Firmicutes 
within clostridial clusters XIVa and IV.25 Based on 
degenerate PCR, a β-glucuronidase gene belonging 
to family 2 glycosyl hydrolases was detected in 10 of 
the 40 isolates.25 An in vitro analysis first explained 
that 35 GUS enzymes from the human microbiome 
reactivated the estrone-3-glucuronide and estradiol- 
17-glucuronide into estrone and estradiol from the 
perspective of molecular level.6

BG gene, another gene encoding bacterial β- 
D-glucuronidases (BG; E.C. 3.2.1.31), has been 
described by metagenomic analysis and are highly 
homologous to β-galactosidases based on their 
sequence.26 BGs and only a few of them have been 
investigated and annotated as β-D-glucuronidases in 
sequence databases.26 The function of gmGUS is 
regulated by GUS and BG genes, and both of 
which are well represented in Firmicutes, while 
only BG is found in Bacteroidetes.27 It was found 
that 96% of the amplified GUS sequences were 
Firmicutes, with three operational taxonomic units 

Figure 1. Estrogen produced by the ovaries, adrenal glands, and adipose tissue is metabolized in the liver within two phases to form 
a biologically inactive conjugated form, and the conjugated estrogen is deconjugated by β-glucuronidase encoded by gut microbiota 
and changes to a deconjugated form with biological activity, some of which is excreted in the stool and urine, while some of which is 
reabsorbed into the blood circulation and returned to the liver and this process is called enterohepatic recycling of estrogen.
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being particularly enriched, while 59% of the ampli-
fied BG sequences belonged to Bacteroidetes and 
41% to Firmicutes.27 The functional test showed 
the different GUS enzyme activities between the 
GUS gene and the BG gene, and the GUS gene 
showed the primary response.27 Series observations 
have indicated the involvement of bacterial BGs in 
several pathologies.26 For example, lower BG activity 
in the feces of Crohn’s disease patients compared to 
healthy subjects.28 Study has found that a high BG 
activity is considered as a prognosis marker for 
colon cancer.29 However, few studies explore the 
interaction between the BG gene and estrogen- 
related disease, thus the review doesn’t cover this 
part.

In addition to bacterial β-glucosidases involved in 
the deconjugation of conjugated estrogen in the 
intestine, gut bacteria can also perform various 
reductive, oxidative, and hydrolytic reactions on 
estrogens.30 Early evidence has shown that the anti-
biotic reduced the reductive metabolism of estrogens 
in the gut, which reduced the transformation of E1 
to E2 and increased E1/E2 and E1+E2/E3 ratios in 
feces.31 Recent research demonstrated that the gut- 
microbiome (Klebsiella aerogenes)-expressed 3β- 
hydroxysteroid dehydrogenases degraded estradiol 
and was associated with depression in premenopau-
sal females.32 Thus, it is likely that the gut microbiota 
is involved in other physiological processes for 
degrading estradiol in addition to deconjugation, 
and this needs more evidence.

Interaction between estrogen and gut 
microbiota

Based on current evidence, we believe that there 
exists an interaction between estrogen and gut 
microbiota. The gut microbiota is not only 
involved in maintaining the balance of estrogen 
metabolism, but can also be disrupted and exhibit 
specific changes in estrogen-driven diseases and 
menopause-related diseases (Table 1).

Gut microbiota dysbiosis in estrogen-driven 
diseases

Emerging evidence is describing the relationship 
between gut microbiota and estrogen-driven dis-
eases. The gut microbiota plays a vital role in the 

regulation of estrogen levels, modulation of the 
inflammatory response, and interference with car-
bohydrate metabolism.51 Based on these patho-
genic mechanisms, the dysbiosis of gut microbiota 
results in sorts of gynecological diseases and the 
elevated gmGUS activity has been observed in 
malignant tumors of the breast, ovary, and gastro-
intestinal tract.52,53 Here, we mainly focus on how 
gut microbial β-glucuronidases participate in mod-
ulating the level of systemic estrogen in different 
estrogen-driven diseases.

Breast cancer

Breast cancer is the second leading cause of cancer- 
related death among women worldwide and is one 
of the most common diagnoses. The dysbiosis of 
gut microbiota has been found involved in this 
estrogen-driven disease.54,55 Aided by the hyperac-
tive gmGUS deglucuronidation activity, high sys-
temic estrogens and a high ratio of circulating 
estrogen metabolites and parent estrogen are con-
sidered as strong risk factors for postmenopausal 
ER+ breast cancer.56 In postmenopausal women, it 
has been proved that reduction of the ratio of 
estrogen metabolites to parental compounds and 
the reduction of fecal microbiota diversity are asso-
ciated with an increased risk of breast cancer.34,46 

Lower gut microbiota diversity may be related to 
a higher relative abundance of gmGUS-producing 
species, which causes an increasing amount or 
activity of β-glucuronidases that accelerate the glu-
curonide-estrogen conjugates to break down, then 
estrogens revert to free form and are reabsorbed 
into the blood through the enterohepatic circula-
tion, leading the body’s concentration of unconju-
gated estrogens to increase and in turn 
mechanistically linked to accelerate the develop-
ment of hormone receptor-positive breast 
cancers.8,57,58

Emerging evidence is supporting this hypoth-
esis. It has been early noticed that the difference 
between the plasma β−glucuronidase enzyme levels 
of the women with and without gynecological can-
cers was highly significant and serial observations 
demonstrated a rising titer of β−glucuronidase as 
well as its enzyme activity were corresponding to 
deterioration process in clinical state.58,59 Then, 
people found that some species of gut microbiota 
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that produce gmGUS were abundant in breast can-
cer patients.60 A recent study compared the micro-
biota producing β−glucuronidase and/or β 
−galactosidase between breast cancer patients and 
healthy controls, and found the predominant bac-
teria in the breast cancer group were Citrobacter, 
Bacteroides, and Bifidobacterium, which are β−glu-
curonidase and β−galactosidase producing species 
whose abundance were 10 to 100 times higher in 
cancer patients than in healthy controls.16 In addi-
tion, the first study characterized the microbiome 
of breast cancer survivors’ nipple aspirate fluid-
(NAF), such as the fact that Alistipes, which 
encoded β-glucuronidase and β-galactosidase, was 
the relatively most abundant genus of bacteria in 
the NAF of women with breast cancer.33 A study 
found 45 species differed significantly between 
postmenopausal breast cancer women and preme-
nopausal controls through shotgun metagenomic 
analysis.61

A study found that Bacteroides is most closely 
related to cancer, and every 1% increase in its 
relative abundance increased the incidence rate of 
breast cancer by 5%; while Romboutsia and 
Coprococcus 2 showed the strongest negative cor-
relation with breast cancer, and each 1% increase in 
their relative abundance reduced the incidence rate 
of breast cancer by 91% and 55%, respectively.34 

Bacteroides belongs to gmGUS-producing genera, 
thus we can explain the result caused by it, how-
ever, Coprococcus produces β-galactosidase that 
also may accelerate the reabsorption of estrogen 
into the circulation,20 but it makes a protective 
effect in this study. Higher-resolution sequencing 
methods are therefore needed for further charac-
terization of the role of different gut microbial taxa 
in estrogen-induced diseases like breast cancer.

Ovarian cancer

The dysfunctions of estrogen levels and abnormal 
estrogen synthesis and metabolism may lead to 
ovarian cancer(OC),62 and a higher level of circu-
lating E2 causes a higher risk of ovarian cancer.63 

The progression of ovarian cancer was also related 
to changes in the composition of gut microbiota. 
A recent study has found some specific intestinal 
microbial composition (including 
Enterobacteriaceae that encodes β-glucuronidase) 

and microbial metabolites mediating the crosstalk 
between the gut microbiota and OC.64 A significant 
difference in β-diversity showed the difference 
between the gut microbiota of patients with OC 
and the benign controls.35 It has been showed 
obviously that the OC development accelerates 
after fecal microbiota transplantation (FMT) from 
patients with OC into OC-carrying mice.35 The 
administration of naringenin suppresses epithelial 
ovarian cancer by improving the composition of 
the microbiota in animals with ovarian tumor and 
significantly increased the abundances of Alistipes 
and Lactobacillus 36 (βglucuronidase producing 
genera), which may be inconsistent with our 
understanding that elevated β glucuronidase abun-
dance is a detrimental factor in gynecological 
cancers.33

At present, two main mechanisms have been put 
forward to explain the possible link between the 
ovarian cancer development and the estrogen 
level: 1) the gut microbiome disturbs the enterohe-
patic circulation; 2) the gut microbiome interferes 
with the secretion of β-glucuronidases.65 At pre-
sent, more evidence is needed to elucidate whether 
it is possible to suppress the development of ovar-
ian cancer by manipulating βglucuronidase activity 
and how it works.

Endometrial cancer

A study explored the relationship between 
changes in gut microbiome and changes in the 
abundance of circulating metabolites. It showed 
that the metabolites C16:1 and C20:2 enriched 
in endometrial cancer (EC) were associated with 
certain βgalactosidase-encoding species which 
are dominated in EC patients, such as 
Firmicutes phylum members Anaerostipes cac-
cae, Ruminococcus sp. N15.MGS–57 and 
Prevotella sp. DJF_LS16.37 The species above 
can activate the conjugated estrogens and ele-
vate the level of active estrogen in the body 
circulation, thus accelerating the development 
of EC. Another study found the anorectal 
microbiome was dominated by βgalactosidase- 
encoding species, either Prevotella or 
Bacteroides, in patients with endometrioid or 
serous endometrial cancer.38 This is 
a preliminary hint that the occurrence of EC 
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may be related to elevated GUS gene expression 
or increasing population composition of certain 
species that produce GUS enzymes.

Endometriosis

Endometriosis (EMS) is a frequent estrogen- 
driven disease among women at reproductive 
age, which is a kind of endometriotic lesions (ie, 
endometrial glands and stroma) outside the 
uterus.66 Studies have implied a bidirectional 
interaction between the gut microbiota and 
EMS,67 and gut microbiota may participate in 
several specific pathogenesis mechanisms of 
EMS, such as estrogen metabolism, immune 
inflammation, and tumor characteristics, etc.68 

The hyper-estrogen has been implicated as an 
essential causative factor in EMS,69,70 and the 
estrobolome has been regarded as one of the key 
factors of EMS by dysregulating estrogen avail-
ability in endometriotic women through gut 
microbial β-glucuronidases.8,71 When estrobo-
lome activity is impaired, gut microbiota dysbiosis 
increases the circulating estrogen, which may 
have a direct effect on stimulating the growth 
and cyclic bleeding of endometriotic lesions.66 

A study has found that Firmicutes/Bacteroidetes 
ratio was elevated in mice with EMS, and the 
Bifidobacterium, a commonly used probiotic that 
encodes β-galactosidases,20 was also increased, 
indicating that EMS induces gut microbiota 
alterations,6,39,72 and the increasing level of the 
enzymes can improve the circulating estrogen 
which may directly accelerate endometriotic 
lesions.6,72 Therefore, inhibiting estrogen produc-
tion through gut microbiota is one of the main 
targets of the available and emerging drugs. 
Antibiotic therapy like metronidazole, which tar-
gets Bacteroides genus, could reduce EMS pro-
gression in mice, but the lesion growth was 
restored after oral gavage of feces from mice 
with EMS, which further verifies that the gut 
bacteria promote endometriotic lesion 
progression.40 Taken together, we hypothesize 
that there is a bidirectional interaction between 
host and gut microbiota and that studies should 
be conducted to further clarify their potential 
relationship.

The alteration of gut microbial composition and 
diversity in menopausal periods

Not only does the gut microbiota regulates the 
circulating estrogen, but estrogens can also influ-
ence the diversity and composition of the gut 
microbiome. Nowadays, a growing body of litera-
ture indicates the change in estrogen level influ-
ences gut microbiota during different physiological 
periods, and each stage of a woman’s life has dif-
ferent hormonal states that drive the overall phy-
siology of both the host microbe and the 
commensal microbe.73 During the period of meno-
pause, ovarian follicle activity permanently termi-
nates with a lack of menstrual cycle for over a year, 
which means the endpoint of natural reproductive 
ability in women.74 After menopause, a lower level 
of serum estrogen drives gut microbiota composi-
tion and quantity change significantly. Here, we 
mainly talk about the alteration of gut microbiota 
during menopause and also the menopause-related 
diseases in these peroids.

Change of gut microbiota during menopause

Some researchers think changes in estrogen status 
preceded changes in the gut microbiome because 
diets that are rich in isoflavones or other phytoes-
trogens provide a source for “health beneficial” 
organisms in the gut microbiome, and induce 
a change in microbiome composition and 
function.75,76 A finding found that the gut micro-
biota species in ovariectomized (OVX) ApoE-/- 
mice had the lowest abundances, but the diversity 
and the composition of gut microbiota returned to 
a level close to those of HFD-fed ApoE-/- mice or 
even normally fed C57BL/6 mice after estrogen 
supplementation.77 This study directly proved 
that gut microbial diversity and composition are 
influenced by estrogen concentrations.78 A study 
observed that postmenopausal women had lower 
diversity of gut microbiota with lower abundance 
of microbial β-glucuronidases than the 
premenopausal,41 like Bifidobacterium animalis 
abundance decreased.47 Besides, estrogen receptors 
also influence the composition and diversity of gut 
microbiota. Absence of intestinal estrogen receptor 
beta (ERβ) reduced the microbiota diversity in 
mice which had colitis-induced colorectal 
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cancer79, and the loss of estrogen-related receptor 
alpha (ERRα) also led to a decrease in microbial α- 
diversity and depletion of healthy gut microbial 
constituents.80

Similar phenomena were observed in postmeno-
pausal women. Metagenome functional analysis 
revealed significant differences in the composition 
of gut microbiota between premenopausal women 
and premenopausal men, but not postmenopausal; 
in addition, it showed a masculinization of the gut 
microbial characteristics after menopause.81,82 

These facts suggest that estrogen plays 
a regulatory role in the composition of women’s 
gut microbiota, and premenopausal composition of 
gut microbiota may be related to maintaining the 
reproductive functions and normal secondary sex-
ual characteristics of women. What’s more, the 
genus Bacteroides is inversely related to the ratio 
of estrogen metabolites to maternal estrogens in 
postmenopausal women and this association is 
independent of age and BMI.44 This suggests that 
changes in the menopause may play an indepen-
dent role in inducing gut microbial disorders.

Gut microbial dysbiosis affected by estrogen 
consumption will in turn further affect the meta-
bolism of estrogen in menopausal women. The 
alteration of the diversity of gut microbes encoding 
β-glucuronidase and their enzyme activity has been 
observed in menopausal women, which influence 
the enterohepatic circulation of estrogen. It has 
been proved that long-term estrogen supplementa-
tion directly decreased β-glucuronidase activity in 
the fecal microbiome and was positively related to 
the abundance of Lactobacillaceae in women’s 
feces.42 A Brazilian cohort study also showed 
there was a significant change of the genus 
Clostridium in menopausal women’s fecal micro-
biota following the change of hormone and meta-
bolism, which may influence the estrogen 
metabolism due to the capability of producing β- 
glucuronidase.45 Another study indicated that 
gmGUS activity in postmenopausal women could 
influence non-ovarian estrogen level, which was 
strongly associated with fecal non-Clostridiales 
and three genera of the Ruminococcaceae family46 

that are all gmGUS-producing gut microbes20. 
A study also found that the fecal β-glucuronidase 
activity was negatively correlated with fecal conju-
gated and deconjugated estrogen,46 revealing the 

important role of β-glucuronidases in excretion of 
estrogens in postmenopausal women. A study has 
found the correlation between fecal β- 
glucuronidase activity and the relative abundance 
of the Lactobacillaceae, Ruminococcaceae and 
Streptococcaceae in the fecal microbiota42 which 
all encode β-galactosidases,20 and another study 
also showed estrogen-metabolizing properties of 
fecal genera from families Lachnospiraceae and 
Ruminococcaceae in postmenopausal women.43 

These observations demonstrated that the dysbio-
sis of these gut bacteria families producing β- 
glucuronidase and/or β-galactosidase may further 
influence estrogen levels in menopausal periods 
because of their capability of regulating estrogeneic 
metabolism based on the GUS enzyme activity.

Change of gut microbiota in menopause-related 
diseases

The menopausal syndrome includes a series of 
specific symptoms, the most common symptoms 
of which are vasomotor symptom (VMS),83 geni-
tourinary syndrome (GSM),84 insomnia,85 and 
emotional disturbance (depression, anxiety or 
irritation).86 With the depletion of estrogen, meno-
pausal syndrome happens to women and can last 
for decades. These symptoms can be accompanied 
by characteristic intestinal microbial disorders and 
may get worse because dysbiosis of the estrobo-
lome may cause less estrogen reabsorption and 
accelerate the depletion of estrogen. It has been 
proved that the complement of estrogen maintains 
the gut microbial diversity in estrogen-deficient 
rats, and healthy ecological environment of gut 
microbiota may be helpful to prevent menopausal 
syndrome (MPS).87,88

A study has found the gut microbiota dysbiosis 
in MPS, showing a deficiency of the abundance of 
Aggregatibacter segnis, Bifidobacterium animalis 
and Acinetobacter guillouiae(all enriched in meno-
pausal healthy women) which had a positive corre-
lation with the level of E2.47 The domestic modified 
Kupperman index(KI) scores was positively corre-
lated with Ruminococcus torques, Blautia obeum 
and Butyricicoccus pullicaecorum, while inversely 
correlated with Lactobacillus delbrueckii.47 

Different menopausal symptoms are related to dif-
ferent intestinal bacterial disorders. The hot flash 

GUT MICROBES 9



(HF) symptom scores were positively related to 
Ruminococcus torques, while negatively related to 
Clostridium cocleatum.47 Women with menopausal 
vasomotor disorders showed a significant decrease 
in the main representatives of Bifidobacterium and 
Lactobacillus, and an increase in the number of 
Klebsiella and Clostridiodes difficile48 that are all 
gmGUS-producing species. In recent years, the 
role of gut microbiota in the “gut-brain axis” has 
been uncovered, and alterations of gut microbial 
diversity is closely related to mood disorders.89 

Many clinical studies have indicated that meno-
pausal decline in circulating ovarian hormone 
levels were associated with increased emotional 
disturbances, including symptoms of postmeno-
pausal depression (PMD) and postmenopausal 
anxiety (PMA).90 In OVX mice, treatment with 
progesterone improved PMD and anxiety beha-
viors through changes in gut microbiota composi-
tion, particularly via increasing the Lactobacillus 

spp. population.91 In human feces, a recent study 
found that the prevalence of Klebsiella aerogenes 
was higher in PMD than in those without 
depression.32 Perimenopausal insomnia (PI) has 
been proven linked with the dysbiosis of gut micro-
biota, which showed an increase in the abundance 
of Roseburia faecis, Ruminococcus, Prevotella copri, 
Fusicatenibacter saccharivorans, and Blautia 
obeum, while a decrease in the abundance of 
Bacteroides, fecal Bacteroidetes, and 
Faecalibacterium prausnitzii. 49

Furthermore, gut microbial alterations are also 
related to postmenopausal diseases, such as the 
pathogenesis of osteoporosis and GSM caused by 
steroid deficiency. A study has found 
Ruminococcus flavefaciens showed the largest dif-
ference in gut microbiota abundance and was also 
positively correlated with osteoclastic indicators 
and the estrobolome.50 In another study, research-
ers transplant feces from female mice with intact 

Figure 2. Higher systemic estrogens affect gut microbiome diversity and composition, thereby reducing β-glucuronidase availability 
and increasing estrogen excretion; when estrogen levels reduce, it also reshapes the gut microbiome, thereby increasing β- 
glucuronidase activity, promoting estrogen reabsorption and maintaining systemic homeostasis of estrogen levels. Thus, abnormal-
ities in either of them may break this homeostasis and cause the occurrence of estrogen-driven diseases.
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ovaries into OVX mice, and it was found that the 
atrophy of the vaginal epithelium was significantly 
alleviated together with changes in the gut 
microbiota.92

Currently, there are few studies on the associa-
tion between menopausal symptoms and gut 
microbiota, and we need more evidence to clarify 
the role of gut microbiota in menopausal symp-
toms and postmenopausal-related diseases. Taken 
together, current understanding may reveal 
a potential gmGUS-based regulation of human 
estrogen metabolic homeostasis (Figure 2).

Clinical application base on gut microbial β- 
glucuronidase

Biomarker for estrogen-driven cancers

Estrogen-driven cancers (breast, endometrial, 
and ovarian cancers, etc.) are among the lead-
ing causes of female morbidity and mortality 
worldwide, and their common risk factor is the 
exposure to endogenous and exogenous estro-
gens. Early diagnosis and treatment is crucial 
for the prognosis of these patients’ life. At pre-
sent, tissue biopsy is still the gold standard for 
accurate diagnosis of breast cancer, but it is not 
suitable for routine clinical use.93 Therefore, it 
is urgent to develop a simple and feasible diag-
nosis and monitoring method for breast 
cancer.94 In recent years, human gut micro-
biota has been found playing a potential role 
in predicting individual breast cancer risk, 
prognosis and clinical efficacy,95 which may 
explain the individual phenotypic variation in 
estrogen-driven cancer development and treat-
ment efficacy. Human gut microbiome 
enriched with enzymes such as β- 
glucuronidase could play a major role in the 
deconjugation of both xenobiotics and estro-
gens, and elevate the risk of estrogen-driven 
cancers. An early observation has found 
a significantly positive correlation between β- 
glucuronidase activity and development stage 
of gynecological cancers.59 The gene expression 
studies found that βglucuronidase was one of 
the best reference genes in ovarian cancer.96 

Therefore, we can assume that the close asso-
ciation of the β-glucuronidases with 

gynecological cancers is mainly due to the reg-
ulation of estrogen metabolism by β- 
glucuronidase activity. Assessing the metabo-
lism of estrogen in the enterohepatic pathway 
may play a predictive role in the early diagnosis 
of the diseases, and β-glucuronidase as 
a mediator may be the key monitoring point. 
Therefore, the gmGUS can be a complementary 
biomarker for estrogen-driven cancers.97 

Besides, the characterization of specific gut 
microbial composition enriched by gmGUS- 
producing genera can also be studied for the 
prevention of these diseases.

Nowadays, steroid metabolomics of breast 
cancer has great potential in digging up key 
metabolic pathways related to canceration,93 

and testing enzyme activity of β-glucuronidase 
in human excrement may improve the diagnos-
tic sensitivity of gynecological cancers. A recent 
study has summarized the latest sensing strate-
gies to detect the β-glucuronidase activity,98 

which may make this potential biomarker test 
comes true in the future.

Therapeutic target on estrogen-driven diseases

Over the past few decades, increasing evidence 
has proved that gmGUS acts as an important 
mediator of microbiota–host interactions that 
not only correlate the gut microbiome with 
the estrogen-driven diseases, but also partici-
pate in the maintenance of health and the 
treatment of disease through the metabolism 
of glucuronate-containing carbohydrates and 
drugs.17 On the one hand, the gmGUS as the 
active component derived from estrobolome 
may be amenable to control by using targeted 
small-molecule inhibitors6 to fight against 
estrogen-induced diseases; on the other hand, 
gmGUS can be utilized to improve the body’s 
bioavailability of hormone agents due to its 
biotransformation effect for women with estro-
gen deficiency. In addition, changing the com-
position and diversity of gut microbiota 
encoding β-glucuronidase may be a two-way 
regulatory approach for increasing or decreas-
ing estrogen levels in the case of different dis-
eases (Figure 3).
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Inhibiting β-glucuronidase enzyme activity

The gmGUS inhibitor has emerged as a new 
approach to managing diseases and medication 
therapy.99 A recent project explored the structural 
properties of gastrointestinal microbiome-encoded 
GUS enzymes (GUSOME) repertoire in healthy 
women and breast cancer patients and the 
researchers found that manipulating at the probio-
tics level showed potential of reducing breast can-
cer risk through inhibiting reactivation of 
estrobolome-associated protein.100

The effective β-glucuronidase inhibitor 
D-glucaro-1,4-lactone (1,4-GL) may exert an anti- 
cancer effect partly through influencing 
steroidogenesis,101 and bacterial-specific gmGUS 
inhibitor TCH-3511 can effectively prevent carci-
nogen-induced microbial dysbiosis.102 It has been 
reported that probiotics and prebiotics decrease 
estrogen-related cancer risk by suppressing β- 

glucuronidase activity in the intestine. For exam-
ple, lactulose and oligofructose-enriched inulin 
could significantly decrease β-glucuronidase 
activity,103 suggesting the feasibility of improving 
the efficacy and safety of long-term estrogen 
administration in postmenopausal women and 
breast cancer patients by manipulating the activity 
of β-glucuronidase.42 Recent work established that 
inhibitors targeted toward gmGUS modulated the 
function of gut microbiota without adversely influ-
encing the host metabolic system,104 which indi-
cated its security in the clinical application.

In addition, the intestinal side effects of antic-
ancer drugs are expected to be offset by inhibiting 
β-glucuronidase activity. For example, irinotecan 
(CPT-11) is an essential anti-cancer drug treating 
many cancers including gynecological cancers, like 
endometrial cancer,105 but its effectiveness is 
severely limited due to the GI toxicity caused by 
gmGUS enzymes.106,107 The gmGUS has been 

Figure 3. Gut β-glucuronidase is emerging as a new therapeutic target in the improvement of menopausal disorders such as 
menopausal syndrome, as well as in the prevention and treatment of gynecological cancers. As for improving menopausal symptoms, 
the composition and diversity of the gut microbiota can be normalized through the intake of dietary fiber, herbal nutrients, and 
beneficial gut microbiota, and by increasing the bioavailability of estrogenic agents, such as soy isoflavones, which can be converted 
into efficiently absorbed estradiol. In the prevention and treatment of gynecological cancers, by inhibiting gmGUS enzyme activity 
and reducing the level of biologically active estrogens, and reducing the intestinal side effects of anti-cancer drugs, which exerts 
a synergistic effect and suppress the progression of gynecological cancers.
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regarded as a possible predictive biomarker of iri-
notecan-induced diarrhea severity.108 A study has 
found that inhibiting gmGUS activity with using 
anti-cancer drugs alleviated GI toxicity without 
affecting the serum pharmacokinetics of the drug 
or its metabolites;109 in addition, it also maintained 
gut microbiota balance instead of causing cancer- 
related dysbiosis.102 For example, TCH-3562 is 
a specific gmGUS inhibitor that can alleviate irino-
tecan-induced diarrhea without impairing anti- 
cancer efficacy in vivo.110 The gmGUS activity 
increased by irinotecan can be blocked by the 
gmGUS inhibitor (gmGUSi).106 Probiotics and 
dietary fibers like apple pectin can prevent irinote-
can-induced GI side-effects by inhibiting gut β- 
d-glucuronidase activity, and the latter further 
enhances the cytotoxic and proapoptotic effect of 
irinotecan.111,112 We suppose that the concomitant 
use of gmGUSi with anti-cancer drugs like irinote-
can may potentially become a new therapy pattern 
in treating gynecological cancers because the 
gmGUSi can not only reduce the intestinal toxicity 
but also inhibit gmGUS’s estrogen reactivation 
potential, exerting synergistic anti-tumor effects 
against gynecological cancers.109

The substrate-dependent inhibitors of gmGUS, 
like piperazine- and piperidine-containing drugs, 
are widely used to treat a variety of diseases, includ-
ing depression, infections, and cancers by the same 
mechanism, which selectively inhibits GUS 
activity.113 Altering the structure of active sites 
that participate in deglucuronidation by inducing 
gene mutations at specific points or deleting con-
served protein motifs may destabilize protein 
structure, thus inhibiting its potential of estrogen 
reactivation.100 The binding affinities of β- 
glucuronidase for target molecules for a particular 
ligand, like estrogen, could be adjusted by using 
structure-guided mutations.114

Identifying the structural properties of the 
gmGUS enzyme found in normal and breast cancer 
patients might provide multiple directions for 
enzyme modification.100 A recent study helped us 
to better understand the structural and functional 
complexity of the gmGUS.115 It has been found 
that small changes in inhibitor structure can alter 
gmGUS active-site conformation,109 which shows 
the operability of inhibiting gmGUS enzyme activ-
ity. Besides, the inhibitory effects of 36 kinds of 

nature flavonoids toward β-glucuronidase enzyme 
activity through interacting with amino acid site,116 

and the flavonoids in Mulberry bark displayed 
a strong inhibition of E. coli β-glucuronidase activ-
ity, suggesting it might be a promising dietary 
supplement for relieving gmGUS-mediated gut 
toxicity.117

Whether it is based on gene or protein-level reg-
ulation, studying the factors influencing gmGUS 
enzyme activity may also improve our knowledge 
of the effects of gut microbiota on estrogen 
reactivation.

Improving body’s bioavailability of hormone agents

As we know, different gut microbiome responds to 
different endogenous and exogenous glucuronide 
substrates, resulting in different bioavailability of 
these substrates.114 The microbial species with the 
capability of encoding GUS enzyme may play an 
important role in improving the bioavailability of 
estrogenic agents.

Hormone replacement therapy (HRT) is regarded 
as the first choice of women with menopausal syn-
drome, however, the percentage of clinical use is 
lower than expectation,118,119 mainly because of the 
potential risk of breast and uterine cancer.119 The 
gut microbial enzyme activity may affect an indivi-
dual’s response to HRT,42 and combining probiotics 
with HRT makes it possible to manipulate gmGUS 
activity by increasing the half-life of bioactive estro-
gens while reducing the risk of estrogen-driven dis-
eases, such as breast cancer.4,42

Phytoestrogens are a class of plant-produced 
polyphenolic compounds that are similar to 17β- 
estradiol and bind preferentially to the ERs, exerting 
estrogen-like effects with weak affinity and improv-
ing menopausal symptoms. Thus, phytoestrogens 
are becoming promising therapeutic molecules in 
improving the health of menopausal women. Many 
phytoestrogens exert potential health benefits and 
bioactivity via gut microbial biotransformation.120 

For example, isoflavone is a phytoestrogen found 
mainly in soy and soy-derived products, and its 
bioavailability requires initial hydrolysis of the 
sugar moiety by gmGUS for uptake to the peripheral 
circulation.121,122 It derives equol with strong estro-
genic activity, but only a fraction of the human 
population produces it.123 Some gmGUS producing 

GUT MICROBES 13



species like Collinsella, Faecalibacterium, and mem-
bers of the Clostridium clusters IV and XIVa were 
related to the equol production.124,125

Studies have proved that gmGUS assists phytoes-
trogen in exerting estrogenic effects and has pro-
spects of maintaining homeostasis of intestinal 
microbial and estrogen metabolism. Feeding mice 
with L. rhamnosus-fermented soymilk that enriched 
Bacteroides and Lactobacillus bacterial taxa including 
certain β-glucuronidase-producing genera could 
keep the balance of gut microbiota and maintain 
the isoflavone metabolism under normal conditions 
when antibiotics were concomitantly used.20,126 

Berberine relieved OVX-induced anxiety-like beha-
viors by enriching the equol-producing gut micro-
biota, and the majority of which are β-glucuronidase 
producing species, such as Bacteroides, 
Bifidobacterium, and Lactobacillus.90 Furthermore, 
a study found that tumor tissues contained a large 
amount of β-glucosidase, which could convert the 
genistein β-glucuronide conjugate into genistein 
aglycone and inhibit the induction of apoptosis in 
tumor tissues.127 Phytoestrogens also participate in 
controlling inflammatory metabolic disorders, and 
a recent study found that the dietary phytoestrogen 
secoisolariciresinol diglucoside had an anti-allergic 
property after being biotransformed by gmGUS.128

Overall, the gmGUS is essential for the bioactivity 
of phytoestrogens and plays an important role in 
biotransforming phytoestrogens into active com-
pounds that can perform estrogenic or other bio-
functions. For women who lack the gut microbial 
ability to produce estrogenic metabolite, supplying 
active metabolites in vitro by using the selected 
intestinal bacteria may be a solution. Thus, in 
order to explore possible theoretical knowledge for 
the developing functional probiotics, we can screen 
and isolate gut microbes capable of biotransforming 
phytoestrogens by β-glucosidase activity and char-
acterize how these microbes influence the response 
of phytoestrogen metabolism.120 A study has found 
that fecal cultures from women with an equol pro-
ducer phenotype produced equol when fermented 
with isoflavones in vitro,125 so transplanting certain 
fecal microbiota from equol producer may help 
improve body’s bioavailability of phytoestrogens. 
Further studies are needed to clarify which kind of 

gut microbial composition will improve the bioavail-
ability of these hormonal agents.

Changing composition and diversity of gut 
microbiota encoding β-glucuronidase

Recent findings indicate that an intact microbiome 
acts as a tumor suppressor against epithelial ovarian 
cancer and transplanting cecal microbiota derived 
from normal mice prolonged survival, because it 
improved the disturbed composition of gut 
microbiota.64 Therefore, normalizing or balancing 
the gut microbial composition can also be used as 
a treatment strategy against gynecological 
malignancies.129 It may be easier to manipulate at 
the level of probiotics instead of genes in developing 
drugs against estrogen-induced diseases.100 For exam-
ple, the gut microbiota may be manipulated to pro-
duce lower-affinity estrogens, thereby maintaining its 
physiological function but reducing the risk of estro-
gen-driven diseases such as breast cancer.4

Some researchers found that Enterobacteriaceae 
family of Proteobacteria, including Escherichia, 
Salmonella, Klebsiella, Shigella, and Yersinia patho-
bionts appear to uniquely respond to glucuronidated 
ligands, and they speculated that the GUS operon 
increase GUS enzyme activity and provide the ability 
for some Enterobacteriaceae to utilize intestinal endo-
phytes and allogenic glucuronides as nutrients.114 

Therefore, increasing the relative abundance of GUS 
operon-containing Enterobacteriaceae family in the 
gut may become a potential approach via increasing 
estrogen level against menopausal diseases. 
Microorganisms with a significantly reduced relative 
abundance in OVX group were considered as poten-
tial probiotic candidates, such as Lactobacillus, 
Clostridium, and of the potential candidates, 
Lactobacillus intestinalis YT2 restores the gut micro-
biota in OVX rats and improves menopausal 
symptoms.130 Increasing evidence shows that dietary 
fiber compounds decrease the risk of both pre- and 
post-menopausal breast cancer by reducing tumor 
promotion via altering the composition of the gut 
microbiota that influences E2 metabolism.131–133 

The long-term consumption of a synbiotics formu-
lated with Lactobacillus fermentum (probiotic) and β- 
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glucan from cauliflower mushroom (prebiotic) could 
improve the gut microbiota in estrogen-deficient rats 
and delay the progression of menopausal 
symptoms.134 Consuming the prebiotics chitosan 
and citrus pectin can improve menopausal symptoms 
by influencing the diversity and composition of gut 
microbiota.135 Recent study also found herbal nutra-
ceuticals like berberine ameliorated the ovariectomy- 
induced anxiety of SPF rats by modulating gut 
microbiota.90

In conclusion, the growing evidence shows that 
gut microbiome is a vital factor in occurring estro-
gen-related diseases. Future research will further 
identify specific characteristics of gut microbiome 
for developing novel approaches for the estrogen- 
driven diseases’ risk assessment, prevention and 
treatment.

Conclusion and future perspectives

There is still a big gap in the mechanism of interac-
tion between gut microbiota and estrogen affecting 
women’s health. By summarizing the present evi-
dence, we assume that, under physiological condi-
tions, there may be a two-way regulatory effect of 
gmGUS on maintaining the body’s estrogen home-
ostasis as depicted in Figure 2, which requires 
further studies to confirm. For example, a study 
should be designed to explore the relationship 
between estrogen levels in different states of physio-
logical fluctuation (such as different stages of the 
menstrual cycle) and the fecal gmGUS’s bioactivity 
in healthy women. Under the pathological condi-
tions, female gut microbiota enriched with gmGUS- 
producing microbes may play an important role in 
developing estrogen-driven diseases by participating 
in the circulation or activation of endogenous and 
exogenous estrogen-like molecules. The present evi-
dence shows that estrobolome participates in estro-
gen metabolism, among which GUS gene has been 
studied, but it has not been determined which of the 
various bacterial groups encoding GUS gene are the 
core bacterial groups that play a regulatory role, and 
the current evidence is relatively scattered.

We can only find some bacterial groups that are 
closely related to estrogen-related diseases and 
symptoms. However, it is still uncertain whether 
the role of these bacteria in these physiological and 
pathological processes is the whole picture, 

whether the regulation of the uncoupling process 
of estrogen is the core mechanism for these bacteria 
to play a role, or whether there are other undiscov-
ered mechanisms at the same time, which need to 
be further explored. Therefore, it is necessary to 
characterize the main gmGUS producing species 
involved in specific physical, pathological or phar-
macological processes and gmGUS enzymes from 
different bacterial families, which may improve our 
understanding of the role of intestinal microbiota 
in estrogen metabolism.

With further research into the relationship between 
the gut microbiota in vivo and the development of 
gynecological malignancies, it is possible to predict the 
early stages of these cancers by characterizing the 
disease-specific associated gut microbiota and its 
derived β-glucuronidase as a microbial biomarker, 
which could help us to achieve individualized cancer 
prevention and treatment. Although there are few 
clinical reports of gut microbiota-based treatments 
for gynecological cancers and menopause-related 
conditions, the fact that gut microbiota plays a role 
in these conditions cannot be denied. At present, 
based on our current understanding, gut microbiota 
can at least play an adjuvant therapeutic role, and it 
has been suggested that combining probiotics with 
estrogenic agents can improve the effectiveness and 
safety of current HRT.4 Even as an adjuvant, early use 
by patients should be advocated, before the preven-
tion of dysbiosis in the gut microbial composition and 
function. Additionally, a study has indicated that 
inhibiting local enzyme is less important than inhibit-
ing total-body estrogen synthesis as a treatment for ER 
+ breast cancer,136 and current evidence suggests that 
gmGUS is primarily involved in the regulation of 
circulating estrogen levels.8 Thus, regulating gmGUS 
activity may be a better choice for treating these 
estrogen-induced diseases. However, since intestinal 
microbiota provides immune and digestive benefits 
for cancer patients, it is urgent to explore how to 
maximize the therapeutic value while ensuring the 
safety of the body,137 and develop gmGUS drug 
design platform by more precise targeting of drug-
gable sites in the future. Last but not least, the sulfona-
tion and hydroxylation may also play roles in estrogen 
metabolism,6 thus, more studies are required to prove 
whether these metabolism steps are related to gut 
microbiota and evaluate their effect on gut estrogen 
metabolism compared with glucuronidation.
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