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Abstract: An area-detector CT (ADCT) has a 320-detector row and can obtain isotropic volume data
without helical scanning within an area of nearly 160 mm. The actual-perfusion CT data within
this area can, thus, be obtained by means of continuous dynamic scanning for the qualitative or
quantitative evaluation of regional perfusion within nodules, lymph nodes, or tumors. Moreover, this
system can obtain CT data with not only helical but also step-and-shoot or wide-volume scanning
for body CT imaging. ADCT also has the potential to use dual-energy CT and subtraction CT to
enable contrast-enhanced visualization by means of not only iodine but also xenon or krypton for
functional evaluations. Therefore, systems using ADCT may be able to function as a pulmonary
functional imaging tool. This review is intended to help the reader understand, with study results
published during the last a few decades, the basic or clinical evidence about (1) newly applied
reconstruction methods for radiation dose reduction for functional ADCT, (2) morphology-based
pulmonary functional imaging, (3) pulmonary perfusion evaluation, (4) ventilation assessment, and
(5) biomechanical evaluation.

Keywords: lung; multidetector computed tomography; area-detector CT; pulmonary function;
radiation dose

1. Introduction

Since the clinical installation of a multidetector row CT (MDCT) in 1999 [1], detector
rows have been increased from 4 to 64 by every vendor almost every 2 years to result in
area-detector CT (ADCT) systems with 256- or 320-detector rows, which are now widely
used in routine clinical practice worldwide since their introduction in 2007. With ADCT,
isotropic volume data for the entire brain, heart, or some other organs, as well as for entire
tumors, can be acquired almost immediately within an area of nearly 160 mm without
helical scanning. Whole-organ-perfusion CT data can, thus, be obtained by means of
continuous dynamic scanning, allowing for the qualitative and/or quantitative evaluation
of the perfusion of some organs as well as of pulmonary nodules, lymph nodes, or lung
cancer for a variety of clinical aims [2–23]. Moreover, the system can obtain CT data with
both helical scanning and step-and-shoot or wide-volume scanning for body CT imaging.
In addition, ADCT has the potential to perform dual-energy CT and subtraction CT, which
is another promising technique for enhancing the visualization of contrast enhancement
by using iodine contrast media as well as xenon or krypton for functional evaluations.
Therefore, ADCT systems are now being used for not only morphological examinations
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but also functional assessments for a variety of clinical purposes including pulmonary
functional imaging.

This review will focus on (1) new reconstruction methods being used for radiation
dose reduction for functional ADCT, (2) morphology-based pulmonary functional imaging,
(3) pulmonary perfusion evaluation, (4) ventilation assessment, and (5) biomechanical
evaluation using ADCT because these items have proven to yield fruitful results during
the last few decades.

2. New Reconstruction Methods Used for Radiation Dose Reduction for
Functional ADCT

For the last decade or so, dose reduction strategies have been relying on a variety of
techniques for data acquisition, such as tube current or tube voltage reduction, increased
helical pitch, scan length optimization, and the utilization of automatic exposure control
(AEC) [24–30]. In general, the image noise is inversely proportional to the square root of
the radiation dose, so reduced-dose CT images have a higher noise level than standard-
dose images, and care must be exercised to ensure that the former remain suitable for
diagnosis. To overcome the increase in image noise on reduced-dose CT images, various
imaging filters, reconstruction algorithms, and kernels have been developed. Since the
early 2010s, most CT vendors have clinically installed hybrid-type or model-based iterative
reconstruction (IR) algorithms for use in routine clinical practice, and many practitioners
have found them useful for cardiothoracic imaging. For hybrid-type IR, hybrid algorithms
combine both analytical and iterative methods so that the initial image can be generated
by means of analytical methods, followed by the use of iterative methods to reduce noise
in the image domain. However, iterative algorithms can also be directly employed for
the reconstruction process. The term hybrid IR usually refers to algorithms that mainly
reduce image noise through cyclic image processing [27–30], while the term model-based
IR usually refers to algorithms that employ models of the acquisition process, image
statistics, and system geometry. Although the clinical performance of IR algorithms is not
necessarily related to the complexity of the method [31], the reconstruction of hybrid-type
IR algorithms is generally faster than that of model-based IR algorithms, and it is more
easily applied in routine clinical practice. In 2019, deep learning reconstruction (DLR) was
introduced and clinically installed and tested by a few vendors [32–37]. These methods
can be grouped into two major categories, indirect and direct DLR frameworks [37]. For
indirect DLR frameworks, either filtered back projection (FBP) or IR is used. The three
types of indirect frameworks, sinogram-based, image-based, and hybrid, are differentiated
based on when the deep learning network is deployed. Sinogram-based frameworks focus
on sinogram optimization, and the network is deployed before the sinogram is treated
with FBP or IR. For image-based frameworks, the network optimizes the image after initial
reconstruction with FBP or IR, while hybrid frameworks combine the sinogram with image
optimization [37]. Direct DLR algorithms reconstruct the sinogram directly into an image
without the use of FBP or IR. This can reduce artifacts introduced by FBP or IR, but this
is only possible if the ground truth images used for model training do not contain FBP-
or IR-related artifacts [37]. The currently used hybrid-type and model-based IR and DLR
methods from major vendors are shown in Table 1.

During the last few decades, ADCT has been used for the aforementioned reconstruc-
tion methods to reduce the radiation dose for various clinical purposes, and the results have
been published. One study reported that the image quality obtained with tube currents
of 100 mA and 50 mA and an FBP algorithm was significantly lower than that for both
protocols using AIDR 3D, one of the hybrid-type IR methods, for image reconstruction [27].
Moreover, all inter-method agreements for bronchiectasis, emphysema, ground-glass opac-
ity, honeycomb pattern, interlobar septal thickening, nodules, and reticular opacity ranged
from moderate to substantial or almost perfect. Furthermore, all agreements for the me-
diastinal and pleural findings among reduced-dose CTs using AIDR 3D algorithms and
standard-dose CT using an FBP algorithm were almost perfect [27]. In addition, the Area-
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Detector Computed Tomography for the Investigation of Thoracic Diseases (ACTIve) study
group conducted a multicenter study to assess the image quality and radiation dose re-
duction in the case of chest CT using AIDR 3D, but their study used standard-dose CT
with a tube current of 240 mA and reduced-dose CTs with tube currents of 120 mA and
60 mA [38]. The same group also assessed the utility of the AIDR 3D algorithm for lung
nodule detection on reduced-dose CT [39]. No significant differences in solid lung nodule
detection were found between reduced-dose CT protocols using tube currents of 120 mA
and 20 mA. Moreover, a comparison of ground-glass nodule (GGN) detection capability
showed that the capability of the two protocols for detecting GGNs with a diameter equal
to or more than 8 mm was not significantly different [39]. Another study found that further
radiation dose reduction without significant degradation of subsolid nodule detection was
obtained with the same hybrid-type IR method [40]. As a result of these published findings,
AIDR 3D for ADCT is currently used in routine clinical practice.

Table 1. Hybrid-type iterative reconstruction, model-based iterative reconstruction, and deep learning
reconstruction methods provided by major CT vendors.

Vendor
Reconstruction Methods

Hybrid-Type IR Model-Based IR DLR

Canon Medical
Systems Adaptive Iterative Dose Reduction 3D (AIDR 3D)

Forward Projected
Model-Based Iterative

Reconstruction Solution
(FIRST)

Advanced
intelligent Clear-IQ

Engine (AiCE)

GE Healthcare Adaptive Statistical Iterative Reconstruction (ASiR) Veo TrueFidelity

Philips Healthcare 4th-Generation Iterative Reconstruction (iDose4)
Iterative Model

Reconstruction (IMR) Precise Image

Siemens
Healthineers

Iterative Reconstruction in Image Space (IRIS)

N/A N/ASinogram Affirmed Iterative Reconstruction (SAFIRE)

Advanced Modeled Iterative Reconstruction (ADMIRE)

IR: iterative reconstruction, DLR: deep learning reconstruction.

For pulmonary functional imaging, the Quantitative Imaging Biomarkers Alliance
(QIBA) of the Radiological Society of North America (RSNA) has been developing QIBA
profiles based on in vitro study findings for lung density since 2007 to standardize the CT
protocol for 64-detector-row CTs from major vendors [41]. In collaboration with the QIBA,
the Japan Quantitative Imaging Biomarker Alliance (J-QIBA) of the Japan Radiological
Society has been testing and has confirmed the capabilities of each of the state-of-the-
art reconstruction techniques, such as hybrid-type IR, model-based IR, or DLR for the
same settings, as well as airway dimension evaluation for not only ADCT but also high-
definition CT (HDCT) or ultra-high-resolution CT (UHR-CT) [42,43]. These studies proved
that all state-of-the-art reconstruction methods have the potential ability to reduce the
radiation dose of chest CT while maintaining the requirements from the QIBA profile for
QIBA-recommended phantom studies [42,43]. Therefore, by combining state-of-the-art
reconstruction methods with ADCT, pulmonary functional CT can be assessed in routine
clinical practice in terms of not only morphological but also functional information by
using various procedures detailed in the sections that follow.

3. Morphology-Based Pulmonary Functional Imaging

Like other MDCTs, morphology-based pulmonary functional ADCT has been used for
the quantitative assessment of chronic obstructive pulmonary disease (COPD), interstitial
lung disease (ILD), or other diseases by using not only standard- but also reduced-dose
protocols [27,31,38–47].
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For COPD assessments, CT can be used to assess morphological and functional
changes related to COPD [48–60]. During the last few decades, many commercially avail-
able and proprietary software products as well as various visual scoring systems have
been used for the CT-based assessment of COPD, with two major approaches reported in
the literature for quantitative CT assessment of COPD [48–60]. One is the determination
of the percentage of low attenuation area (%LAA) in the lung, which indicates emphy-
sema changes, and the other is the determination of the wall area ratio (WA%) of the
bronchi, which indicates bronchial lumen narrowing and bronchial wall thickening [48–60].
In the past literature [48–60], it has been suggested that the %LAA has a good correla-
tion with FEV1/FVC, %FEV1, %DLCO, or DLCO/VA and that the WA% also has a good
correlation with FEV1/FVC and %FEV1. Therefore, it is suggested that these imaging
parameters are useful as quantitative imaging biomarkers for COPD [48–60]. In addition,
three-dimensional (3D) airway luminal volumetry has been introduced as another quan-
titative method for evaluating the airways of COPD patients [58,59]. Taking the findings
provided by these quantitative CT assessments of COPD and the need for radiation dose
reduction strategies into consideration [42–46,58–60], the application of IR algorithms has
been considered an important issue for an accurate quantitative CT evaluation of COPD.
One study demonstrated that agreement for the %LAA between standard-dose CT obtained
at 300 mA and reduced-dose CT at 50 mA tended to improve when using AIDR 3D rather
than conventionally applied FBP [44] (Figure 1).

Moreover, the ACTIve study group applied the same hybrid-type IR algorithm
and obtained similar results for standard-dose CT at 240 mA and reduced-dose CTs at
120 mA and 60 mA [60]. Thus, the use of a hybrid-type IR resulted in greater consistency of
emphysema quantifications performed on reduced-dose and ultra-low-dose CTs than on
standard-dose CT images. Although the %LAA and the WA% have been recommended as
the two main quantitative parameters for COPD assessment [41–60], 3D airway luminal
volumetry has also been introduced as another method for quantitative ADCT evaluation
of airflow limitation in COPD [58,59]. Koyama et al. assessed the utility of a hybrid-type
IR algorithm for quantitative bronchial assessment on reduced-dose CT for patients with
and without COPD and provided evidence of a significant correlation of WA% and the
airway luminal volume percentage from the main bronchus to the peripheral bronchi
(LV%) between standard- and reduced-dose CT [58]. Moreover, LV% agreement between
standard-dose and reduced-dose CTs can improve AIDR 3D in comparison with FBP [59].
Therefore, AIDR 3D can be recommended for quantitative COPD evaluation on ADCT in
routine clinical practice.

Few studies have been published on radiation dose reduction for the use of ADCT for
the quantitative assessment of morphological evaluation of ILD. However, the utility of
commercial or proprietary artificial intelligences (AIs) using machine-learning methods by
Canon Medical Systems has been evaluated for the management of various lung diseases,
such as ILD, or the evaluation of therapeutic treatments for coronavirus disease 2019
(COVID-19) pneumonia, which is caused by severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) [61–63] (Figure 2).

These studies were the first to demonstrate the potential of AI in the evaluation of
disease severity and therapeutic effect or of functional changes due to treatment with an
accuracy similar to that attained by board-certified radiologists [61–63]. Although further
investigations are warranted, the evaluation of ADCT by AI has opened new areas for the
application of pulmonary functional ADCT in not only ILD but also other diseases.
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Figure 1. A 70-year-old man with mild pulmonary emphysema (permission from reference [44]). 
(A–C) Images show low-attenuation lung regions with standard-dose CT (A), low-dose CT without 
adaptive iterative dose reduction using 3D processing (B), and low-dose CT with adaptive iterative 
dose reduction using 3D processing (C). Color coding of low-attenuation lung regions is as follows: 
class 1, red; class 2, yellow; class 3, green; and class 4, cyan. 

Figure 1. A 70-year-old man with mild pulmonary emphysema (permission from reference [44]).
(A–C) Images show low-attenuation lung regions with standard-dose CT (A), low-dose CT without
adaptive iterative dose reduction using 3D processing (B), and low-dose CT with adaptive iterative
dose reduction using 3D processing (C). Color coding of low-attenuation lung regions is as follows:
class 1, red; class 2, yellow; class 3, green; and class 4, cyan.
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Figure 2. A 65-year-old female patient with progressive scleroderma (top row, L to R: thin-section 
CT scans at baseline, acute exacerbation phase, and after-treatment phase; bottom row, L to R: CT 
texture analysis by means of machine-learning-based software at baseline and the same two phases 
as for the top row) (permission from reference [63]). On machine-learning software, normal lung, 
consolidation, emphysema, GGO, honeycombing and reticulation are expressed as blue, beige, 
purple, green, red and green. A comparison of CT scans obtained at baseline (i.e., “Stable” group) 
and at the acute exacerbation phase (i.e., “Worse” group) shows an increase in the GGO and the 
consolidation area and a decrease in the normal lung area. Δ% normal lung, Δ% GGO, and Δ% 
consolidation were −16.9%, 13.2%, and 2.5%, respectively, while Δ disease severity score was 6. A 
comparison of CT scans obtained at the acute exacerbation phase (i.e., “Worse” group) and the after-
treatment phase (i.e., “Worse” group) shows an increase in the GGO, reticulation, and honeycomb 
area and a decrease in the normal lung area. Δ% normal lung, Δ% GGO, Δ% reticulation, and Δ% 
honeycomb were −19.5%, 14.9%, 4.2%, and 0.2%, while Δ disease severity score was 15. CT, 
computed tomography; GGO, ground-glass opacity. 

These studies were the first to demonstrate the potential of AI in the evaluation of 
disease severity and therapeutic effect or of functional changes due to treatment with an 
accuracy similar to that attained by board-certified radiologists [61–63]. Although further 
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application of pulmonary functional ADCT in not only ILD but also other diseases. 

4. Pulmonary Perfusion Evaluation 
Starting in the late 1960s, pulmonary perfusion was mainly assessed by means of 

nuclear medicine studies such as perfusion scanning, perfusion single-photon emission 
tomography (SPECT), or SPECT fused with CT (SPECT/CT). Since the late 1990s, 
pulmonary perfusion has also been academically or clinically assessed by using non-
contrast-enhanced (non-CE) or contrast-enhanced (CE) perfusion MR imaging (non-CE- 
or CE-MRI) with a variety of techniques [64–70]. However, the application of each 
perfusion MR imaging procedure remains limited because of several technical issues such 
as pulse sequence design and optimization, certain procedures including contrast media 
concentration differentiation for quantitative or qualitative evaluation, somewhat lower 
temporal resolution than CT, and image analysis software for different clinical purposes 
[64–70]. As a result, pulmonary perfusion evaluation on CT has been performed since 2008 

Figure 2. A 65-year-old female patient with progressive scleroderma (top row, L to R: thin-section CT
scans at baseline, acute exacerbation phase, and after-treatment phase; bottom row, L to R: CT texture
analysis by means of machine-learning-based software at baseline and the same two phases as for the
top row) (permission from reference [63]). On machine-learning software, normal lung, consolidation,
emphysema, GGO, honeycombing and reticulation are expressed as blue, beige, purple, green, red
and green. A comparison of CT scans obtained at baseline (i.e., “Stable” group) and at the acute
exacerbation phase (i.e., “Worse” group) shows an increase in the GGO and the consolidation area
and a decrease in the normal lung area. ∆% normal lung, ∆% GGO, and ∆% consolidation were
−16.9%, 13.2%, and 2.5%, respectively, while ∆ disease severity score was 6. A comparison of CT
scans obtained at the acute exacerbation phase (i.e., “Worse” group) and the after-treatment phase
(i.e., “Worse” group) shows an increase in the GGO, reticulation, and honeycomb area and a decrease
in the normal lung area. ∆% normal lung, ∆% GGO, ∆% reticulation, and ∆% honeycomb were
−19.5%, 14.9%, 4.2%, and 0.2%, while ∆ disease severity score was 15. CT, computed tomography;
GGO, ground-glass opacity.

4. Pulmonary Perfusion Evaluation

Starting in the late 1960s, pulmonary perfusion was mainly assessed by means of
nuclear medicine studies such as perfusion scanning, perfusion single-photon emission to-
mography (SPECT), or SPECT fused with CT (SPECT/CT). Since the late 1990s, pulmonary
perfusion has also been academically or clinically assessed by using non-contrast-enhanced
(non-CE) or contrast-enhanced (CE) perfusion MR imaging (non-CE- or CE-MRI) with a
variety of techniques [64–70]. However, the application of each perfusion MR imaging
procedure remains limited because of several technical issues such as pulse sequence design
and optimization, certain procedures including contrast media concentration differentiation
for quantitative or qualitative evaluation, somewhat lower temporal resolution than CT,
and image analysis software for different clinical purposes [64–70]. As a result, pulmonary
perfusion evaluation on CT has been performed since 2008 by means of three different
methods: (i) dual-energy CT (DECT), (ii) subtraction CT (subtracting non-CE- from CE-CT
images), and (iii) dynamic first-pass CE-perfusion CT.
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4.1. Dual-Energy CT with ADCT System

Since the dual-source CT was installed for clinical use in 2008, DECT has been tested
to assess its clinical utility for not only pulmonary vascular diseases but also other thoracic
diseases [67,68,71–77]. This was followed, until recently, by the installation for testing and
clinical use of rapid tube voltage (kVp) switching, dual-layer, or split-beam techniques
for DECT. Table 2 shows a summary of the state-of-the-art DECT techniques provided by
major vendors for routine clinical practice.

Table 2. Dual-energy CT techniques currently available from major vendors.

Multienergy CT Technique Dual Source Split Beam Rapid kVp Switching Dual-Layer
Detector

CT vendors Siemens Healthineers GE Healthcare Canon Medical
Systems

Philips
Healthcare

Number of X-ray tubes 2 1 1 1 1

Scan time (sec/rotation) 0.25 0.28 0.28 0.275 0.27

FOV Small in one
X-ray tube Full Full Full Full

Z-axis coverage/rotation (mm/rot) 57.6–80 40 80 40–160 40–80

Automatic exposure control Yes No Yes Yes

Cross scattering Yes No No No

Filter Yes No No No

Registration Slight temporal
offset Poor Good Good Good

Spectral reconstruction method Image Projection and
image

Projection and
image

Projection and
image

Tube current optimization for
different energy bin Yes No No No No

Spectral separation Good Limited Good Good Limited

Although it has been suggested that DECT, similar to perfusion scan or SPECT, is useful
for the evaluation of pulmonary perfusion in various pulmonary diseases [67,68,71–77], few
major studies have been conducted on DECT-based assessment for the ADCT system. New
clinical studies are, therefore, warranted in the near future to evaluate the clinical relevance
of DECT for ADCT system for patients with various pulmonary diseases.

4.2. Subtraction ADCT

In contrast to DECT for the ADCT system, pulmonary perfusion evaluation for ADCT
has been made possible by use of the subtraction technique with the appropriate soft-
ware [78–84]. An in vitro study demonstrated that the contrast-to-noise ratio (CNR) of
subtraction ADCT was superior to that of DECT by assessment with different iodine con-
trast media phantoms [79,80], while another in vivo study confirmed the superior clinical
potential of subtraction ADCT in comparison with that of CE-CT pulmonary angiography
(CE-CTPA) or DECT [81–83]. Moreover, lung subtraction iodine mapping by subtraction
ADCT was shown to perform significantly better than CE-CTPA for patients with chronic
thromboembolic pulmonary hypertension (CTEPH) [82]. In addition, in comparison with
perfusion SPECT as the reference standard, lung subtraction iodine mapping with CE-
CTPA showed promising results, with a sensitivity of 81.3% and a specificity of 78.9%,
for the assessment of pulmonary perfusion in patients with acute pulmonary thromboem-
bolism (PE) [83]. Moreover, subtraction ADCT was quantitatively and qualitatively directly
compared with DECT for the assessment of lung nodule enhancement [84]. That study
demonstrated that the mean nodule enhancement for subtraction ADCT was significantly
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higher than that for DECT. Lastly, the nodule enhancement on subtraction ADCT was
judged more often to be “highly visible” than that on DECT by each of the observers en-
gaged in that study. Subtraction ADCT was, therefore, considered to have better potential
than DECT for iodine enhancement depiction in lung nodules [84]. Although subtraction
ADCT is not as frequently used as DECT, this technique is potentially superior to DECT
for the evaluation in routine clinical practice of differences in iodine contrast medium
concentration through pixel-by-pixel analysis for not only thoracic but also other diseases
when used with the appropriate software.

4.3. Dynamic First-Pass CE-Perfusion ADCT

The use of quantitatively analyzed dynamic first-pass CE-perfusion CT by means
of electron-beam CT was first reported in 2000 [85]. However, after the introduction of
MDCT, the use of electron-beam CT for this type of CT examination was changed to
MDCT. This was followed by reports by some investigators, published between 2000 and
2010, that quantitative assessment of tumor or nodule perfusion assessment had potential
for the diagnosis of pulmonary nodules or lung cancer, as well as for therapeutic effect
assessment of lung cancer patients undergoing conservative therapy [85–92]. However,
the limited scan range attainable with dynamic scanning in the same table position or the
variety of perfusion data obtained at different time points and positions within the scan
range due to the helical scan method remained major drawbacks of this technique until
2007 [87–89]. Since then, real dynamic first-pass CE-perfusion ADCT data in the form of
isotropic volume data can be obtained by means of continuous dynamic scanning, allowing
for the qualitative and quantitative evaluation of the perfusion of pulmonary nodules,
lymph nodes, and tumors within a 160 mm area [5,12,14–22]. As a result, ADCT systems are
now being used for both morphologic examinations and functional assessments, especially
real first-pass perfusion evaluation, by means of the dynamic first-pass CE-perfusion ADCT
technique using the appropriate mathematical models [5,12,14–22]. Table 3 lists the major
clinical evidence with regard to dynamic first-pass CE-perfusion ADCT published during
the last few decades.

For the diagnosis of pulmonary nodules, the diagnostic performance of dynamic first-
pass CE-perfusion ADCT was equal to or significantly better than that of FDG-PET/CT or
dynamic first-pass CE-perfusion MRI with a 1.5 T or 3 T MR system [15,21,22] (Figure 3).

Moreover, the diagnostic performance of dynamic first-pass CE-perfusion ADCT for
lymph node metastasis was also shown to be equal to or significantly better than that
of FDG-PET/CT for non-small-cell lung cancer (NSCLC) patients [20]. In addition, the
dual-input maximum slope model was found to have better potential for accurate evalua-
tion than the single-input maximum slope or Patlak plot methods in the aforementioned
settings [19]. A comparison of the capability of response evaluation criteria to differentiate
solid-tumor (RECIST) responders from RECIST non-responders in NSCLC patients treated
with conservative therapy showed no significant differences in the sensitivity, specificity,
and accuracy of dynamic first-pass CE-perfusion ADCT, MRI analyzed with the same
dual-input maximum slope model, or FDG-PET/CT [22]. Furthermore, hybrid-type IR was
shown to be more effective than FBP in terms of dose reduction for dynamic first-pass CE-
perfusion ADCT while maintaining image quality and reducing measurement errors [16].
Dynamic first-pass CE-perfusion ADCT with an appropriate mathematical model as well as
a reconstruction method, therefore, merits use as a pulmonary functional imaging method
in routine clinical practice. Furthermore, Canon Medical systems is now developing and
testing an appropriate protocol and proprietary software for the analysis of whole-lung
dynamic first-pass CE-perfusion ADCT data and the creation of a whole-lung perfusion
parameter map for a variety of different academic and clinical purposes, which will be
made available for use in the near future.
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Table 3. Major clinical evidence for dynamic first-pass CE-perfusion ADCT.

Authors Method Target Parameters Cutoff Values
(HU) SE (%) SP (%) AC (%)

Ohno Y, et al.
[5]

320-detector row CT Pulmonary
nodules

Perfusion (mL/100 mL/min) calculated with single-input
maximum slope method 40.0 98 (42/43) 79 (26/33) 90 (68/76)

Extraction fraction (mL/100 mL/min) 2.0 88 (38/43) 82 (27/33) 86 (65/76)

Blood volume (mL/100 mL) 2.0 86 (37/43) 54 (18/33) 72 (55/76)

FDG-PET/CT SUVmax 2.0 91 (39/43) 52 (17/33) 74 (56/76)

Ohno Y, et al.
[12]

320-detector row CT Pulmonary
nodules

Total perfusion (mL/100 mL/min) calculated with
dual-input maximum slope method 40 86.0 (49/57) 79.5 (31/39) 83.3 (80/96)

Perfusion (mL/100 mL/min) calculated with single-input
maximum slope method 20 64.9 (37/57) 69.2 (27/39) 66.7 (64/96)

FDG-PET/CT SUVmax 2.5 63.2 (36/57) 56.4 (22/39) 60.4 (58/96)

Ohno Y, et al.
[15]

320-detector row CT

Pulmonary
nodules

Total perfusion (mL/100 mL/min) calculated with
dual-input maximum slope method 29 92 (123/133) 71 (60/85) 84 (183/218)

Nodule perfusion (mL/100 mL/min) calculated with
single-input maximum slope method 10 91 (121/133) 28 (24/85) 67 (145/218)

Dynamic first-pass
CE-perfusion MRI for

1.5T system

Maximum relative enhancement 0.13 92 (123/133) 49 (42/85) 76 (165/218)

Slope of enhancement 0.016 93 (124/133) 49 (42/85) 76 (166/218)

FDG-PET/CT SUVmax 2 89 (119/133) 31 (26/85) 67 (145/218)

Ohno Y, et al.
[20]

320-detector row CT
Lymph node
metastasis in

NSCLC analyzed
per node

Total perfusion (mL/100 mL/min) calculated with slope
of enhancement dual-input maximum slope method 58 54.2 (32/59) 89.8 (53/59) 72.0 (85/118)

Systemic arterial perfusion (mL/100 mL/min) calculated
with dual-input maximum slope method 4.1 98.3 (58/59) 56.4 (51/59) 92.4 (109/118)

Permeability surface (mL/100 mL/min) assessed with
Patlak plot method 8.7 50.8 (30/59) 94.9 (56/59) 72.9 (86/118)

Distribution volume (mL/100 mL) assessed with Patlak
plot method 0.37 84.7 (50/59) 44.1 (26/59) 64.34 (76/118)

FDG-PET/CT SUVmax 2.9 74.6 (44/59) 91.5 (54/559) 83.1 (98/118)
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Table 3. Cont.

Authors Method Target Parameters Cutoff Values
(HU) SE (%) SP (%) AC (%)

Seki S, et al.
[22]

320-detector row CT

Therapeutic
outcome

prediction for
NSCLC

Total perfusion (mL/100 mL/min) calculated with
dual-input maximum slope method 29.2 78.3 (18/23) 85 (17/20) 81.4 (35/43)

Pulmonary arterial perfusion (mL/100 mL/min)
calculated with dual-input maximum slope method 15.5 65.2 (15/23) 80 (16/20) 72.1 (31/43)

Systemic arterial perfusion (mL/100 mL/min) calculated
with dual-input maximum slope method 11 82.6 (19/23) 80 (16/20) 81.4 (35/43)

Dynamic first-pass
CE-perfusion MRI at

3T system

Total perfusion (mL/100 mL/min) calculated with
dual-input maximum slope method 37.5 69.6 (16/23) 95 (19/20) 81.4 (35/43)

Pulmonary arterial perfusion (mL/100 mL/min)
calculated with dual-input maximum slope method 16.3 65.2 (15/23) 80 (16/20) 72.1 (35/43)

Systemic arterial perfusion (mL/100 mL/min) calculated
with dual-input maximum slope method 16.5 82.6 (19/23) 80 (16/20) 81.4 (35/43)

FDG-PET/CT SUVmax 5.7 87.0 (20/23) 76.9 (14/20) 79.1(34/43)

SE: sensitivity, SP: specificity, AC: accuracy, NSCLC: non-small-cell lung cancer; number following author’s name corresponds to number in References.
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Figure 3. An 81-year-old male patient with squamous cell carcinoma treated with chemoradiotherapy
and assessed as NC. Progression-free and overall survivals at 15 and 24 months (permission from
reference [22]). (a) Thin-section MPR image derived from thin-section CT data (L to R: MPR images
obtained pre- and post-treatment at lung window setting) show lung cancer in the right upper lobe.
This case was assessed as NC according to response evaluation criteria for solid tumors (RECIST
ver.1.1). (b) Perfusion maps derived from dynamic first-pass CE-perfusion area-detector CT assessed
with the dual-input maximum slope method (L to R: pulmonary arterial perfusion, systemic arterial
perfusion, and total perfusion maps) for the same targeted lesion. Pulmonary arterial perfusion,
systemic arterial perfusion, and total perfusion were 13.6, 18.9, and 32.5 mL/100 mL/min, respectively.
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This case was assessed as a RECIST-based non-responder for systemic arterial and total perfusions
and as true positive. (c) Source image and perfusion maps obtained with dynamic first-pass CE-
perfusion MR imaging assessed with the dual-input maximum slope method (L to R: source image,
pulmonary arterial perfusion, systemic arterial perfusion, and total perfusion maps) for the same
targeted lesion. Pulmonary arterial perfusion, systemic arterial perfusion, and total perfusion were
9.2, 28.9, and 38.1 mL/100 mL/min, respectively. This case was also assessed as a RECIST-based
non-responder for systemic arterial and total perfusions and as true positive. However, this case
was evaluated as responder and as false positive based on pulmonary arterial perfusion findings.
(d) PET/CT shows high uptake of 2-[fluorine-18]-fluoro-2-deoxy-d-glucose, and SUVmax was evalu-
ated as 4.7. This case was evaluated as a RECIST-responder and assessed as false negative. PR, partial
response; MPR, multiplanar reformatted; RECIST, Response Evaluation Criteria in Solid Tumors; CE,
contrast-enhanced; SUV, standardized uptake value; PET, positron emission tomography.

4.4. Ventilation Assessment

Although the potential of Xe or krypton (Kr) to function as gas contrast media has
been known since the 1960s [93–95], they were not academically or clinically used for
pulmonary functional imaging until 2008. Oxygen-enhanced MRI and hyperpolarized noble
gas MRI were reported to be useful for ventilation-based pulmonary functional imaging
in the late 1990s [65–70]. For this reason, Xe- or Kr-enhanced ventilation CTs have mainly
been used for pulmonary functional imaging for in vitro or in vivo studies after the clinical
installation of DECT since 2008 [67,68,73,87,96–111]. Since that time, DECT has been mainly
used by dual-source CT systems for patients with COPD or asthma [67,68,73,87,96–106].
However, no studies on the use of ADCT for Xe-enhanced DECT were published until
2023. In contrast to DECT, subtraction ADCT was demonstrated to be as effective as
subtraction CT for the visualization of xenon enhancement for in vitro or in vivo studies
and for pulmonary functional loss evaluation in comparison with the use of DECT or Kr-
81m ventilation SPECT/CT for in vivo studies [107–111]. Moreover, these in vivo studies
have demonstrated the potential of Xe-enhanced subtraction ADCT for regional ventilation
evaluation or therapeutic effect assessment for smokers, COPD patients, asthmatics, or
lung cancer patients [107–111] (Figure 4).

In addition, inspiratory and expiratory (inspiratory/expiratory) Xe-enhanced sub-
traction CT with hybrid-type IR has been found to be effective for the assessment of the
regional ventilation changes in lung cancer patients due to smoking-related COPD or
surgical treatment [110,111]. Although Xe-enhanced subtraction ADCT as well as DECT
with dual-source CT are considered to be useful for pulmonary ventilation imaging, cold
Xe or Kr has currently not been approved as contrast media for ventilation CT because they
were only approved as contrast media for brain CT by the United States Food and Drug
Administration, the Japan Pharmaceuticals and Medical Devices Agency, or regulatory au-
thorities in other countries. It is, therefore, vital to obtain, in the near future, the regulatory
approval of Xe and Kr as gas contrast media for pulmonary functional imaging, whether
Xe-enhanced subtraction ADCT or DECT with dual-source CT are applied.

4.5. Biomechanical Evaluation

Pulmonary functional imaging has been recommended as having the potential to
estimate lung compliance by tracking voxel motion at full inspiration (total lung capac-
ity) and at full expiration (residual volume) by means of inspiratory/expiratory CT or
MRI [67–70,112]. Moreover, lung compliance estimates derived from free-breathing and
static-volume 4D CT and 4D MRI can be obtained by using deformable image registra-
tion [67–70,113–123]. Regarding the use of ADCT for the evaluation of lung biomechanics,
the ACTIve study group has published in vitro and in vivo studies of the capability of
dynamic 4D ADCT to evaluate regional lung biomechanics and pleural invasion in lung
cancer patients as well as air trapping or air flow limitations [115–123]. Moreover, it is now
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possible to generate whole lung 4D ADCT images with a proprietary software provided
by Canon Medical Systems and, in the near future, to begin to evaluate the efficacy of 4D
ADCT as a new system for pulmonary functional imaging.
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Figure 4. A 75-year-old male smoker with “Moderate COPD” (58 pack-years, FEV1/FVC%: 55%,
%FEV1: 58%) (permission from reference [108]). (A) (L to R: cranial to caudal): Thin-section CT
shows a heterogeneously distributed low attenuation area due to pulmonary emphysema. (B) (L to
R: cranial to caudal): DECT shows heterogeneous xenon enhancement within the lung and areas of
reduced xenon enhancements corresponding well to the distribution of the areas of low attenuation.
Total ventilation defect score was 66, and functional lung volume was 65.8%. (C) (L to R: cranial
to caudal): Subtraction CT shows heterogeneous xenon enhancement within the lung and areas of
reduced xenon enhancement corresponding well to the distribution of the areas of low attenuation.
Total ventilation defect score was 88, and functional lung volume was 53.7%. (D) (L to R: cranial
to caudal): Co-registered Kr–81m ventilation SPECT/CT shows markedly heterogeneous uptakes
within the lung. Regional uptakes correspond well to areas of low attenuation. Total ventilation
defect score was 84, and functional lung volume was 55.8%. Regional uptakes of Kr–81m show better
correspondence to xenon enhancement on subtraction CT than on DECT.
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5. Conclusions

ADCT merits consideration as a useful tool for pulmonary functional imaging not only
to evaluate pulmonary morphology but also, with various techniques, to directly evaluate
pulmonary function. This system has been clinically tested as an upright CT system at our
institution (Figure 5).
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Figure 5. The first installed and clinically available upright CT with area-detector CT system in Fujita
Health University Hospital.

Moreover, it can be expected that some additional technical enhancements will be
introduced in this decade on the basis of future studies using newly developed X-ray tubes,
detectors, reconstruction methods, or other new technologies. When considering the future
advancements of ADCT, faster rotation speed of the X-ray tube, higher isotropic resolution
and larger image matrices for ultra- or super-high-resolution CT imaging, faster image
processing, and computer-aided diagnosis or artificial intelligence tools are warranted to
open new imaging methods for not only oncologic but also pulmonary functional imaging.
Therefore, ADCT can be currently used as a standard pulmonary functional imaging tool in
routine clinical practice but may soon lead to new pulmonary functional imaging functions.
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