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Abstract

The coupling of electron and proton transfer is critical for chemical and biological processes 

spanning a wide range of length and time scales and often occurring in complex environments. 

Thus, diverse modeling strategies, including analytical theories, quantum chemistry, molecular 

dynamics, and kinetic modeling, are essential for a comprehensive understanding of such proton-

coupled electron transfer reactions. Each of these computational methods provides one piece of the 

puzzle, and all these pieces must be viewed together to produce the full picture.

1. Introduction

Proton-coupled electron transfer (PCET), which is defined broadly as the coupled motion 

of electrons and protons, is vital to a wide range of chemical and biological processes.1–4 

Multiscale modeling strategies are required to study these processes because they occur over 

an extensive range of length and time scales. A combination of analytical theories, quantum 

chemistry methods, molecular dynamics (MD) simulation approaches, and kinetic modeling 

schemes has been used to investigate PCET reactions in various complex environments. 

The modeling of PCET at electrochemical interfaces has been reviewed recently.5 Thus, 

this Perspective will focus on PCET in solution and proteins, describing illustrative 

examples of how various computational approaches can be combined to obtain fundamental 

insights about chemically and biologically important systems, such as electrocatalysts, 

photocatalysts, enzymes, and photoreceptors. The feedback between computational and 

experimental studies will also be emphasized through these examples.

The workhorse for computational studies of PCET is density functional theory (DFT), 

although higher levels of theory, such as multireference wavefunction methods, may be 

used to attain more quantitative accuracy. DFT can be used for ground state geometry 

optimizations and the calculation of relative free energies, which are directly related 

to experimentally measurable proton-coupled redox potentials and driving forces. To 

study photoinduced PCET reactions, excited state methods such as time-dependent DFT 

(TDDFT)6 or multireference wavefunction methods7 can be used to optimize geometries 

in excited states and to calculate absorption and emission energies related to experimental 
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measurements.8, 9 To investigate the real-time dynamics of PCET reactions, MD trajectories 

can be propagated on either ground or excited state potential energy surfaces. Nonadiabatic 

dynamics methods such as Ehrenfest10 or surface hopping11 can be used to propagate 

trajectories on multiple surfaces. For larger systems such as proteins, hybrid quantum 

mechanical/molecular mechanical (QM/MM) methods allow only the portion of the system 

undergoing chemistry to be treated quantum mechanically with a method such as DFT, while 

the remaining atoms are treated with a molecular mechanical force field. These types of 

simulations provide useful mechanistic information about complex processes.

In addition to these computational methods, a general theoretical formulation of PCET12–14 

provides a conceptual framework and analytical rate constant expressions. This theory treats 

the transferring proton(s), as well as the electrons, quantum mechanically and thereby 

accounts for hydrogen tunneling, which plays a significant role in many PCET reactions. 

In the vibronically nonadiabatic regime, concerted PCET reactions are described in terms 

of nonadiabatic transitions between two sets of electron-proton vibronic states. Analogous 

to Marcus theory for electron transfer,15 a solvent fluctuation leads to the degeneracy 

between a pair of reactant and product vibronic states, and the electron and proton tunnel 

simultaneously with a probability determined by the square of the vibronic coupling. As 

shown in Eq. (1) below, the analytical nonadiabatic PCET rate constant expression sums 

over all reactant and product vibronic states, where each term in the double summation 

depends exponentially on a free energy barrier expressed in terms of the reaction free energy 

and reorganization energy and is weighted by the square of the vibronic coupling. The input 

quantities such as reaction free energy, reorganization energy, and vibronic coupling can be 

computed with DFT and other computational techniques.

The remainder of this Perspective presents examples that showcase the use of diverse 

strategies on multiple scales to investigate different types of PCET reactions. For PCET 

in molecular systems, both electrochemically and photochemically induced PCET reactions 

are discussed. For PCET in enzymes, an enzyme catalyzing a single PCET reaction and 

an enzyme catalyzing multiple coupled PCET reactions are examined. The blue-light using 

flavin (BLUF) photoreceptor protein is presented as the final example of photoinduced 

PCET in a complex photocycle. Each of these examples illustrates the power of computation 

in revealing fundamental insights and stimulating experimental investigations. Many other 

computational studies of PCET16–19 have provided significant insights and further illustrate 

the diversity of computational strategies.

II. PCET in molecular systems

PCET in molecular systems can be thermally activated or induced electrochemically 

or photochemically. This section will discuss an example of electrochemically induced 

PCET in benzimidazole-phenol (BIP) molecules and photochemically induced PCET in 

anthracene-phenol-pyridine triads. Both of these molecular systems were inspired by 

chemical steps in photosynthesis, and therefore understanding their mechanisms has 

implications for designing solar energy conversion devices.
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A. Electrochemically induced PCET in BIP molecules

Photosystem II is a central protein in photosynthesis that splits water into hydrogen and 

oxygen. A key step in the mechanism of photosystem II is PCET within a tyrosine-histidine 

pair, where oxidation of the tyrosine induces proton transfer from tyrosine to histidine.20, 21 

Computational studies have aided the design of a series of BIP systems inspired by this 

biological motif using benzimidazole to represent histidine and phenol to represent tyrosine 

(Figure 1).22, 23 Moreover, these BIP systems have been extended to create proton wires that 

undergo multi-proton PCET processes for long-range proton translocation via a Grotthuss-

type mechanism.24 Such proton wires were inspired by bioenergetic processes in which 

protons are pumped across a membrane to generate a potential difference that is vital to 

providing energy in living systems. Understanding the fundamental mechanisms of these 

processes is critical for controlling and tuning the biological systems as well as for designing 

artificial photosynthetic systems.

A variety of computational methods have been applied to these molecular systems. Each 

of these computational methods has provided distinct insights into the physical principles 

underlying these PCET processes. For example, DFT calculations were used to compute 

proton-coupled redox potentials,22, 23, 25 which agree with experimental data, and to design 

systems that transport multiple protons over hydrogen-bonded networks,24 where an EnPT
process corresponds to a PCET reaction involving the transfer of n protons. Such DFT 

calculations predicted that the redox potential for an E2PT process would be significantly 

less positive than the redox potential for the analogous E1PT process, as subsequently 

verified experimentally (Figure 1A).22 Moreover, another combined experimental and 

theoretical study produced BIP systems with substituents that mitigate the drop in redox 

potential (Figure 1A).23 This ability to tune the redox potentials is important in the context 

of artificial photosynthesis. Subsequent studies designed E4PT systems that transported 

protons over ~16 Å (Figure 1B).24

In addition, vibronically nonadiabatic PCET theory12–14 was used to compute the kinetic 

isotope effect (KIE), which is the ratio of the rate constants for hydrogen and deuterium. 

High KIEs are generally understood to implicate hydrogen tunneling,26–28 although 

hydrogen tunneling has also been shown to be significant for systems with low KIEs.22 

The rate constant for an E1PT process has the following form12–14

k(R) = ∑
μ

Pμ∑
ν

V elSμv
2

ℏ
π

λkBT exp − ΔGμν
o + λ 2

4λkBT (1)

k = ∫ P(R)k(R)dR (2)

where the summations are over reactant and product vibronic states, Pμ is the Boltzmann 

population of reactant state μ, V el is the electronic coupling, Sμv is the overlap integral 

between reactant and product proton vibrational wavefunctions states μ and v, λ is the 

reorganization energy, and ΔGμν
o  is the free energy of reaction for vibronic states μ and v. 
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Moreover, ℏ is Planck’s constant divided by 2π, kB is the Boltzmann constant, and T  is 

the temperature. In these equations, k(R) is the rate constant at a proton donor-acceptor 

distance R, and Eq. (2) corresponds to the thermal averaging over the proton donor-acceptor 

distance R, where the rate constant for each R is weighted by the probability P(R) of 

sampling this value of R. The same expression is applicable to EnPT processes involving n
proton transfer reactions, although determination of the input quantities such as the overlap 

integrals requires the calculation of multidimensional proton vibrational wavefunctions.22, 29

In the application of this theory to the BIP systems, the input quantities were computed 

with DFT and other computational techniques. Note that the overlap integral is dependent 

on the proton potential energy surface, which in turn depends on the level of theory used 

to generate it. These computational methods can be validated by benchmarking against 

higher levels of theory and comparison of the rate constants and KIEs to experimental 

measurements. The calculations predicted that the KIE would decrease to ~1 for an E2PT 

process compared to the analogous E1PT process that exhibited a KIE of ~2.22 This trend 

was subsequently verified experimentally, providing validation for the PCET theory.22 This 

work highlighted the possibility that the KIE can be unity for a PCET reaction due to 

contributions from excited vibronic states with large overlaps between the reactant and 

product proton vibrational wavefunctions. This insight is relevant to experimentalists who 

often use the KIE as an indicator of proton transfer and presume that a KIE of unity implies 

the absence of proton transfer.

Using yet another computational strategy, nonequilibrium real-time dynamics simulations 

were performed to determine if the multiple proton transfer reactions are synchronous 

or asynchronous.30 On the electrochemical timescale, the PCET mechanisms for 

up to four proton transfers (E4PT) appear to be concerted in that the infrared 

spectroelectrochemistry experiments observe either all protons on their donors or all 

protons on their acceptors with no partial proton transfers.24 Moreover, DFT calculations 

of proton-coupled redox potentials indicated that the potentials computed with all protons 

transferred upon oxidation agree with the experimentally measured potentials.24 Thus, 

from an electrochemical and thermodynamic perspective, these PCET processes are 

concerted with no thermodynamically stable intermediates. On the ultrafast timescale, 

however, nonequilibrium dynamics simulations revealed that these PCET reactions are 

asynchronous.30 In these simulations, the BIP systems were equilibrated on the ground state, 

and the PCET reaction was induced by instantaneous oxidation (that is, electron removal). 

This situation corresponds to photochemically induced PCET, in which the electron transfers 

from the BIP molecule to a bound photosensitizer upon photoexcitation, as studied with 

TDDFT for fixed geometries of an E1PT BIP system.31 Focusing on the real-time dynamics 

of an E2PT system, the first proton transfer occurred ~100 fs after electron transfer, and the 

second proton transfer occurred an average of ~600 fs after the first proton transfer (Figure 

1C). These simulations highlight the fundamental principle that the identification of a PCET 

reaction as synchronous or asynchronous depends on the timescale considered.

A significant challenge for simulating these types of molecular PCET reactions is to 

perform nonequilibrium real-time dynamics with quantized protons and explicit solvent. 

The combination of QM/MM methods with path integral, wavepacket, or nuclear-electronic 
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orbital (NEO)32 methods to quantize the nuclei would be useful for these purposes. 

Simulations of electrochemically induced PCET reactions may also require an atomistic 

description of the electrode-solution interface, including electrolyte ions.

B. Photochemically induced PCET in triads

The anthracene-phenol-pyridine triads are also related to the tyrosine-histidine pair of 

photosystem II, where phenol represents tyrosine and pyridine represents histidine. As 

for the BIP molecules, understanding the fundamental PCET mechanism in these model 

systems is expected to provide insights into photosynthesis and other biological processes 

that rely on the oxidation of tyrosine. In these triads, photoexcitation of a local excited 

state (LES) of anthracene induces two PCET reactions (Figure 2).33 The first PCET reaction 

consists of electron transfer from phenol to anthracene and proton transfer from phenol 

to pyridine, generating the charge separated state (CSS). The second PCET reaction is 

the charge recombination reaction leading back to the ground state. A series of triads 

with different substituents associated with a range of driving forces, defined as the 

negative of the PCET reaction free energy −ΔGo, was investigated both experimentally 

and computationally.

These triads served as the basis for illustrating inverted region behavior for a PCET reaction. 

In the inverted region, the more thermodynamically favorable reaction is slower. Marcus 

theory for electron transfer predicted that certain electron transfer reactions would exhibit 

inverted region behavior15, 34 due to the exponential dependence of the rate constant 

on the free energy barrier, ΔG‡ = ΔGo + λ 2

(4λ) , where −ΔGo is the driving force and λ is 

the reorganization energy. When −ΔGo = λ, the free energy barrier is zero (that is, the 

reaction is activationless), and as the driving force increases such that −ΔGo > λ, the free 

energy barrier increases and therefore the rate constant decreases. This inverted region 

behavior was confirmed experimentally for electron transfer.35 For some PCET reactions, 

the inverted region may not be observable36 because contributions from excited product 

vibronic states could lead to a plateau in the rate constant, where one state is always nearly 

activationless, as the driving force increases within the experimentally accessible range. For 

three of the triads, however, the inverted region was observed experimentally for the charge 

recombination step (Figure 2B).33 According to the vibronically nonadiabatic PCET theory, 

the inverted region for PCET may be observed if the relevant excited product vibronic states 

do not contribute to the rate constant due to prohibitively small overlap arising from phase 

cancellation for oscillatory excited proton vibrational wavefunctions.33, 37 This criterion was 

found to be satisfied when the analytical nonadiabatic PCET theory was applied to the three 

triads exhibiting inverted region behavior. Moreover, the KIE for the charge recombination 

step was calculated and experimentally observed to be unity,33 similar to the E2PT BIP 

system for the same basic reason.

In an effort to explain why only three of the triads studied exhibited inverted region 

behavior, the nonequilibrium excited state dynamics for the initial PCET reaction following 

photoexcitation was simulated using TDDFT (Figure 2A).38 The system was equilibrated 

in the ground state and then instantaneously placed in the LES, which was the S1 state, 
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followed by adiabatic excited state dynamics on the S1 state. For the triads that exhibited 

inverted region behavior, the S1 state changed character to the CSS, indicating electron 

transfer from phenol to anthracene and proton transfer from phenol to pyridine. For the 

other triads, however, the S1 state changed character to a state characterized as local 

electron-proton transfer (LEPT), corresponding to electron and proton transfer from phenol 

to pyridine, namely excited state proton transfer within the phenol-pyridine pair. This 

behavior was also observed with higher-level multireference wavefunction calculations, such 

as CASSCF+NEVPT2.39

Recently, this prediction of the LEPT state was verified experimentally in a butyronitrile 

glass at 77 K.8 In these experiments, photoexcitation to the LES resulted in fluorescence 

from the LEPT state, which would be quenched at room temperature due to a twist between 

the phenol and pyridine. The combined experimental and computational analysis led to 

the discovery of the proton-coupled energy transfer (PCEnT) mechanism. This mechanism 

entails electronic energy transfer from anthracene to the phenol-pyridine fragment coupled 

to proton tunneling without charge transfer to anthracene. This system serves as an example 

of how computational studies can make a prediction, such as the LES to LEPT mechanism 

in these triads, that is subsequently validated experimentally to reveal a new type of 

fundamental mechanism.

In addition to computational challenges such as quantizing the transferring protons and 

including explicit solvent, simulating photoinduced molecular PCET reactions requires an 

accurate description of excited state potential energy surfaces. Moreover, the nuclei are 

expected to move on multiple surfaces, necessitating the use of nonadiabatic dynamics 

methods.40, 41

III. PCET in enzymes

PCET in enzymatic systems is often activated by the binding of substrate or an effector, 

as well as thermal fluctuations of the solvated protein system. This section will discuss 

an example of a single PCET reaction in soybean lipoxygenase (SLO) and an example 

of a series of six coupled PCET reactions in ribonucleotide reductase (RNR). Although 

similar computational methods can be applied to the PCET reactions in both enzymes, the 

description of multiple coupled PCET reactions is more challenging and requires kinetic 

modeling techniques to describe the overall multi-PCET process. Understanding PCET in 

enzymes is important for controlling biochemical processes as well as for guiding protein 

engineering and drug design.

A. PCET in soybean lipoxygenase

SLO catalyzes the net hydrogen atom transfer from the linoleic acid substrate to the iron 

cofactor. In this rate-limiting PCET reaction,42 the electron transfers from the π-backbone 

of the substrate to the iron, while the proton transfers from the C11 carbon of the substrate 

to the oxygen of the hydroxyl ligand (Figure 3A). A concerted mechanism is supported by 

thermodynamic considerations because single electron and single proton transfer are highly 

endoergic, whereas the concerted process is exoergic, so the reaction will be concerted to 

avoid high-energy intermediates. SLO has served as a prototype for hydrogen tunneling in 
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enzymes because of its experimentally observed KIE of ~80 at room temperature for the 

wild-type enzyme26, 27 and ~700 for the L546A/L754A double mutant.28 These remarkably 

high KIEs are hallmarks of hydrogen tunneling and nonadiabaticity.

A variety of theoretical methods have been applied to SLO.27, 43–48 Some of these studies 

performed atomistic MD simulations including hydrogen tunneling with methods such 

as path integrals44 or variational transition state theory with multidimensional tunneling 

contributions.45 Initial applications of vibronically nonadiabatic PCET theory to SLO43, 46 

used DFT calculations on small model systems of the active site and classical MD of 

the entire solvated enzyme system to compute the input quantities to the analytical rate 

constant expression given in Eq. (1). According to this PCET theory, the KIE associated 

with each term in the double summation is proportional to the ratio of the square of the 

overlap integrals for hydrogen and deuterium (Figure 3B). This ratio increases as the overlap 

decreases, that is, as the proton donor-acceptor distance increases. Because the proton 

transfers from a carbon to an oxygen atom, corresponding to a weak CH – – – O hydrogen 

bond, the proton donor-acceptor C–O distance is relatively large, leading to a high ratio 

of the hydrogen and deuterium overlap integrals and thus a large KIE. From a physical 

perspective, a substantial difference between the hydrogen and deuterium overlap integrals 

corresponds to a large difference in the hydrogen and deuterium tunneling probabilities and 

hence a high KIE. The double mutant was proposed to have an even longer C–O distance to 

explain its even higher KIE.28

Subsequently, QM/MM free energy simulations provided more detailed mechanistic 

information on the atomic level.48 The substrate and cofactor were treated with DFT, and 

the remainder of the solvated protein system was treated with molecular mechanics. The 

finite temperature string method with umbrella sampling49 was used to compute the free 

energy as a function of the C–O, C–H, and O–H distances for both the wild-type and double 

mutant SLO systems (Figure 3C).48 The resulting free energy profiles confirmed that the 

double mutant has a larger equilibrium C–O distance than the wild-type enzyme. Moreover, 

these simulations, as well as classical MD simulations,50 also showed that the double mutant 

has a larger cavity for substrate binding because the two leucine residues bracketing the 

proton donor, C11, on the substrate were mutated to smaller alanine residues (Figure 3A). 

The larger substrate binding cavity leads to a less optimal orientation of the CH – – – O
interface, a smaller overlap between the vibrational wavefunctions, and a larger ratio of the 

hydrogen and deuterium overlap integrals. The greater difference in hydrogen and deuterium 

tunneling probabilities is responsible for the colossal KIE of ~700 observed for the double 

mutant. This example illustrates the importance of combining atomistic classical MD and 

QM/MM free energy simulations with analytical theories to explain PCET mechanisms in 

enzymatic systems.

Given the importance of hydrogen tunneling and conformational sampling for this enzyme, 

simulations must treat the transferring proton quantum mechanically as well as include 

the solvated protein environment. An additional challenge arises because this PCET 

reaction is vibronically and electronically nonadiabatic,51 and therefore simulations must 

include the effects of excited vibronic states. To address this challenge, nonadiabatic 

dynamics methods can be implemented for vibronic surfaces beyond the Born-Oppenheimer 
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approximation,52, 53 although extending such approaches to proteins will require additional 

methodological developments, such as combining the NEO method32, 54 with QM/MM 

approaches. Similar approaches could be applied to other enzymes catalyzing nonadiabatic 

PCET, such as cytochrome bc1.19, 55

B. PCET in ribonucleotide reductase

RNR catalyzes the conversion of ribonucleotides to deoxyribonucleotides and is essential 

for DNA synthesis and repair in all living organisms.56, 57 The prototypical RNR that has 

been studied extensively is E. coli, a member of the same RNR class as human and mouse. 

In this enzyme, catalysis requires radical transfer over ~32 Å through a series of six PCET 

steps between amino acids (Figure 4A).57, 58 Understanding this complex PCET pathway, 

including the fundamental mechanisms of the individual steps and how they are coupled 

to each other and to protein conformational motions, has biochemical and potentially 

pharmacological implications. Individual PCET reactions modeled from fragments of the 

RNR protein have been studied using various quantum chemistry methods.59–62 Recently, 

a cryo-EM structure of E. coli RNR was solved, revealing the complete ordered PCET 

pathway.63 This structure enabled computational studies of the full protein system with a 

combination of classical MD, QM/MM free energy simulations, and kinetic modeling.

Classical MD simulations based on the cryo-EM structure of RNR provided insights into 

protein conformational motions and hydrogen-bonding interactions.64 These simulations 

illustrated that water hydrogen bonds to several tyrosine residues along the PCET pathway, 

including Y356, Y731, and Y730. Moreover, free energy simulations showed that the 

interfacial residue Y731 is able to sample two conformations: a conformation where Y731 

is stacked with Y730 and a conformation where Y731 is flipped out pointing toward the 

interface. Evidence for these two conformations had also been obtained experimentally.65, 66

QM/MM free energy simulations using the finite temperature string method with umbrella 

sampling clarified the mechanisms of two individual PCET steps along the radical transfer 

pathway. Such free energy simulations suggested that PCET between Y730 and Y731 is 

mediated by E623 through a proton relay mechanism involving double proton transfer with 

the proton residing temporarily on E623.67 Analogous free energy simulations of PCET 

between Y730 and C439 highlighted the role of hydrogen-bonding interactions between 

Y730 and either E623 or water.68 These QM/MM free energy simulations illustrate that the 

conformational motions and electrostatic interactions of the key residues as well as nearby 

water molecules impact both the thermodynamics and kinetics of the individual PCET steps.

In addition to atomistic simulations of the individual PCET steps, a kinetic model was 

designed to describe the reversible radical transfer process along the PCET pathway in RNR 

(Figure 4B).69 Such kinetic models have been used to elucidate related processes in other 

biological systems.70, 71 The kinetic model for RNR was based on experimental studies of 

photoRNR systems,72, 73 which contain a photosensitizer ligated to a residue adjacent to 

Y356. Illumination of the photosensitizer with light causes the photosensitizer to oxidize 

Y356, thereby injecting a radical into the PCET pathway. Although the radical lifetime 

of Y356 was monitored experimentally, the kinetics of the individual steps could not be 

resolved. The mathematical kinetic model filled this gap by illustrating the time evolution 
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of radical transport along the PCET pathway.69 It also identified the rate constants that 

exert the greatest impact on the overall timescale of radical transport. Ranges for most 

of the individual rate constants in the kinetic model were determined from experimental 

measurements and atomistic QM/MM free energy simulations. This example highlights 

the importance of combining atomistic simulations and kinetic models to understand the 

coupling among multiple PCET reactions and protein conformational motions in complex 

biological systems (Figure 4C).

The real-time dynamics simulation of the entire radical transfer pathway, encompassing 

the six PCET reactions as well as both slow and fast conformational motions in RNR, is 

especially challenging. For such a large and complex system, coarse-graining74 portions of 

the enzyme may be warranted, and multiscale simulation methods would be necessary.

IV. PCET in photoreceptors

Light-activated photoreceptor proteins are important for long-range signaling in cells and 

have applications to optogenetics. The Slr1694 blue-light using flavin (BLUF) photoreceptor 

protein undergoes forward and reverse PCET during its photocycle.75–77 Photoexcitation to 

a local excited (LE) state of the flavin induces electron transfer from Tyr8 to the flavin, 

followed by double proton transfer from Tyr8 to the flavin via the intervening Gln50, 

generating the neutral flavin radical. A reverse PCET reaction returns the flavin and Tyr8 to 

their original oxidation and protonation states. At this point of the photocycle, the system is 

in a thermally excited state called the light-adapted state, which is capable of sending a long-

range signal to cause a cellular response. Understanding the mechanism of this photocycle 

and characterizing the light-adapted state are important for engineering photoreceptors with 

specified properties and signaling capabilities.

A wide range of computational methods have been applied to BLUF photoreceptors.9, 78–85 

Focusing on the Slr1694 BLUF photoreceptor, free energy simulations have identified the 

thermodynamically stable configurations of the active site. Specifically, these simulations 

probed the location and orientation of Trp91 and the orientation of Gln50, which can 

form a proton relay between Tyr8 and the flavin.84 Moreover, multireference wavefunction 

calculations, such as CASSCF+NEVPT2, of the two-dimensional ground and excited 

state proton potential energy surfaces have indicated that the double proton transfer 

reaction occurs sequentially after the initial electron transfer from Tyr8 to flavin.85 These 

multireference calculations also provided a benchmark for the TDDFT method used in 

subsequent on-the-fly MD simulations.86

To simulate the real-time dynamics of the BLUF photocycle, the system was equilibrated 

in the ground state and instantaneously photoexcited to the S1 LE state.9 Nonequilibrium 

excited state MD trajectories propagated on the S1 state confirmed that double proton 

transfer follows the initial electron transfer and suggested that Gln50 subsequently rotates, 

providing an alternative route for reverse PCET from the flavin back to Tyr8 (Figure 5). On 

the basis of these simulations, the light-adapted state was hypothesized to be characterized 

by the rotated imidic acid tautomer of Gln50.9 Similar proposals for other BLUF 

photoreceptors had been made previously in the literature based on experimental data81, 87 
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or static calculations.78–81 This hypothesis was tested for the Slr1694 BLUF photoreceptor 

by calculating the electronic absorption spectrum of the flavin using TDDFT and the 

infrared vibrational stretch of the flavin C4 = O using an anharmonic grid-based approach. 

These spectra were averaged over many conformations of the dark- and light-adapted 

states procured from the real-time dynamics simulations.9 The conformationally averaged 

electronic and vibrational spectra exhibited red-shifts in agreement with experimental 

measurements88 on the light-adapted state. This example showcases the importance of 

utilizing a variety of methods, including QM/MM free energy simulations, multireference 

calculations, and nonequilibrium excited state dynamics, for investigating photoreceptor 

proteins.

The challenges encountered for simulating PCET in photoreceptors are similar to those 

discussed above for simulating photoinduced PCET in solution except the systems are 

larger and the photocycles are often more complex. In addition, an accurate description 

of the diradical state in this BLUF photoreceptor requires multireference wavefunction 

methods, which are computationally expensive, particularly for nonadiabatic dynamics 

with quantized nuclei. The relatively long timescale of the BLUF photocycle creates 

an additional challenge. Approaches such as coarse-grained modeling89 and accelerated 

molecular dynamics,90 as well as kinetic modeling,69 could be used to address these 

challenges.

V. Concluding remarks and future prospects

The most effective strategy for exploring PCET reactions is to employ a wide range 

of different types of computational methods, spanning analytical theories, atomistic 

simulations, spectroscopic simulations, and kinetic modeling. The input quantities to the 

analytical PCET theories, such as the driving forces and the proton potential energy surfaces, 

are often computed with DFT. Moreover, the QM region in QM/MM free energy simulations 

is also often treated with DFT for computational efficiency. Benchmarking various 

DFT exchange-correlation functionals against high-level multireference wavefunction 

calculations can guide the choice of functional for each system studied.39, 67, 86 Comparing 

computed structural, kinetic, and spectroscopic data to experimental measurements,9, 22 as 

well as providing predictions for experimental verification,22 is another important part of 

this strategy.

In addition, the development of novel computational approaches that capture electronic and 

nuclear quantum effects, non-Born-Oppenheimer effects, and conformational motions on a 

wide range of length and time scales is essential for further progress. For example, methods 

that enable the real-time simulation of nuclear-electronic quantum dynamics beyond the 

Born-Oppenheimer approximation52, 53 are directly applicable to PCET reactions. These 

NEO methods54 will enable MD simulations in which the electrons and transferring 

proton(s) are treated quantum mechanically on the same level, thereby inherently 

incorporating zero-point energy, nuclear delocalization, and hydrogen tunneling associated 

with the quantized protons. Hybrid approaches that incorporate complex environments, 

such as heterogeneous solutions, proteins, and interfaces, open up more opportunities for 

the simulation of chemical and biological processes. For example, QM/QM methods with 
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two different levels of quantum mechanics or QM/QM/MM methods that also include a 

molecular mechanical part can be combined with dielectric continuum models to expand the 

size of the systems studied, treating the most important part of the system at the highest level 

and the least important environmental part of the system at the lowest level. An important 

future direction is to treat one of the QM levels with the NEO method, thereby including the 

nuclear quantum effects of the transferring protons for complex condensed phase systems.

Machine learning (ML)30, 91–94 is another tool that is expected to expand the capabilities 

in this field. In particular, ML could provide more accurate potential energy surfaces at a 

lower computational cost. This ML strategy has been demonstrated for simulations of liquid 

water with potential energy surfaces at coupled cluster singles, doubles, and perturbative 

triples accuracy including nuclear quantum effects via path integrals.95 The main challenge 

of such ML strategies is that they require computationally intensive training for each type 

of system studied. In addition, ML can also be used to compute the proton vibrational 

wavefunctions and energy levels94 for input into analytical PCET rate constant expressions. 

However, the training procedure for molecular PCET systems with multiple protons will 

be computationally expensive. Combining all of these computational strategies while 

maintaining a strong connection to experiments will continue to reveal the fundamental 

principles governing the coupled motions of electrons and protons in chemically and 

biologically significant processes.
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Figure 1: 
Computationally guided design of BIP molecules. (A) Starting from E1PT (only one proton 

transferred), computation assisted in designing an E2PT system (two protons transferred), 

predicting the decrease in the proton-coupled redox potential E1/2 and the KIE. The proton-

coupled redox potentials E1/2 given here were measured experimentally and agree well with 

the computed values. Further calculations assisted in designing an E2PT system with a 

higher redox potential of ~1 V vs SCE (saturated calomel electrode) necessary for artificial 

photosynthetic systems that split water. (B) Computation also assisted in designing an 

E4PT system that transports four protons over ~16 Å upon oxidation. (C) Nonequilibrium 

dynamics simulations showed that the two proton transfers are asynchronous for an E2PT 
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system. The identification of a PCET reaction as synchronous or asynchronous depends 

on the timescale considered and, in this case, requires real-time dynamics simulations. The 

colors of the calculated quantities correspond to the methods used to calculate them. Part C 

adapted with permission from Ref. 30.
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Figure 2: 
Anthracene-phenol-pyridine triads that exhibit both PCET and PCEnT. Photoexcitation of 

the anthracene LES (local excited state, indicated by an asterisk in the molecule on the 

left) leads to the CSS (charge separated state) via PCET and then inverted region behavior 

upon charge recombination back to the GS (ground state) for some triads (horizontal 

arrow and top figures) but leads to the LEPT (local electron-proton transfer) state via 

PCEnT without charge transfer to anthracene or inverted region behavior for other triads 

(diagonal arrow and lowest plot). (A) Nonequilibrium, real-time dynamics trajectories in 

the S1 state; the timescales and energy fluctuations are not comparable to experiment due 

to the initial conditions. The optimized structures of the relevant states are provided; the 

phenol-pyridine twisting in the LEPT state is impeded at 77 K. The partial charges on 

the anthracene, phenol, and pyridine fragments are also provided, showing that electron 

transfer to anthracene occurs only for the CSS. (B) The inverted region is depicted for a 

PCET model system for illustrative purposes. In the molecules, the atoms are carbon (gray), 

hydrogen (white), nitrogen (blue), and oxygen (red). The colors of the plot titles correspond 

to the computational methods used to generate them. The plots in part A were adapted with 

permission from Ref. 38, and the plot in part B was adapted with permission from Ref. 37.
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Figure 3: 
PCET in soybean lipoxygenase. (A) The electron transfers from the π-backbone of the 

substrate to the iron, which is coordinated to other residues not shown, and the proton 

transfers from C11 of the substrate to the OH ligand. (B) Schematic of proton potential 

energy curves and corresponding proton vibrational wavefunctions for reactant (blue) and 

product (red) with overlap shown in purple. (c) Free energy surface as a function of the 

proton donor-acceptor distance RCO and the proton transfer coordinate RCH – ROH generated 

with the QM/MM finite temperature string method with umbrella sampling, where the 

minimum free energy path is shown in black. The high KIE of ~80 for the wild-type 

enzyme is explained by the dominant ground state hydrogen tunneling, which is associated 

with a relatively small overlap S00 between the reactant and product proton vibrational 

wavefunctions (purple shaded region in B) and a large ratio of the square of the H and D 

overlaps (equation in B). The two labeled leucine residues in A are mutated to alanine in 

the double mutant that exhibits a KIE of ~700. According to atomistic MD simulations, 

this mutation increases the size of the substrate binding cavity, leading to a less optimal 

orientation, larger equilibrium RCO, smaller overlap S00, larger ratio of H and D overlaps, 

and thus a larger KIE. The enzyme depiction and free energy surface were adapted with 

permission from Ref. 48.
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Figure 4: 
PCET pathway in RNR and kinetic model to describe radical transfer along this pathway 

in a photoRNR with a Re photosensitizer ligated adjacent to Y356. (A) The PCET pathway 

is Y122 ↔ [W48] ↔ Y356 ↔ Y731 ↔ Y730 ↔ C439, shown in bold, where W48 is 

in square brackets because its participation is uncertain. Blue arrows show proton transfer 

(PT), red arrows show electron transfer (ET), and purple arrows show collinear PCET. 

MD simulations and experiments indicate that Y731 samples both the stacked and flipped 

conformations. QM/MM free energy simulations imply that E623 mediates PCET between 

Y731 and Y730 and that a water molecule interacts with Y730 when Y731 is in the flipped 

conformation. (B) The kinetic model includes radical injection from the photoexcited Re*, 

an off-pathway sink, radical transfer between pairs of residues along the pathway, and the 

conformational flipping/stacking motion of interfacial Y731. (C) Multiscale modeling of 

RNR (cryo-EM structure shown) requires the combination of atomistic simulations and 

kinetic modeling. The driving forces and rate constants serving as input to the kinetic model 

are estimated from a combination of QM/MM free energy simulations and experimental 

data, as indicated by the arrows pointing out of part A (output from QM/MM free energy 

simulations) and into part B (input to kinetic model). Parts A and B adapted with permission 

from Refs. 64 and 69, respectively.
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Figure 5: 
Proposed photocycle of the Slr1694 BLUF photoreceptor protein based on nonequilibrium 

real-time dynamics simulations. Electron transfer is indicated by the orange arrow, and 

double proton transfer is indicated by the blue arrows. The trajectories were equilibrated 

in the ground state, and the photocycle was initiated by photoexcitation to the local 

excited state of the flavin. The light-adapted state is characterized by a rotated imidic 

acid Gln tautomer that hydrogen bonds to the C4 = O of the flavin, leading to red shifts 

of the computed flavin electronic absorption and C4 = O vibrational stretch, in agreement 

with experimental measurements. Comparison of computational and experimental data is 

important for validation of the computational models and methods. The atoms are carbon 

(gray), hydrogen (white), nitrogen (blue), and oxygen (red). Figure adapted with permission 

from Ref. 9.
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