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Abstract

We propose causal isotonic calibration, a novel nonparametric method for calibrating predictors 

of heterogeneous treatment effects. In addition, we introduce a novel data-efficient variant of 

calibration that avoids the need for hold-out calibration sets, which we refer to as cross-calibration. 

Causal isotonic cross-calibration takes cross-fitted predictors and outputs a single calibrated 

predictor obtained using all available data. We establish under weak conditions that causal isotonic 

calibration and cross-calibration both achieve fast doubly-robust calibration rates so long as either 

the propensity score or outcome regression is estimated well in an appropriate sense. The proposed 

causal isotonic calibrator can be wrapped around any black-box learning algorithm to provide 

strong distribution-free calibration guarantees while preserving predictive performance.

1. Introduction

Estimation of causal effects via both randomized experiments and observational studies is 

critical to understanding the effects of interventions and informing policy. Moreover, it is 

often the case that understanding treatment effect heterogeneity can provide more insights 

than overall population effects (Obermeyer & Emanuel, 2016; Athey, 2017). For instance, a 

study of treatment effect heterogeneity can help elucidate the mechanism of an intervention, 

design policies targeted to subpopulations who can most benefit (Imbens & Wooldridge, 

2009), and predict the effect of interventions in populations other than the ones in which 

they were developed. These necessities have arisen in a wide range of fields, such as 

marketing (Devriendt et al., 2018), the social sciences (Imbens & Wooldridge, 2009), and 

the health sciences (Kent et al., 2018). For example, in the health sciences, heterogeneous 

treatment effects (HTEs) are of high importance to understanding and quantifying how 

certain exposures or interventions affect the health of various subpopulations (Dahabreh 

et al., 2016; Lee et al., 2020). Potential applications include prioritizing treatment to 

certain sub-populations when treatment resources are scarce, or individualizing treatment 

assignments when the treatment can have no effect (or even be harmful) in certain 

subpopulations (Dahabreh et al., 2016). As an example, treatment assignment based on 

risk scores has been used to provide clinical guidance in cardiovascular disease prevention 
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(Lloyd-Jones et al., 2019) and to improve decision-making in oncology (Collins & Varmus, 

2015; Cucchiara et al., 2018).

A wide range of statistical methods are available for assessing HTEs, with recent examples 

including Wager & Athey (2018), Carnegie et al. (2019), Lee et al. (2020), Yadlowsky et 

al. (2021), and Nie & Wager (2021), among others. In particular, many methods, including 

Imbens & Wooldridge (2009) and Dominici et al. (2020), scrutinize HTEs via conditional 

average treatment effects (CATEs). The CATE is the difference in the conditional mean 

of the counterfactual outcome corresponding to treatment versus control given covariates, 

which can be defined at a group or individual level. When interest lies in predicting 

treatment effect, the CATE can be viewed as the oracle predictor of the individual treatment 

effect (ITE) that can feasibly be learned from data. Optimal treatment rules have been 

derived based on the sign of the CATE estimator (Murphy, 2003; Robins, 2004), with more 

recent works incorporating the use of flexible CATE estimators (Luedtke & van der Laan, 

2016). Thus, due to its wide applicability and scientific relevance, CATE estimation has been 

of great interest in statistics and data science.

Regardless of its quality as a proxy for the true CATE, it is generally accepted that 

predictions from a given treatment effect predictor can still be useful for decision-making. 

However, theoretical guarantees for rational decision-making using a given treatment effect 

predictor typically hinge on the predictor being a good approximation of the true CATE. 

Accurate CATE estimation can be challenging because the nuisance parameters involved can 

be non-smooth, high-dimensional, or otherwise difficult to model correctly. Additionally, 

a CATE estimator obtained from samples of one population, regardless of its quality, 

may not generalize well to different target populations (Frangakis, 2009). Usually, CATE 

estimators (often referred to as learners) build upon estimators of the conditional mean 

outcome given covariates and treatment level (i.e., outcome regression), the probability of 

treatment given covariates (i.e., propensity score), or both. For instance, plug-in estimators 

such as those studied in Künzel et al. (2019) — so-called T-learners — are obtained by 

taking the difference between estimators of the outcome regression obtained separately for 

each treatment level. T-learners can suffer in performance because they rely on estimation 

of nuisance parameters that are at least as non-smooth or high-dimensional as the CATE, 

and are prone to the misspecification of involved outcome regression models; these issues 

can result in slow convergence or inconsistency of the CATE estimator. Doubly-robust and 

Neyman-orthogonal CATE estimation strategies like the DR-learner and R-learner (Wager 

& Athey, 2018; Foster & Syrgkanis, 2019; Nie & Wager, 2021; Kennedy, 2020) mitigate 

some of these issues by allowing for comparatively fast CATE estimation rates even when 

nuisance parameters are estimated at slow rates. However, while less sensitive to the learning 

complexity of the nuisance parameters, their predictive accuracy in finite-samples still 

relies on potentially strong smoothness assumptions on the CATE. Even when the CATE 

is estimated consistently, predictions based on statistical learning methods often produce 

biased predictions that overestimate or underestimate the true CATE in the extremes of the 

predicted values (van Klaveren et al., 2019; Dwivedi et al., 2020). For example, the ‘pooled 

cohort equations’ (Goff et al., 2014) risk model used to predict cardiovascular disease has 

been found to underestimate risk in patients with lower socioeconomic status or chronic 

inflammatory diseases (Lloyd-Jones et al., 2019). The implications of biased treatment effect 
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predictors are profound when used to guide treatment decisions and can range from harmful 

use to withholding of treatment (van Calster et al., 2019).

Due to the consequence of treatment decision-making, it is essential to guarantee, under 

minimal assumptions, that treatment effect predictions are representative in magnitude 

and sign of the actual effects, even when the predictor is a poor approximation of the 

CATE. In prediction settings, the aim of bestowing these properties on a given predictor 

is commonly called calibration. A calibrated treatment effect predictor has the property 

that the average treatment effect among individuals with identical predictions is close 

to their shared prediction value. Such a predictor is more robust against over-or-under 

estimation of the CATE in extremes of predicted values. It also has the property that 

the best predictor of the ITE given the predictor is the predictor itself, which facilitates 

transparent treatment decision-making. In particular, the optimal treatment rule (Murphy, 

2003) given only information provided by the predictor is the one that assigns the treatment 

predicted to be most beneficial. Consequently, the rule implied by a perfectly calibrated 

predictor is at least as favorable as the best possible static treatment rule that ignores HTEs. 

While complementing one another, the aims of calibration and prediction are fundamentally 

different. For instance, a constant treatment effect predictor can be well-calibrated even 

though it is a poor predictor of treatment effect heterogeneity (Gupta et al., 2020). In view 

of this, calibration methods are typically designed to be wrapped around a given black-box 

prediction pipeline to provide strong calibration guarantees while preserving predictive 

performance, thereby mitigating several prediction challenges mentioned previously.

In the machine learning literature, calibration has been widely used to enhance prediction 

models for classification and regression (Bella et al., 2010). However, due to the 

comparatively little research on calibration of treatment effect predictors, such benefits 

have not been realized to the same extent in the context of heterogeneous treatment effect 

prediction. Several works have contributed to addressing this gap in the literature. Brooks 

et al. (2012) propose a targeted (or debiased) machine learning framework (van der Laan & 

Rose, 2011) for within-bins calibration that could be applied to the CATE setting. Zhang et 

al. (2016) and Josey et al. (2022) consider calibration of marginal treatment effect estimates 

for new populations but do not consider CATEs. Dwivedi et al. (2020) consider estimating 

calibration error of CATE predictors for subgroup discovery using randomized experimental 

data. Chernozhukov et al. (2018) and Leng & Dimmery (2021) propose CATE methods 

for linear calibration, a weaker form of calibration, in randomized experiments. For causal 

forests, Athey & Wager (2019) evaluate model calibration using a doubly-robust estimator 

of the ATE among observations above or below the median predicted CATE. Lei & Candès 

(2021) propose conformal inference methods for constructing calibrated prediction intervals 

for the ITE from a given predictor but do not consider calibration of the predictor itself. 

Xu & Yadlowsky (2022) propose a nonparametric doubly-robust estimator of the calibration 

error of a given treatment effect predictor, which could be used to detect uncalibrated 

predictors. Our work builds upon the above works by providing a nonparametric doubly-

robust method for calibrating treatment effect predictors in general settings.

This paper is organized as follows. In Section 2, we introduce our notation and formally 

define calibration. There we also provide an overview of traditional calibration methods. In 
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Section 3, we outline our proposed approach, and we describe its theoretical properties in 

Section 4. In Section 5, we examine the performance of our method in simulation studies. 

We conclude with a discussion of our proposed approach in Section 6.

2. Statistical setup

2.1. Notation and definitions

Suppose we observe n independent and identically distributed realizations of data unit 

O ≔ (W , A, Y ) drawn from a distribution P , where W ∈ W ⊂ ℝd is a vector of baseline 

covariates, A ∈ {0, 1} is a binary indicator of treatment, and Y ∈ Y ⊂ ℝ is an outcome. For 

instance, W  can include a patient’s demographic characteristics and medical history, A can 

indicate whether an individual is treated (1) or not (0), and Y  could be a binary indicator of 

a successful clinical outcome. We denote by Dn ≔ {O1, O2, …, On} the observed dataset, with 

Oi ≔ (W i, Ai, Y i) representing the observation on the ith study unit.

For covariate value w ∈ W and treatment level a ∈ {0, 1}, we denote by 

π0(w) ≔ P (A = 1 ∣ W = w) the propensity score and by μ0(a, w) ≔ E(Y ∣ A = a, W = w) the 

outcome regression. The individual treatment effect is Y 1 − Y 0, where Y a represents 

the potential outcome obtained by setting A = a. Without loss of generality, we 

assume that higher values of Y 1 − Y 0 are desirable. We also assume that the contrast 

τ0(w) ≔ μ0(1, w) − μ0(0, w) equals the true CATE, E(Y 1 − Y 0 ∣ W = w), which holds under 

certain causal assumptions (Rubin, 1974). Throughout, we denote by ‖ ⋅ ‖ the L2(P ) norm, 

that is, ‖f‖2 = ∫ [f(w)]2dPW (w) for any given PW-square integrable function f :W ∈ ℝ, where 

PW  is the marginal distribution of W  implied by P . We deliberately take as convention that 

the median median {x1, x2, …, xk} of a set {x1, x2, …, xk} equals the k ∕ 2 tℎ order statistic of 

this set, where k ∕ 2 ≔ max{z ∈ ℕ:z ≤ k ∕ 2}.

Let τ :W ∈ ℝ be a treatment effect predictor, that is, a function that maps a realization 

w of W  to a treatment effect prediction τ(w). In practice, τ can be obtained using any 

black-box algorithm. Below, we first consider τ to be fixed, though we later address 

situations in which τ is learned from the data used for subsequent calibration. We define 

the calibration function γ0(τ, w) ≔ E[Y 1 − Y 0 ∣ τ(W ) = τ(w)] as the conditional mean of the 

individual treatment effect given treatment effect score value τ(w). By the tower property, 

γ0(τ, w) ≔ E[τ0(W ) ∣ τ(W ) = τ(w)], and so, expectations only involving γ0(τ, W ) and other 

functions of W  can be taken with respect to PW .

The solution to an isotonic regression problem is typically nonunique. Throughout this text, 

we follow Groeneboom & Lopuhaa (1993) in taking the unique càdlàg piece-wise constant 

solution of the isotonic regression problem that can only take jumps at observed values of 

the predictor.

2.2. Measuring calibration and the calibration-distortion decomposition

Various definitions of risk predictor calibration have been proposed in the literature — see 

Gupta & Ramdas (2021) and Gupta et al. (2020) for a review. Here, we outline our definition 
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of calibration and its rationale. Given a treatment effect predictor τ, the best predictor of the 

individual treatment effect in terms of MSE is w γ0(τ, w) ≔ E[Y 1 − Y 0 ∣ τ(W ) = τ(w)]. By 

the law of total expectation, this predictor has the property that, for any interval [a, b),

E{[τ0(W ) − γ0(τ, W )]I(γ0(τ, W ) ∈ [a, b))} = 0 . (1)

Equation 1 indicates that γ0(τ, ⋅ ) is perfectly calibrated on [a, b). Therefore, when a given 

predictor τ is such that τ(W ) = γ0(τ, W ) with P-probability one, τ is said to be perfectly 

calibrated (Gupta et al., 2020) for the CATE — for brevity, we omit “for the CATE” 

hereafter when the type of calibration being referred to is clear from context.

In general, perfect calibration cannot realistically be achieved in finite samples. A more 

modest goal is for the predictor τ to be approximately calibrated in that τ(w) is close to 

γ0(τ, w) across all covariate values w ∈ W. This naturally suggests the calibration measure:

CAL(τ) ≔ ∫ [γ0(τ, w) − τ(w)]2dPW(w) . (2)

This measure, referred to as the ℓ2-expected calibration error, arises both in prediction 

(Gupta et al., 2020) and in assessment of treatment effect heterogeneity (Xu & Yadlowsky, 

2022). We note that CAL(τ) is zero if τ(w) is perfectly calibrated. Additionally, averaging 

in CAL(τ) with respect to measures other than PW  could be more relevant in certain 

applications; such cases can occur, for instance, when there is a change of population that 

results in covariate shift and we are interested in measuring how well τ is calibrated in the 

new population.

Interestingly, the above calibration measure plays a role in a decomposition of the mean 

squared error (MSE) between the treatment predictor and the true CATE, in that

MSE(τ) ≔ ‖τ0 − τ‖2 = CAL(τ) + DIS(τ), (3)

with DIS(τ) ≔ E{var[τ0(W ) ∣ τ(W )]} a quantity we term the distortion of τ. We refer to 

the above as a calibration-distortion decomposition of the MSE. A consequence of the 

calibration-distortion decomposition is that MSE-consistent CATE estimators are also 

calibrated asymptotically. However, particularly in settings where the covariates are high-

dimensional or the CATE is nonsmooth, the calibration error rate for such predictors can be 

arbitrarily slow — this is discussed further after Theorem 4.6.

To interpret DIS(τ), we find it helpful to envision a scenario in which a distorted message 

is passed between two persons. The goal is for Person 2 to discern the value of τ0(w), 
where the value of w ∈ W is only known to Person 1. Person 1 transmits w, which is then 

distorted through a function τ and received by Person 2. Person 2 knows the functions τ
and τ0, and may use this information to try to discern τ0(w). If τ is one-to-one, τ0(w) can 

be discerned by simply applying τ0 ∘ τ−1 to the received message τ(w). More generally, 

whenever there exists a function f such that τ0 = f ∘ τ, Person 2 can recover the value of 
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τ0(w). For example, if τ = τ0 then f is the identity function. If no such function f exists, it 

may not be possible for Person 2 to recover the value of τ0(w). Instead, they may predict 

τ0(w) based on τ(w) via γ0(τ, w). Averaged over W ∼ PW , the MSE of this approach is 

precisely DIS(τ). See Equation 3 in Kuleshov & Liang (2015) for a related decomposition of 

E[{Y − τ(X)}2] = MSE(τ) + E[{Y − τ0(X)}2] derived in the context of probability forecasting.

The calibration-distortion decomposition shows that, at a given level of distortion, better-

calibrated treatment effect predictors have lower MSE for the true CATE function. We will 

explore this fact later in this work when showing that, in addition to improving calibration, 

our proposed calibration procedure can improve the MSE of CATE predictors.

2.3. Calibrating predictors: desiderata and classical methods

In most calibration methods, the key goal is to find a function θ:ℝ ℝ of a given predictor 

τ such that CAL(θ ∘ τ) < CAL(τ), where θ ∘ τ refers to the composed predictor w θ(τ(w)). A 

mapping θ that pursues this objective is referred to as a calibrator. Ideally, a calibrator θn for 

τ constructed from the dataset Dn should satisfy the following desiderata:

Property 1: CAL(θn ∘ τ) tends to zero quickly as n grows;

Property 2: θn ∘ τ and τ are comparably predictive of τ0.

Property 1 states the primary objective of a calibrator, that is, to yield a well-calibrated 

predictor. Property 2 requires that the calibrator not destroy the predictive power of the 

initial predictor in the pursuit of Property 1, which would occur if the calibration term in 

decomposition (3) were made small at the cost of dramatic inflation of the distortion term.

In the traditional setting of classification and regression, a natural aim is to learn, for 

a ∈ {0, 1}, a predictor w νa(w) of the outcome Y  among individuals with treatment A = a. 

The best possible such predictor is given by the treatment-specific outcome regression 

w μ0(a, w). For a ∈ {0, 1}, ν(a) is said to be calibrated for the outcome regression if 

ν(a)(w) ≈ E(Y ∣ ν(a)(W ) = ν(a)(w)), A = a for P0-almost every w. Such a calibrated predictor 

can be obtained using existing calibration methods for regression (Huang et al., 2020), 

which we review in the next paragraph. It is natural to wonder, then, whether existing 

calibration approaches can be directly used to calibrate for the CATE. As a concrete 

example, given predictors ν(1) and ν(0) of μ0(1, ⋅ ) and μ0(0, ⋅ ), a natural CATE predictor 

is the T-learner τ ≔ ν(1) − ν(0). However, even if ν(1) and ν(0) are calibrated for their 

respective outcome regressions, the predictor τ can still be poorly calibrated for the CATE. 

Indeed, in settings with treatment-outcome confounding, T-learners can be poorly calibrated 

when the calibrated predictors ν(1) and ν(0) are poor approximations of their respective 

outcome regressions. As an extreme example, suppose that ν(a) equals the constant predictor 

w E(Y ∣ A = a) for a ∈ {0, 1}, which is perfectly calibrated for the outcome regression. 

Then, the corresponding T-learner τ( ⋅ ) = E(Y ∣ A = 1) − E(Y ∣ A = 0) typically has poor 

calibration for the CATE in observational settings.
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In classification and regression settings (Huang et al., 2020), the most commonly used 

calibration methods include Platt’s scaling (Platt et al., 1999), histogram binning (Zadrozny 

& Elkan, 2001), Bayesian binning into quantiles (Naeini et al., 2015), and isotonic 

calibration (Zadrozny & Elkan, 2002; Niculescu-Mizil & Caruana, 2005). Broadly, Platt’s 

scaling is designed for binary outcomes and uses the estimated values of the predictor to fit 

the logistic regression model

logitP (Y = 1 ∣ τ(W ) = t) = α + βt

with α, β ∈ ℝ. While it typically satisfies Property 2, Platt’s scaling is based on strong 

parametric assumptions and, as a consequence, may lead to predictions with significant 

calibration error, even asymptotically (Gupta et al., 2020). Nevertheless, Platt’s scaling may 

be preferred when limited data is available. Histogram binning, also known as quantile 

binning, involves partitioning the sorted values of the predictor into a fixed number of 

bins. Given an initial prediction, the calibrated prediction is given by the empirical mean 

of the observed outcome values within the corresponding prediction bin. A significant 

limitation of histogram binning is that it requires a priori specification of the number 

of bins. Selecting too few bins can significantly degrade the predictive power of the 

calibrated predictor, whereas selecting too many bins can lead to poor calibration. Bayesian 

binning improves upon histogram binning by considering multiple binning models and their 

combinations; nevertheless, it still suffers from the need to pre-specify binning models and 

prior distributions.

Isotonic calibration is a histogram binning method that learns the bins from data using 

isotonic regression, a nonparametric method traditionally used for estimating monotone 

functions (Barlow & Brunk, 1972; Martino et al., 2019; Huang et al., 2020). Specifically, 

the bins are selected by minimizing an empirical MSE criterion under the constraint that the 

calibrated predictor is a nondecreasing monotone transformation of the original predictor. 

Isotonic calibration is motivated by the heuristic that, for a good predictor τ, the calibration 

function γ0(τ, ⋅ ) should be approximately monotone as a function of τ. For instance, when 

τ = τ0, the map τ0 γ0(τ0, ⋅ ) = τ0 is the identity function. Despite its popularity and strong 

performance in practice (Zadrozny & Elkan, 2002; Niculescu-Mizil & Caruana, 2005; Gupta 

& Ramdas, 2021), to date, whether isotonic calibration satisfies distribution-free calibration 

guarantees remains an open question (Gupta, 2022). In this work, we will show that isotonic 

calibration satisfies a distribution-free calibration guarantee in the sense of Property 1. We 

further establish that Property 2 holds, in that the isotonic selection criterion ensures that the 

calibrated predictor is at least as predictive as the original predictor up to negligible error.

3. Causal isotonic calibration

In real-world experiments, Dwivedi et al. (2020) found empirically that state-of-the-art 

CATE estimators tend to be poorly calibrated. However, strikingly, the authors found that 

such CATE predictors can often still correctly rank the average treatment effect among 

subgroups defined by bins of the predicted effects. These findings support the heuristic 

that the calibration function γ0(τ0, ⋅ ) is often approximately monotone as a function of 
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the predictor τ. This heuristic makes extending isotonic calibration to the CATE setting 

especially appealing since the monotonicity constraint ensures that the calibrated predictions 

preserve the (non-strict) ranking of the original predictions.

Inspired by isotonic calibration, we propose a doubly-robust calibration method for 

treatment effects, which we refer to as causal isotonic calibration. Causal isotonic 

calibration takes a given predictor trained on some dataset and performs calibration using 

an independent (or hold-out) dataset. Mechanistically, causal isotonic calibration first 

automatically learns uncalibrated regions of the given predictor. Calibrated predictions 

are then obtained by consolidating individual predictions within each region into a single 

value using a doubly-robust estimator of the ATE. In addition, we introduce a novel data-

efficient variant of calibration which we refer to as cross-calibration. In contrast with the 

standard calibration approach, causal isotonic cross-calibration takes cross-fitted predictors 

and outputs a single calibrated predictor obtained using all available data. Our methods can 

be implemented using standard isotonic regression software.

Let τ be a given treatment effect predictor assumed, for now, to have been built using 

an external dataset, and suppose that Dn is the available calibration dataset. In general, 

we can calibrate the predictor τ using regression-based calibration methods by employing 

an appropriate surrogate outcome for the CATE. For both experimental and observational 

settings, a surrogate outcome with favorable efficiency and robustness properties is the 

pseudo-outcome χ0(O) defined via the mapping

χ0:o τ0(w) + a − π0(w)
π0(w)[1 − π0(w)] [y − μ0(a, w)], (4)

with o ≔ (w, a, y) representing a realization of the data unit. This pseudo-outcome has been 

used as surrogate for the CATE in previous methods for estimating τ0, including the DR-

learner (Luedtke & van der Laan, 2016; Kennedy, 2020). If χ0 were known, an external 

predictor τ could be calibrated using Dn by isotonic regression of the pseudo-outcomes 

χ0(O1), χ0(O2), …, χ0(On) onto the calibration sample predictions τ(W 1), τ(W 2), …, τ(W n). 
However, χ0 depends on π0 and μ0, which are usually unknown and must be estimated.

A natural approach for calibrating treatment effect predictors using isotonic regression 

is as follows. First, define χn as the estimated pseudo-outcome function based on 

estimates μn and πn derived from Dn. Then, a calibrated predictor is given by 

θn ∘ τ, where the calibrator θn is found via isotonic regression as a minimizer over 

ℱiso ≔ {θ:ℝ ℝ; θ is monotone nondecreasing} of the empirical least-squares risk function

θ 1
n ∑

i = 1

n
[χn(Oi) − θ ∘ τ(W i)]2 .

However, this optimization problem requires a double use of Dn: once, for creating the 

pseudo-outcomes χn(Oi), and a second time, in the calibration step. This double usage could 

lead to over-fitting (Kennedy, 2020), and so we recommend obtaining pseudo-outcomes via 
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sample splitting or cross-fitting. Sample splitting involves randomly partitioning Dn into 

ℰm ∪ Cℓ, with ℰm used to estimate μ0 and π0, and Cℓ used to carry out the calibration step 

— see Algorithm 1 for details. Cross-fitting improves upon sample splitting by using all 

available data to estimate μ0 and π0 as well as to carry out the calibration step. Algorithm 4, 

outlined in Appendix B, is the cross-fitted variant of Algorithm 1.

Algorithm 1 Causal isotonic calibration

Require: predictor τ, training data ℰm, calibration data Cℓ

1: obtain estimate χm of χ0 using ℰm;
2: perform isotonic regression to find

θn
∗ = argmin

θ ∈ ℱiso
∑

i ∈ ℐell

[χm(Oi) − θ ∘ τ(W i)]2

with ℐell the set of indices for observations in Cℓ ⊂ Dn;
3: set τn

∗ = θn
∗ ∘ τ .

Ensure: τn
∗

In practice, the external dataset used to construct τ for input into Algorithm 1 is likely to 

arise from a sample splitting approach wherein a large dataset is split in two, with one half 

used to estimate τ and the other to calibrate it. This naturally leads to the question of whether 

there is an approach that fully utilizes the entire dataset for both fitting an initial estimate 

of τ0 and calibration. Algorithm 2 describes causal isotonic cross-calibration, which provides 

a means to accomplish precisely this. In brief, this approach applies Algorithm 1 a total of 

k times on different splits of the data, where for each split an initial predictor of τ0 is fitted 

based on the first subset of the data and this predictor is calibrated using the second subset. 

These k calibrated predictors are then aggregated via a pointwise median. Interestingly, other 

aggregation strategies, such as pointwise averaging, can lead to uncalibrated predictions 

(Gneiting & Ranjan, 2013; Rahaman & Thiery, 2020). A computationally simpler variant of 

Algorithm 2 is given by Algorithm 3. In this implementation, a single isotonic regression is 

performed using the pooled out-of-fold predictions; this variant may also yield more stable 

performance in finite-samples than Algorithm 2 — see Section 2.1.2 of Xu & Yadlowsky 

(2022) for a related discussion in the context of debiased machine learning.
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Algorithm 2 Causal isotonic cross-calibration (unpooled)

Require: dataset Dn, # of cross‐fitting splits k

1: partition Dn into datasets C(1), C(2), …, C(k);
2: fors = 1, 2, …, k do

3: set ℰ(s) ≔ Dn\C(s);

4: get initial predictor τn, s of τ0 using ℰ(s);
5: get calibrated predictor τn, s

∗ via Alg. 1 using predictor

τn, s, training data ℰ(s), and calibration data C(s);
6: end for
7: set τn

∗:w median{τn, 1
∗ (w), τn, 2

∗ (w), …, τn, k
∗ (w)} .

Ensure: τn
∗

4. Large-sample theoretical properties

We now present theoretical results for causal isotonic calibration. We first obtain results 

for causal isotonic calibration described by Algorithm 1 applied to a fixed predictor τ. 

We also establish MSE guarantees for the calibrated predictor and argue that the proposed 

calibrator satisfies Properties 1 and 2. We then extend our results to the procedure described 

by Algorithm 2.

For ease of presentation, we only establish theoretical results for the case where the nuisance 

estimators are obtained using sample splitting. With minor modifications, our results can be 

readily extended to cross-fitting by arguing along the lines of Newey & Robins (2018). In 

that spirit, we assume that the available data Dn is the union of a training dataset ℰm and a 

calibration dataset Cℓ of sizes m and ℓ, respectively, with n = m + ℓ and min{m, ℓ} ∞ as
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Algorithm 3 Causal isotonic cross-calibration (pooled)

Require: dataset Dn, # of cross‐fitting splits k

1: partition Dn into datasets C(1), C(2), …, C(k);
2: fors = 1, 2, …, k do

3: let j(i) = s for each i ∈ C(s);

4: set ℰ(s) ≔ Dn\C(s);

5: get estimate predictor χn, s of χ0 from ℰ(s);

6: get initial predictor τn, s of τ0 using ℰ(s);
7: end for
8: perform isotonic regression using pooled out‐of‐fold predictions to find

θn
∗ = argmin

θ ∈ ℱiso
∑

i = 1

n
[χn, j(i)(Oi) − θ ∘ τn, j(i)(W i)]2

9: set τn, s
∗ ≔ θn

θ ∘ τn, s for s = 1, 2, …, k;
10: set τn

∗:w median{τn, 1
∗ (w), τn, 2

∗ (w), …, τn, k
∗ (w)} .

Ensure: τn
∗

n ∞. Let τn
∗ be the calibrated predictor obtained from Algorithm 1 using τ, ℰm and Cℓ

where the estimated pseudo-outcome χm is obtained by substituting estimates πm and μm of π0

and μ0 into (4).

Condition 4.1 (bounded outcome support). The P-support Y of Y  is a uniformly bounded 

subset of ℝ.

Condition 4.2 (positivity). There exists ϵ > 0 such that P (ϵ < π0W ) < 1 − ϵ) = 1.

Condition 4.3 (independence). Estimators πm and μm do not use any data in Cℓ.

Condition 4.4 (bounded range of πm, μm, τ). There exist 0 < η, α < ∞ such that 

P (η < πm(W ) < 1 − η) = P ( ∣ μm(A, W ) ∣ < α) = P ( ∣ τ(W ) ∣ < α) = 1 for m = 1, 2, …

Condition 4.5 (bounded variation of best predictor). The function θ0:ℝ ℝ such that 

θ0 ∘ τ = γ0(τ, ⋅ ) is of bounded total variation.

It is worth noting that the initial predictor and its best monotone transformation can be 

arbitrarily poor CATE predictors. Condition 4.1 holds trivially when outcomes are binary, 

but even continuous outcomes are often known to satisfy fixed bounds (e.g., physiologic 

bound, limit of detection of instrument) in applications. Condition 4.2 is standard in causal 

inference and requires that all individuals have a positive probability of being assigned to 

either treatment or control. Condition 4.3 follows as a direct consequence of the sample 

splitting approach, because the estimators are obtained from an independent sample from 

the data used to carry the calibration step. Condition 4.4 requires that the estimators of the 

outcome regression and propensity score be bounded; this can be enforced, for example, 
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by threshholding when estimating these regression functions. Condition 4.5 excludes cases 

in which the best possible predictor of the CATE given only the initial predictor τ has 

pathological behavior, in the sense that it has infinite variation norm as a (univariate) 

mapping of τ. We stress here that isotonic regression is used only as a tool for calibration, 

and our theoretical guarantees do not require any monotonicity on components of the 

data-generating mechanism — for example, γ0(τ, w) need not be monotone as a function of 

τ(w).

The following theorem establishes the calibration rate of the predictor τn
∗ obtained using 

causal isotonic calibration.

Theorem 4.6 (τn
∗ is well-calibrated). Under Conditions 4.1–4.5, as n ∞, it holds that

CAL(τn
∗) = OP ℓ−2 ∕ 3 + (πm − π0)(μm − μ0) 2 .

The calibration rate can be expressed as the sum of an oracle calibration rate and the 

rate of a second-order cross-product bias term involving nuisance estimators. Notably, the 

causal isotonic calibrator rate can satisfy Property 1 at the oracle rate ℓ−2 ∕ 3 so long as 

‖(πm − π0)(μm − μ0)‖ shrinks no slower than ℓ−1 ∕ 3, which requires that one or both of π0

and μ0 is estimated well in an appropriate sense. If π0 is known, as in most randomized 

experiments, the fast calibration rate of ℓ−2 ∕ 3 can be achieved even when μm is inconsistent, 

thereby providing distribution-free calibration guarantees irrespective of the smoothness of 

the outcome regression or dimension of the covariate vector. When π0 is unknown, the 

oracle rate of ℓ−2 ∕ 3 may not be achievable if the propensity score and outcome regression 

are insufficiently smooth relative to the dimension of the covariate vector (Kennedy, 2020; 

Kennedy et al., 2022).

It is interesting to contrast the calibration guarantee in Theorem 4.6 with existing MSE 

guarantees for DR-learners (Kennedy, 2020) since, in view of (3), they also provide 

calibration guarantees. While the MSE estimation rates for the CATE depend on the 

dimension and smoothness of τ0, the curse of dimensionality for our calibration rates only 

manifests itself in the doubly-robust cross-remainder term that involves nuisance estimation 

rates. For instance, when ℓ = m = n ∕ 2, if π0 and μ0 are known to be Hölder smooth with 

exponent α ≥ 1, the calibration rate implied by Theorem 4.6 with minimax optimal nuisance 

estimators is, up to logarithmic factors, ℓ−2 ∕ 3 + ℓ−4α ∕ (2α + d). In contrast, if τ0 is known to 

be Hölder smooth with exponent β ≥ 1, a minimax optimal estimator of τ0 is only guaranteed 

to achieve an MSE, and therefore calibration, rate of ℓ−2β ∕ (2β + d) + ℓ−4α ∕ (2α + d) (Kennedy 

et al., 2022). Moreover, when the nuisance smoothness satisfies α ≥ d ∕ 4, causal isotonic 

calibration can achieve the oracle calibration rate of ℓ−2 ∕ 3, whereas a minimax optimal 

CATE estimator is only guaranteed to achieve the same calibration rate under the stringent 

condition that the smoothness of τ0 satisfies β ≥ d.
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The following theorem states that the predictor obtained by taking pointwise medians of 

calibrated predictors is also calibrated.

Theorem 4.7 (Pointwise median preserves calibration). Let τn, 1
∗ , τn, 2

∗ , …, τn, k
∗  be predictors, and 

define pointwise τn, k
∗ (w) ≔ median{τn, 1

∗ (w), τn, 2
∗ (w), …, τn, k

∗ (w)}. Then

CAL(τn
∗) ≤ k ∑

s = 1

k
CAL(τn, s

∗ ),

where the median operation is defined as in Section 2.1.

Under similar conditions, Theorem 4.7 combined with a generalization of Theorem 4.6 

that handles random τ (see Theorem C.5 in Appendix C.4) establishes that a predictor τn, k
∗

obtained using causal isotonic cross-calibration (Algorithm 2) has calibration error CAL(τn, k
∗ )

of order

OP n−2 ∕ 3 + max
1 ≤ s ≤ k

(πn, s − π0)(μn, s − μ0) 2

as n ∞, where μn, s and πn, s are the outcome regression and propensity score estimators 

obtained after excluding the stℎ fold of the full dataset. In fact, Theorem 4.7 is valid for any 

calibrator of the form τn
∗:w τn, sn(w)

∗ (w), where sn(w) is any random selector that may depend 

on the covariate value w. This suggests that the calibration rate for the median-aggregated 

calibrator implied by Theorem 4.7 is conservative as it also holds for the worst-case oracle 

selector that maximizes calibration error.

We now establish that causal isotonic calibration satisfies Property 2, that is, it maintains 

the predictive accuracy of the initial predictor τ. In what follows, predictive accuracy is 

quantified in terms of MSE. At first glance, the calibration-distortion decomposition appears 

to raise concerns that causal isotonic calibration may distort τ so much that the predictive 

accuracy of τn
∗ may be worse than that of τ. This possibility may seem especially concerning 

given that the ouput of isotonic regression is a step function, so that there could be many 

w, w′ ∈ W such that τ(w) ≠ τ(w′) but τn
∗(w) = τn

∗(w′). The following theorem alleviates this 

concern by establishing that, up to a remainder term that decays with sample size, the 

MSE of τn
∗ is no larger than the MSE of the initial CATE predictor τ. A consequence of 

this theorem is that causal isotonic calibration does not distort τ so much as to destroy its 

predictive performance. To derive this result, we leverage that τn
∗ is in fact a misspecified 

DR-learner of the univariate CATE function γ0(τ, ⋅ ). While isotonic calibrated predictors are 

calibrated even when γ0(τ, ⋅ ) is not a monotone function of τ, we stress that misspecified 

DR-learners for γ0(τ, ⋅ ) are typically uncalibrated.

In the theorem below, we define the best isotonic approximation of the CATE given the 

initial predictor τ as
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τ0
∗ ≔ argmin

θ ∘ τ :θ ∈ ℱiso
‖τ0 − θ ∘ τ‖ .

Theorem 4.8 (Causal isotonic calibration does not inflate MSE much). Under Conditions 

4.1—4.5,

‖τn
∗ − τ0

∗‖ = OP ℓ−1 ∕ 3 + ‖(πm − π0)(μm − μ0)‖

as n ∞. As such, as n ∞, the inflation in root MSE from causal isotonic calibration 
satisfies

MSEτn
∗ − MSE(τ) ≤ OP ℓ−1 ∕ 3 + ‖(πm − π0)(μm − μ0)‖ .

A similar MSE bound can be established for causal isotonic cross-calibration as defined in 

Algorithm 2.

5. Simulation studies

5.1. Data-generating mechanisms

We examined the behavior of our proposal under two data-generating mechanisms. The 

first mechanism (Scenario 1) includes a binary outcome whose conditional mean is an 

additive function (on the logit scale) of non-linear transformations of four confounders with 

treatment interactions. The second mechanism (Scenario 2) includes instead a continuous 

outcome with conditional mean linear on covariates and treatment interactions, with more 

than 100 covariates of which only 20 are true confounders. In both scenarios, the propensity 

score follows a logistic regression model. All covariates were independent and uniformly 

distributed on (−1, +1). Sample sizes 1,000, 2,000, 5,000 and 10,000 were considered. 

Further details are given in Appendix D.1.

5.2. CATE estimation

In Scenario 1, to estimate the CATE, we implemented gradient-boosted regression trees 

(GBRT) with maximum depths equal to 2, 5, and 8 (Chen & Guestrin, 2016), random 

forests (RF) (Breiman, 2001), generalized linear models with lasso regularization (GLMnet) 

(Friedman et al., 2010), generalized additive models (GAM) (Wood, 2017), and multivariate 

adaptive regression splines (MARS) (Friedman, 1991). In Scenario 2, we implemented RF, 

GLMnet, and a combination of variable screening with lasso regularization followed by 

GBRT with maximum depth determined via cross-validation. We used the implementation 

of these estimators found in R package sl3 (Coyle et al., 2021). Causal isotonic cross-

calibration was implemented using the variant outlined in Algorithm 3. Further details are 

given in Appendix D.2.
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5.3. Performance metrics

We compared the performance of the causal isotonic calibrator to its uncalibrated version in 

terms of three metrics: the calibration measure defined in (1), MSE, and the calibration bias 

within bins defined by the first and last prediction deciles. The calibration bias within bins 

is given by the measure in (2) standardized by the probability of falling within each bin. For 

each simulation iteration, the metric was estimated empirically using an independent sample 

V of size nV = 104. These metric estimates were then averaged across 500 simulations. 

Additional details on these metrics is provided in Appendix D.3.

5.4. Simulation results

Results from Scenario 1 are summarized in Figure 3. The predictors based on GLMnet, RF, 

GAM, and MARS happened to be well-calibrated, and so, causal isotonic calibration did not 

lead to noticeable improvements in calibration error. In contrast, causal isotonic calibration 

of GBRT substantially decreased its calibration error, regardless of tree depth and sample 

size. In terms of MSE, calibration improved the predictive performance of GBRT and GAM, 

and preserved the performance of GLMnet and MARS. The calibration bias within bins 

of prediction was generally smaller after calibration, with a more notable improvement on 

GBRT — see Table 2 in Appendix E.

Results from Scenario 2 are summarized in Figure 2. The predictors based on RF and GBRT 

with GLMnet screening were poorly calibrated, and causal isotonic calibration substantially 

reduced their calibration error. Calibration did not noticeably change the already small 

calibration error of the GLMnet predictions; however, calibration substantially reduced the 

calibration error within quantile bins of its predictions — see Table 3 in Appendix E. 

Finally, with respect to MSE, causal isotonic calibration improved the performance of RF 

and GBRT with variable screening, and yielded similar performance to GLMnet.

In Figure 4 of Appendix E, we compared calibration performance using hold-out sets to 

cross-calibration. We found substantial improvements in MSE and calibration by using 

cross-calibration over conventional calibration.

6. Conclusion

In this work, we proposed causal isotonic calibration as a novel method to calibrate 

treatment effect predictors. In addition, we established that the pointwise median of 

calibrated predictors is also calibrated. This allowed us to develop a data-efficient variant of 

causal isotonic calibration using cross-fitted predictors, thereby avoiding the need for a hold-

out calibration dataset. Our proposed methods guarantee that, under minimal assumptions, 

the calibration error defined in (2) vanishes at a fast rate of ℓ−2 ∕ 3 with little or no loss 

in predictive power, where ℓ denotes the number of observations used for calibration. 

This property holds regardless of how well the initial predictor τ approximates the true 

CATE function. To our knowledge, our method is the first in the literature to directly 

calibrate CATE predictors without requiring trial data or parametric assumptions. Potential 

applications of our method include data-driven decision-making with strong robustness 

guarantees. In future work, it would be interesting to study whether pairing causal isotonic 
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cross-calibration with conformal inference (Lei & Candès, 2021) leads to improved ITE 

prediction intervals, and whether causal isotonic calibration and shape-constrained inference 

methods (Westling & Carone, 2020) can be used to construct confidence intervals for the 

calibration function γ0(τn
∗, ⋅ ).

Our method has limitations. Its calibration guarantees require that either μ0 or π0 be estimated 

sufficiently well. Flexible learning methods can be used to satisfy this condition. If π0

is known, this condition can be trivially met. Hence, our method can be readily used to 

calibrate CATE predictors and characterize HTEs in clinical trials. For proper calibration, 

our method requires all confounders to be measured and adjusted for. In future work, it 

will be important to study CATE calibration in the context of unmeasured confounding. 

Our strategy could be adapted to construct calibrators for general learning tasks, including 

E-learning of the conditional relative risk (Jiang et al., 2019; Qiu et al., 2019), proximal 

causal learning (Tchetgen et al., 2020; Sverdrup & Cui, 2023), and instrumental variable-

based learning (Okui et al., 2012; Syrgkanis et al., 2019).

In simulations, we found that causal isotonic cross-calibration led to well-calibrated 

predictors without sacrificing predictive performance; benefits were especially prominent in 

high-dimensional settings and for tree-based methods. This is of particularly high relevance 

given that regression trees have become popular for CATE estimation due to their flexibility 

(Athey & Imbens, 2016) and interpretability (Lee et al., 2020). We also found that cross-

calibration substantially improved the MSE of the calibrated predictor relative to hold-out 

set calibration approaches and can even improve the MSE of the original predictor.

Though our focus was on treatment effect estimation, our theoretical arguments can be 

readily adapted to provide guarantees for isotonic calibration in regression and classification 

problems. Hence, we have provided an affirmative answer to the open question of whether 

it is possible to establish distribution-free calibration guarantees for isotonic calibration 

(Gupta, 2022).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Calibration error and MSE in Scenario 1. The panels show the calibration error (top) and 

MSE (bottom) using the calibrated (left) and uncalibrated (right) predictors as a function of 

sample size. The y-axes are on a log scale.
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Figure 2. 
Calibration error and MSE in Scenario 2. The panels show the calibration error (top) and 

MSE (bottom) using the calibrated (left) and uncalibrated (right) predictors as a function of 

sample size. The y-axes are on a log scale.
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