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Abstract: Alzheimer’s disease is an incurable neurological disorder that leads to a gradual decline in
cognitive abilities, but early detection can significantly mitigate symptoms. The automatic diagnosis
of Alzheimer’s disease is more important due to the shortage of expert medical staff, because it
reduces the burden on medical staff and enhances the results of diagnosis. A detailed analysis of
specific brain disorder tissues is required to accurately diagnose the disease via segmented magnetic
resonance imaging (MRI). Several studies have used the traditional machine-learning approaches to
diagnose the disease from MRI, but manual extracted features are more complex, time-consuming,
and require a huge amount of involvement from expert medical staff. The traditional approach does
not provide an accurate diagnosis. Deep learning has automatic extraction features and optimizes the
training process. The Magnetic Resonance Imaging (MRI) Alzheimer’s disease dataset consists of four
classes: mild demented (896 images), moderate demented (64 images), non-demented (3200 images),
and very mild demented (2240 images). The dataset is highly imbalanced. Therefore, we used the
adaptive synthetic oversampling technique to address this issue. After applying this technique, the
dataset was balanced. The ensemble of VGG16 and EfficientNet was used to detect Alzheimer’s
disease on both imbalanced and balanced datasets to validate the performance of the models. The
proposed method combined the predictions of multiple models to make an ensemble model that
learned complex and nuanced patterns from the data. The input and output of both models were
concatenated to make an ensemble model and then added to other layers to make a more robust
model. In this study, we proposed an ensemble of EfficientNet-B2 and VGG-16 to diagnose the disease
at an early stage with the highest accuracy. Experiments were performed on two publicly available
datasets. The experimental results showed that the proposed method achieved 97.35% accuracy and
99.64% AUC for multiclass datasets and 97.09% accuracy and 99.59% AUC for binary-class datasets.
We evaluated that the proposed method was extremely efficient and provided superior performance
on both datasets as compared to previous methods.

Keywords: Alzheimer’s disease; ADASYN; deep learning; medical MRI brain images; optimized
ensemble model

1. Introduction

Alzheimer’s disease (AD) is an incurable neurological disorder that leads to a gradual
decline in cognitive abilities, but early detection can significantly mitigate symptoms [1].
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Patients with AD lose their cognitive abilities, making it difficult to carry on with normal
responsibilities and perform daily routine task; thus, they become dependent on their
family for small tasks and survival. AD causes problems of memory loss like remembering
things, arranging and recollecting things, intuition, and judgmental issues [2]. Around
2% of people at the age of 65 are affected with AD and 35% at the age of 85 years. It
was reported that 26.6 million people were affected in the year 2006, and the count is
increasing dramatically [3]. In 2020, more than 55 million people were affected by AD,
and the count is estimated to reach 152 million by 2050 [4]. The degradation of brain cells
and the dysfunction of synaptic and pathological changes start to develop almost 20 years
before AD diagnosis [5]. A proper diagnosis of the disease is also needed to develop the
necessary drugs to slow down the progression process, and the patient’s whole medical
history is thoroughly examined for the effective monitoring of the disease. The overall cost
and effort faced by patients and families are also increasing dramatically. Researchers have
emphasized the importance of the early detection of AD for starting treatment promptly
and obtaining accurate results.

Individuals with AD typically exhibit a reduction in brain tissue volume in the hip-
pocampus and cerebral cortex, accompanied by an expansion of the ventricles in the brain,
as observed in multiple studies. In advanced stages of the disease, brain scans such as MRI
images show a substantial reduction in the hippocampus and cerebral cortex, along with
ventricular expansion [6]. AD primarily affects the regions of the brain and the intricate
network of brain tissues involved in cognition, memory, decision making, and planning.
The diffusion of brain tissues in the affected areas causes a decrease in the MRI image in-
tensities in both the magnetic resonance imaging (MRI) and functional magnetic resonance
imaging (fMRI) techniques [7–9].

In recent years, there has been a growing trend of using neuroimaging data and
machine learning (ML) methods to characterize AD, providing a potential means for
personalized diagnosis and prognosis [10–12]. Currently, deep learning (DL) has emerged
as a powerful methodology in the diagnostic imaging field, as evidenced by several recent
studies [13–17]. Diagnosing AD using DL is still a significant challenge for researchers [18].
Medical images are scarce and of lower quality, and the difficulty in identifying regions of
interest (ROI) within the brain and unbalanced classes are issues encountered in detecting
AD. Among the various DL architectures, the convolutional neural network has received
considerable interest due to its extraordinary effectiveness in classification [19]. In contrast
to conventional machine learning, deep learning enables automatic feature extraction like
low-level to high-level latent representations. Therefore, deep learning requires minimal
image pre-processing steps and little prior understanding of the synthesis process [20].

The imbalanced datasets for medical disease detection are the most significant chal-
lenge. The number of samples in each class is not equal for Alzheimer’s disease, despite the
availability of a balanced dataset. The model’s performance is biased, and generalizations
become difficult with imbalanced datasets. Individual deep learning models handle basic
data efficiently, but overfitting occurs when dealing with complex problems. The general-
izability, efficacy, and reliability of this type of model are poor. Individual deep learning
models make predictions or detections based on learning with a single set of weights and
do not capture nuances from all image features. To accurately diagnose a disease using
segmented magnetic resonance imaging, it is necessary to conduct an in-depth examination
of the disease-specific tissues. Several studies have used conventional machine-learning
approaches to diagnose diseases from MRI, but manually derived features or the physical
examination of medical data and patient records are more complex, time-consuming, and
require a significant level of medical staff involvement. The conventional method does not
provide a precise diagnosis, resulting in errors during diagnosis and inefficiencies.

Deep learning automates the detection process, making it more efficient and faster.
An accurate diagnosis is crucial in cases where early detection is essential for proper
treatment. Deep learning models have demonstrated an extraordinary ability to learn
nuanced patterns from complex and high-dimensional data. They can automatically extract
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pertinent information from the images and overcome the limitations of traditional methods.
The proposed method addresses the data imbalance issues more efficiently with adaptive
synthetic oversampling techniques and makes diagnostics faster. The proposed method
combines the predictions of multiple models to make an ensemble and stronger model
that learns complex and nuanced patterns from the data. The proposed method is more
robust, reliable, and diverse in its decision making. Our objective was to examine the
ensemble model’s capacity to detect AD and perform feature extraction in order to improve
the model’s overall effectiveness. The following are main contributions of our study:

1. An efficient ensemble approach was proposed that combines VGG16 and Efficient-
Net-B2 for Alzheimer disease classification with high accuracy using multiclass and
binary-class datasets, also exploring the effect of transfer learning to improve the
performance of the model.

2. The adaptive synthetic oversampling technique was applied to a highly imbalanced
dataset to balance the Alzheimer’s disease classes. The efficacy of the ADASYN
in terms of model overfitting was also investigated to increase the generalization
performance of deep learning models.

3. The efficacy of the proposed method was analyzed using k-fold cross-validation and
comparing with other state-of-the-art approaches. We also performed a comparison
of ensemble and individual deep learning models.

In this paper, we organized our content into several sections. Section 2 presents a
comprehensive review of the relevant literature. Section 3 outlines the pre-processing,
methods, and performance measures. The results and discussion are presented in Section 4.
Section 5 provides the concluding remarks for this paper.

2. Literature Review

Due to the prevalence and challenging nature of Alzheimer’s disease (AD), it poses dif-
ficulty for experts regarding diagnosis, which has been extensively studied in the literature.
The authors of [21], conducted a study in which they utilized Alzheimer’s data to perform a
classification process. Their dataset comprised three classes, and they employed Dense-Net
as the model, with soft-max serving as the classification layer. The study resulted in an
accuracy of 88.9%. While the results were favorable, there remained potential for further
improving the accuracy of the model. In addition, Yildirim et al. [22] conducted a study on
AD classification using a four-class dataset. They employed convolutional neural network
(CNN) architectures and compared the results with their proposed hybrid model, built
upon a Resnet50 base and utilizing its knowledge. According to the authors, the hybrid
model achieved an accuracy rate of 90%, which outperformed the success rate of pre-trained
CNN models. The detection of AD has been extensively researched, and it poses various
challenges. The authors of [23] utilized a sparse auto-encoder and 3D CNN to develop
a model that could detect disease cases in affected individuals based on the magnetic
resonance imaging (MRI) of the brain. The use of three-dimensional convolutions was a
significant breakthrough, as it outperformed two-dimensional convolutions. Although the
convolution layers were pre-trained with an auto-encoder, they were not fine-tuned, and it
was anticipated that fine-tuning would lead to improved performance [24].

Researchers worldwide have shown great interest in classifying AD. The dominant
technique for identifying healthy data from fMRI images is to extract features with a CNN,
followed by deep learning (DL) classification. The authors of [25] used a deep CNN to
classify Alzheimer disease versus normal patients with Alzheimer’s functional MRI data
and structural MRI data, achieving 94.79% accuracy with the LeNet5 method and 96.84%
accuracy with the Google-Net method. Recently, there has been a notable increase in the
use of DL methods in various fields because of their superior performance compared
to traditional methods. One study [26] developed a hybrid model that involved using
extracted patches from an auto-encoder combined with convolutional layers. Another
study [23] improved upon this by incorporating 3D convolution.
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In a previous study [27], auto-encoders arranged in a stack with a soft-max layer
were used for classification. Another study [28] utilized standard CNN architectures by
intelligently selecting training data and utilizing transfer learning but did not achieve
remarkable results. A comprehensive comparison was conducted in another study [29],
which examined the results and trained data using scratch with fine-tuning. Based on
the findings, in most cases, the latter outperformed the former. Fine-tuned CNNs have
been used to solve numerous medical imaging problems, including plane localization in
ultrasound images [30].

As discussed above, the use of transfer learning (TL) in the medical discipline is
significant for detecting AD with sufficient precision. Other research [31] emphasized
the use of unsupervised feature learning, which involved two stages. The first stage was
to extract features from unprocessed data using two methods—scattered filtering and
uncontrolled neural layer networks. To classify healthy and unhealthy individuals, sparse
filtering and regression with soft-max were employed. Additionally, some unsupervised
learning techniques, including Boltzmann machines and dispersed coding, were used to
dispose of the collected data. The ADNI dataset containing cerebrospinal fluid was used
in this approach, with a total of 51 AD patients, including 43 with mild signs of AD. MRI
scans were collected using 1.5 T scanners. In their study, the authors of [32] proposed a
technique that utilized ML algorithms to gather information about a patient’s behavior
over time. By employing Estimote Bluetooth beacons, the method accurately determined
the location of the patient within the house, with a precision of up to 95%.

Gerardin and team investigated the use of hippocampal texture features [33] as an MRI-
based diagnostic tool for early-stage AD, achieving a classification accuracy of 83%. They
determined that the hippocampal feature outperformed other techniques in distinguishing
stable MCIs and MCI to Alzheimer disease converters. Liu and colleagues [34] used
stacked DL auto-encoders with soft-max at the output layer to address the bottleneck issue,
achieving a remarkable accuracy of 87.67% for multiclass classification with minimal input
data and training. The researchers concluded that combining multiple features would lead
to more precise classification results.

The authors of [35] demonstrated the effect of transfer learning on image classification
and showed that fine-tuning produced better results. Alzheimer’s disease was diagnosed
in [36] employing convolutional-neural-network-based architecture and magnetic reso-
nance brain imaging. The VGG-16 model was deployed as a classification feature extractor.
The findings showed that the proposed model for Alzheimer’s disease was 95.7% correct.
The study [37] introduced a transfer learning strategy to localize plans in ultrasound scans
that could transfer knowledge on fewer layers. Another study [38] proposed an architecture
that utilized a transfer learning approach for the detection of Alzheimer’s disease from a
multiclass, open-access series of imaging study datasets. The architecture was tested on
pre-processed unsegmented and segmented images. The architecture was tested on both
binary and multiclass datasets. The results demonstrated that the proposed architecture
attained a 92.8% accuracy on multi-class and an 89% accuracy on binary-class datasets.

Iram [39] conducted research on the detection of Alzheimer’s disease using biosignals
and the most common machine learning models, which facilitated neurodegenerative
disease diagnosis at an early stage. The dataset was imbalanced; to fix the imbalance,
oversampling and undersampling techniques were employed, and missing values were
addressed. Multiple metrics were employed by the author to evaluate the performance.
This study emphasized the significance of machine learning and signal processing in the
early identification of life-threatening diseases like Alzheimer’s. Linear and Bayes classifiers
were used. Using the Bayes classifier, the author obtained greater accuracy in diagnosis.
Kim [40] developed machine learning algorithms for the identification of Alzheimer’s
disease biomarkers. The predictive performance of models employing multiple biomarkers
was more effective to that of models employing an individual gene.

Biosignals were used by Han et al. [41] to identify dementia in elderly people. They
employed no artificial intelligence techniques in their analysis. Insufficient participation
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made it impossible to derive broad generalizations. A number individuals with moderate
dementia should be tested from a broader population. Similar to this, another study [42]
employed biosignals to analyze cognitive disorders including Alzheimer’s and Parkinson’s
diseases. The authors developed a novel, economical approach for disease identification.
Hazarika et al. [43] presented a light-weight, inexpensive, and fast diagnosis method that
used brain magnetic resonance scans. They used the DenseNet121 model, which was
very expensive and able to detect the disease with 87% accuracy. However, the authors
developed and combined two models, AlexNet and LeNet, with fine-tuning. Their method
extracted features by utilizing three parallel filters. Their study demonstrated that their
model accurately detected the disease with a 93% accuracy rate.

The researchers in [44] used the CNN-based transfer learning architecture VGG-16 to
classify Alzheimer’s disease and achieved 95.7% accuracy. Murugan et al. [45] proposed
deep learning for dementia and Alzheimr’s disease classification from magnetic resonance
images. Several studies in the literature have faced class imbalance issues for Alzheimer’s
disease detection because imbalanced datasets lead to overfitting, inaccurate results, and
low accuracy among deep learning models. Another problem is that there are not enough
data available for training deep learning models. Therefore, we utilized the adaptive
synthetic technique (ADASYN), which creates new data samples synthetically, as deep
learning models perform best with balanced datasets.

3. Proposed Methodology

This section describes the Alzheimer’s disease dataset, pre-processing, adaptive syn-
thetic oversampling technique, deep learning and ensemble models, model evaluation
metrics, and classification results. Figure 1 briefly represents the workflow of the proposed
method. The pre-processed dataset was then utilized for training the pre-trained and
proposed method to efficiently and accurately detect Alzheimer’s disease cases. When the
training process was complete, the performance of the models was investigated based on
unseen data. In the following subsections, the proposed methodology is discussed.

Figure 1. Proposed workflow diagram for Alzheimer’s disease detection.

3.1. Dataset Description and Pre-processing

The two Alzheimer’s disease datasets used in this study were collected from Kaggle’s
data repository. The multiclass dataset contained four classes, namely mild demented,
moderate demented (MD), non-demented (ND), and very mild demented (VMD). A person
suffering from the ND class experiences disability in terms of behavioral skills, difficulty
in learning and remembering things and the skills of thinking and reasoning, and it even
affects the patient’s personal life. However, dementia is not necessarily caused by aging,
and its main sign is not memory loss. In the very mild demented (VMD) stage, the patient
starts to suffer memory loss, forgetting where he/she put their belongings, recent names
they heard, etc. It is hard to find VMD patients through the cognitive capacity test. In the
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mild demented (MD) phase, the patient is unable to complete their work properly, forgets
their home address, and has a hard time remembering things. These patients are not stable
and even forget they have memory issues, because they forget everything. This stage is
detected by cognitive testing. The fourth class is moderate demented (MOD), which is the
most alarming stage because the patient loses their ability to understand anything and
faces problems with calculation; it becomes difficult for them to leave home on their own
because they forget the way; and they forget important historical events and activities they
performed recently.

Table 1 shows the MMSE score and gap between the Alzheimer’s disease classes in
the dataset. The mild demented class had a 25.12 MMSE score, the moderate demented
class 21.77, the non-demented class 23.50, and the very mild demented class 24.51. The
average MMSE mean score for all four classes was 23.72, with a 4.49 standard deviation. The
largest gap between Alzheimer’s disease classes was for the mild demented and moderate
demented classes at 3. The smallest gap was 0.59 for the mild demented and very mild
demented patients.

Table 1. MMSE scores and gaps between the classes in the dataset.

Class
Mean
MMSE
Score

Standard
Deviation of
MMSE Score

Gap between the Classes

Mild demented 25.12 4.90 Gap between mild demented and moderate
demented: 3.33

Moderate demented 21.77 2.67 Gap between mild demented and
non-demented: 1.62

Non-demented 23.50 5.10 Gap between mild demented and very mild
demented: 0.59

Very mild demented 24.51 5.28 Gap between moderate demented and
non-demented: 1.72

Mean MMSE score 23.72 Gap between moderate demented and very
mild demented: 2.72

Mean standard deviation 4.49 Gap between non-demented and very mild
demented: 1.01

The images of AD in the dataset were RGB images with different numbers of pixels.
The ND class contained 3200 samples, while the MD class contained 896 images, the VMD
class contained 2240, and the MOD class contained 64. The only disadvantage of this dataset
was that it was imbalanced. To solve this issue, we used ADASYN for class balancing.
Another binary MRI Alzheimer’s dataset contains 965 AD and 689 MCI images. Medical
image pre-processing is very important to achieve quality results and increase the image
quality for machine and deep learning [46]. The images had different heights and widths,
and to train the deep learning models, we needed fixed-size inputs. Therefore, we resized
all the images to a fixed size of 224 × 224 × 3.

3.2. Adaptive Synthetic (ADASYN) Technique

Adaptive synthetic (ADASYN) oversampling technology is used in classification tasks
to handle imbalanced classes in datasets. ADASYN creates new synthetic samples from the
minority class to address the class imbalance issues. It improves the generalization accuracy
of various classifiers. ADASYN is mainly used for object detection, facial expressions, and
image analysis to balance the classes. It is a very effective and flexible technique compared
to any other oversampling technique. Researchers have utilized the ADASYN oversampling
technique to balance an imbalanced dataset for tuberculosis detection from CXR images.
They balanced the minority classes with the ADASYN technique to enhance the overall
effectiveness of the tuberculosis detection model and achieved a high accuracy compared
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to other techniques [47]. Table 2 shows the training and testing images after splitting the
balanced data. Algorithm 1 shows the steps of the ADASYN technique.

Table 2. Training and testing images after implementing the ADASYN technique.

MD MOD ND VMD Total

Training images 2256 2253 2252 2231 8992

Testing images 987 956 958 953 3854

Total 3243 3209 3210 3184 12,846

Algorithm 1 ADASYN algorithm
Input: Data_images←− Input f eatures
Labels←− Corresponding labels
Output: X_res←− Oversampled image f eature vectors
y_res←− Oversampled corresponding labels
Start:

1: Import ADASYN f rom imblearn.over_sampling
2: Create ADASYN oversamping instance and assign a variable sm
3: Applying the ADASYN oversampling technique to the dataset
4: Fit resample method is called and passes through the arguments (Data_images and

Labels).
5: Assign Oversampled image f eature vectors to X_res
6: Assign Oversampled corresponding labels to y_res
7: Return (X_res, y_res)

End

3.3. Ensemble Deep Learning with Transfer Learning Approach

Typically, constructing a deep learning architecture is a challenging task. The weights
that one uses in deep learning are allocated before the training phase and changed continu-
ously. Deep learning requires a lot of time to change the weights repeatedly, which leads
to the overfitting of the model. Transfer learning (TL) has been the most effective method
to overcome the aforementioned problems [48]. Transfer learning leverages previously
learned knowledge from pre-trained models trained on large datasets. In addition, it adjusts
the hyper-parameters and tunes the hidden layers of pre-trained models. The efficiency of
deep learning may be improved by TL, which helps to save time and effort [49].

Ensemble learning is the most essential approach for improving the overall perfor-
mance of several individual deep learning models. Ensemble learning trains many deep
learning models on the same datasets and integrates them so effectively that the predictions
made by the models are accurate and the detection accuracy increases [50]. Ensemble
learning may be applied in a variety of medical diagnosis tasks. Overall, it improves
performance, makes models more robust, and reduces the chances of overfitting. By com-
bining the aspects of several models, deep learning can learn simple and complex patterns
efficiently. Five ensemble deep models were used in this Alzheimer’s disease detection
study to efficiently detect cases of Alzheimer’s disease from multiclass and binary-class
classification datasets. The input layers, output shape, and parameters of the proposed
ensemble model are presented in Table 3.

The proposed ensemble deep learning model is shown in Figure 2. Firstly, we imported
the VGG-16 and EfficientNet-B2 models from the keras application and other important
libraries relevant to the model. The input image shape for the ensemble model was 224
× 224 × 3. Then, we loaded both the pre-trained deep learning models with include-
top equal to false (without top layers). The input shape for the ensemble models was
created and kept the same. After that, we concatenated the output of both the VGG-16
and EfficientNet-B2 models using the “concatenate” function. A dropout layer was added
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immediately after the concatenation layers. The flatten layers function was used to convert
the features into a specific format that was acceptable for the fully connected layer. We
then fine-tuned the other layers to accelerate the training steps and increase the overall
progress. Four batch normalizations and three dense layers were used with activation
functions. Batch normalization is a very popular method that normalizes layers as well as
providing stability to neural networks. It also makes learning easier and faster. The testing
accuracy may be improved with batch normalization, depending on the type of data. Dense
layers are regularly used for image classification. Finally, the model was compiled with the
“Categorical Cross-entropy” loss function and Adam optimizer.

Table 3. Total layers, output shape, and parameters of ensemble model.

Sr # Layers Output Shape Parameters #

1 Input layers 224 × 224 × 3 0
2 VGG-16 7 × 7 × 512 14,714,688
3 EfficientNet-B2 7 × 7 × 1408 7,768,569
4 Concatenate 7 × 7 × 1920 0
5 Dropout 7 × 7 × 1920 0
6 Flatten 94,080 0
7 Batch normalization 94,080 376,320
8 Dense layer 256 24,084,736
9 Batch normalization 256 1024
10 Activation layer 256 0
11 Dropout 256 0
12 Batch normalization 256 1024
13 Dense layer 64 16,448
14 Batch normalization 64 256
15 Activation layer 64 0
16 Dense layer 4 260

Figure 2. Architecture of proposed ensemble model.

3.4. Fine-Tuned Individual Deep Learning Models

This subsection covers a brief description of certain deep learning (DL) models, namely
convolutional neural networks (CNNs), DenseNet121, VGG16, Xception, and EfficientNet-
B2. It also analyzes the performance of the trained model using performance metrics like
accuracy, AUC, recall, precision, and F1 score.
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3.4.1. CNN

CNNs are considered the most significant DL models. Unlike traditional matrix
multiplication, CNNs employ convolution in their operation. Their primary application
is in object classification using image data. CNNs are a type of deep learning model that
are widely used for image and video processing tasks. The structure and function of the
visual cortex in the brain inspired these networks. A CNN’s operation involves several
processing layers, including convolutional layers, pooling layers, and fully connected
layers. Overall, CNNs are powerful tools for pre-processing tasks and have been used
for various applications, including object detection, facial recognition, and autonomous
driving [51,52].

The CNN architecture is shown in Figure 3. It took an input size of 224 × 224 × 3. The
CNN architecture had three convolutional two-dimensional layers followed by the RelU
activation function, three max pooling layers, and three batch normalization layers. Then,
a flattening layer was added to follow the dropout layer. Two dense layers were included,
one followed by the activation of the ’RelU’ function and the other by the activation of the
soft-max layer.

Figure 3. Convolutional neural network architecture.

3.4.2. DenseNet121

DenseNet121 [53] is a CNN architecture that has been commonly employed for image
classification tasks. It was introduced in 2017 as an improvement upon the previous
popular architectures such as VGG and ResNet. DenseNet121 employs a dense connectivity
pattern, where each layer receives feature maps from all previous layers and passes its
feature maps to all successive layers. This dense connectivity allows for better gradient
flow and parameter efficiency and reduced vanishing gradient problems. The architecture
has 121 layers, including convolutional, pooling, and dense blocks, and has achieved
state-of-the-art performance on several benchmark datasets such as ImageNet.

3.4.3. EfficientNet-B2

EfficientNetB2 is a CNN architecture that is part of the EfficientNet family of models.
It was designed to provide an optimal balance between model size and performance for
image classification tasks. EfficientNetB2 is larger and more complex than the original
EfficientNetB0 model, but it maintains the same basic structure, including the use of
compound scaling to balance depth, width, and resolution. EfficientNetB2 has 7.8 million
parameters. It is often used as a baseline model for transfer learning or fine-tuning specific
image classification tasks [54].
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3.4.4. VGG16

VGG-16 is a deep CNN architecture that was developed by the visual geometry group
(VGG) at the university of Oxford in 2014. It is a widely used model for image recognition
tasks and has achieved state-of-the-art results in many computer vision (CV) benchmarks.
The architecture of VGG16 contains 16 layers, including 13 convolutional layers and 3 fully-
connected layers. The convolutional layers have small 3 × 3 filters and are placed on top of
each other, increasing the depth of the network. The use of small filters with a small stride
size helps preserve spatial information and enables the network to learn more complex
features [55].

3.4.5. Xception

Xception is a deep CNN architecture that was proposed in 2016. It was inspired by the
inception architecture but differs from it by replacing the standard convolutional layers
with depth-wise separable convolutions. This approach minimizes the number of training
parameters and computations, resulting in faster and more efficient training. Xception also
employs skip connections to allow for better gradient flow and improved accuracy. The
architecture has achieved state-of-the-art results on various image classification benchmarks
such as ImageNet, and it has been widely used in computer vision applications [56].

3.5. Performance Measures

Evaluation metrics are quantitative measures used to assess the performance of a
model or system in solving a specific task. The model’s classification results could be
divided into four classes: true-positive (TP), true-negative (TN), false-positive (FP), and
false-negative (FN). TP refers to correctly identified positive instances, while TN refers to
accurately identified negative instances. FP represents falsely predicted positive instances,
and FN represents falsely predicted negative instances. Various evaluation parameters
were utilized in this study, including recall, precision, accuracy, AUC, and F1 score.

Accuracy =
TP + TN

TP + TN + FP + FN
∗ 100 (1)

Precision =
TP

TP + FP
∗ 100 (2)

Recall =
TP

TP + FP
∗ 100 (3)

F1− score = 2 ∗ pre + Rec
Pre ∗ Rec

∗ 100 (4)

AUC = 0.5 ∗ (TPR + TNR) ∗ 100 (5)

4. Results and Discussion

Experiments were conducted using a Hewlett Packard Core i5 , sixth-generation, 25 GB
RAM, and a colab Pro GPU that was manufactured by Google were used in this study. This
section presents all the experiments conducted on the binary and multiclass Alzheimer’s
brain disease datasets. We utilized efficient ensemble deep learning architectures that
consumed minimum resources. We utilized a 32-bit batch size, 15 epochs, a learning rate of
0.0001, a cross-entropy loss function, Adam, and an SGD optimizer.

4.1. Results of Individual Fine-Tuned Deep Learning Models

Experiments were conducted using individual fine-tuned deep learning models in-
cluding VGG-16, DenseNet-121, EfficientNet-B2, CNN, and Xception. These individual
models were trained and tested using a loss function named categorical cross-entropy for
mild demented, moderate demented, non-demented, and very mild demented cases and an
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Adam optimizer to optimize the performance. A batch normalization layer was added to
Efficient-Net-B2, Xception, and VGG-16 to increase the training process, reduce the learning
time, and lower the generalization errors. Moreover, a dropout layer was utilized to avoid
overfitting. There were 50 epochs implemented for each model. Table 4 presents the results
of the individual pre-trained models. For the individual models, DenseNet-121 attained
the lowest accuracy, precision, recall, F1 score, and area under the curve for Alzheimer’s
disease multiclass classification. The second most poorly performing deep model was
Xception, which achieved a 75.04% accuracy and 93.70% area under the curve. Both the
CNN and VGG-16 models achieved almost the same classification accuracy. The fine-tuned
high-performance model EfficientNet-B2 achieved a 95.89% accuracy and 95.95% recall
score. EfficientNet-B2 performed well in individual deep learning models.

Table 4. Results of individual fine-tuned deep learning models.

Model Accuracy Precision Recall F1 Score AUC

DenseNet-121 72.94 77.74 65.54 70.89 92.69
CNN 90.50 92.87 86.14 89.35 98.84
EfficientNet-B2 95.89 96.18 95.95 96.02 99.72
Xception 75.04 79.99 68.37 73.84 93.70
VGG-16 90.11 91.27 89.26 90.23 97.59

Figure 4 shows the performance comparison of individual models using various
metrics. DenseNet-121 and Xception performed poorly in terms of recall score and F1 score.
EfficientNet-B2 performed exceptionally, in addition to VGG-16. The area under the curve
(AUC) was better than the other metrics.

Figure 4. Comparison of individual models using performance metrics.

4.2. Results of Ensemble Deep Learning Models with Multiclass Dataset

The ensemble deep learning model results are presented in Table 5. The ensem-
ble EfficientNet-B2 and DenseNet-121 model achieved a 96.96% accuracy, 97% precision,
96.98% recall, 96.93% F1 score, and 99.60% area under the curve (AUC) score. The sec-
ond VGG-16-DenseNet-121 ensemble model achieved a 95.56% accuracy and 98.75%
AUC. The EfficientNet-B2+Xception model achieved a 96.26% accuracy, 96.50% recall,
and 99.11% AUC. Xception+DenseNet-121 achieved a 91.05% accuracy. The proposed
VGG-16+EfficientNet-B2 model achieved a 97.35% accuracy score and a 99.64% area under
the curve (AUC). All the ensemble models performed well and accurately detected the AD
cases from the multiclass dataset. The DenseNet-121+Xception ensemble model achieved
an 18% higher accuracy than the individual DenseNet-121 and Xception models. The other
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ensemble model achieved 1.46% better results when we compared it with the individual
EfficientNet-B2 model.

Table 5. Results of ensemble deep learning models with multiclass dataset.

Model Accuracy Precision Recall F1 Score AUC

EfficientNet-B2+DenseNet-121 96.96 97.00 96.98 96.93 99.60
VGG-16+DenseNet-121 95.56 95.50 95.23 95.50 98.75
EfficientNet-B2+Xception 96.26 96.24 96.50 96.25 99.11
Xception+DenseNet-121 91.05 91.50 91.00 90.75 97.78
VGG-16+EfficientNet-B2 97.35 97.32 97.35 97.37 99.64

The performance comparison of the ensemble models is presented in Figure 5. Among
the ensemble models, VGG-16+EfficientNet-B2 performed efficiently, with high perfor-
mance metrics. The Xception model with Efficient-Net-B2 provided better results than
the individual Xception model. Similarly, DenseNet-121 with VGG-16 performed with
high accuracy for detecting Alzheimer’s disease. The experiments proved that the ensem-
ble models provided excellent results compared to the individual models in terms of all
performance metrics.

Figure 5. Comparison of ensemble deep models using performance metrics with balanced dataset.

The results of the ensemble deep learning models using the imbalanced dataset are
shown in Table 6. The ensemble model of EfficientNet-B2 and DenseNet-121 obtained an ac-
curacy of 92.82%, a precision of 94.29%, a recall of 93.76%, an F1 score of 91.52%, and an area-
under-the-curve (AUC) score of 99.38%. The second ensemble model of VGG-16-DenseNet-
121 had an accuracy of 91.52% and an AUC of 98.98%. The EfficientNet-B2+Xception model
had an accuracy of 90.45%, a recall of 87.80%, and an AUC of 98.80%. Xception+DenseNet-
121 obtained an accuracy of 89.29%. The proposed VGG-16+EfficientNet-B2 model obtained
an accuracy score of 95% and an AUC of 99.41%. All ensemble models achieved outstand-
ing performance and accurately identified AD cases in the multiclass datasets. Using the
imbalanced dataset, the DenseNet-121+Xception ensemble model achieved an 8% lower
accuracy. The accuracy of another ensemble model was 7% lower when compared to the
balanced dataset.
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Table 6. Results of ensemble deep learning models with multiclass imbalanced dataset.

Model Accuracy Precision Recall F1 Score AUC

EfficientNet-B2+DenseNet-121 92.82 94.29 93.76 91.52 99.38
VGG-16+DenseNet-121 91.52 95.21 92.43 92.11 98.96
EfficientNet-B2+Xception 90.45 92.61 87.80 90.40 98.80
Xception+DenseNet-121 89.29 85.83 88.90 90.87 98.28
VGG-16+EfficientNet-B2 95.00 95.23 93.34 96.13 99.41

Figure 6 displays the performance comparison of the ensemble models using the im-
balanced dataset. Among the ensemble models, VGG-16+EfficientNet-B2 performed effec-
tively, with high performance metrics. In comparison to previous models, the DenseNet-121
model with Efficient-Net-B2 offered superior results. In the same way, DenseNet-121 with
VGG-16 showed good performance in identifying Alzheimer’s disease. The results showed
that the ensemble models with an unbalanced dataset also produced better results. The
experiments, however, showed that the proposed approach achieved 2.35% higher accuracy
when utilizing the balanced dataset.

Figure 6. Comparison of ensemble deep models using performance metrics with imbalanced dataset.

Table 7 presents the results of the proposed model with different learning rates to
check the impact of the learning rates on the model performance. During the training
phase, it was essential to select the appropriate learning rate in order to ensure that the
model weights were properly updated. We achieved a 94.47% accuracy and 98.53% AUC
by utilizing a 0.01 learning rate. In another experiment, the learning rate was set to 0.001,
and a 97.30% accuracy was achieved. When the learning rate was set to 0.0001, we attained
a model accuracy of 97.35% and a 99.64% AUC.

Table 7. Results of proposed model with different learning rates.

Accuracy Precision Recall F1 Score AUC Learning Rate

94.47 94.55 94.45 94.48 98.53 0.01
97.33 97.30 97.35 97.30 99.60 0.001
97.35 97.32 97.35 97.37 99.64 0.0001

The confusion matrix results of the ensemble deep learning models are shown in
Figure 7, where label 0 indicates moderate demented, label 1 indicates non-demented,
label 2 indicates mild demented, and label 3 indicates very mild demented. The VGG-
16+EfficientNet-B2 model produced 100% true predictions for non-demented cases. The
Xception+DenseNet-121 model produced 98% true predictions for non-demented and mild
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demented Alzheimer’s cases. The Exception+EfficientNet-B2 model also produced the
same 100% true predictions for non-demented case. The VGG-16+DenseNet-121 model
achieved 91% true predictions for the moderate demented class. The results hence showed
that the VGG-16+EfficientNet-B2 model predictions were very good.

(a) (b)

(c) (d)

(e)

Figure 7. Results of confusion matrix for (a) VGG-16+EfficientNet-B2, (b) VGG-16+DenseNet-121,
(c) Xception+DenseNet-121, (d) Xception+EfficientNet-B2, and (e) EfficientNet-B2+DenseNet-121.

The training-testing accuracy and loss are displayed in Figure 8a. We observed that
the training accuracy was 81.34 at epoch 1, and by epoch 10, we started to see variations
in the data. We chose to train the ensemble deep learning models for 50 epochs, and we



Diagnostics 2023, 13, 2489 15 of 20

were able to improve their performance. Figure 8b shows the performance curves of the
ensemble EfficientNet-B2+DenseNet-121 model, where the training accuracy was at its
highest point at epoch 45 and the testing accuracy at epoch 37. The testing loss gradually
decreased from epoch 1 to epoch 50. The testing loss for the ensemble VGG-16+DenseNet-
121 model is displayed in Figure 8c. The curves of the testing and training accuracy started
increasing from epoch 1. At epoch 43, the training accuracy reached 99.73 and the loss
decreased from 0.68 to 0.01. Figure 8d,e shows that the testing loss for the ensembles
of Xception+DenseNet-121 and Exception+EfficientNet-B2 was high compared to that in
Figure 8a,b.

(a) (b)

(c) (d)

(e)

Figure 8. Training and testing curves of (a) VGG-16+EfficientNet-B2, (b) VGG-16+DenseNet-121,
(c) Xception+DenseNet-121, (d) Xception+EfficientNet-B2, and (e) EfficientNet-B2+DenseNet-121,
showing accuracy and loss.
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4.3. Results of Ensemble Deep Learning Models with Binary-Class Dataset

The results of the ensemble models were also evaluated on the binary-class Alzheimer’s
disease dataset to test the effectiveness of the proposed model, as shown in Table 8. The
EfficientNet-B2+DenseNet-121 model achieved a 95.45% accuracy, 95.10% precision, 95.45%
recall, 95.50% F1 score, and 98.68% area-under-the-curve (AUC) score. The second en-
semble VGG-16+DenseNet-121 model achieved a 94.90% accuracy and 98.43% AUC. The
EfficientNet-B2+Xception model achieved a 91.80% accuracy, 91.80% recall, and 97.34%
AUC. The Xception+DenseNet-121 model achieved a 91.05% accuracy. The proposed VGG-
16+EfficientNet-B2 model achieved a 97.07% accuracy score and 99.59% area under the
curve (AUC). All the ensemble models performed outstandingly and accurately detected
the AD cases for the binary-class dataset. The proposed ensemble model also achieved a
remarkable 97.07% accuracy on the binary-class classification dataset.

Table 8. Results of ensemble deep learning models with binary-class dataset.

Model Accuracy Precision Recall F1 Score AUC

EfficientNet-B2+DenseNet-121 95.45 95.10 95.45 95.50 98.68
VGG-16+DenseNet-121 94.90 94.56 94.90 94.97 98.43
EfficientNet-B2+Xception 91.80 91.80 91.80 92.19 97.34
Xception+DenseNet-121 90.53 90.84 90.35 91.04 96.22
VGG-16+EfficientNet-B2 97.07 96.91 97.27 97.16 99.59

4.4. K-Fold Cross-Validation Results for Ensemble Models

The performance and feasibility of the proposed ensemble model were also evaluated
with k-fold cross-validation. The results of the cross-validation are displayed in Table 9.
The experiments validated that with k-fold cross-validation, the performance was also
outstanding. The VGG-16+DenseNet-121 model achieved an accuracy score of 0.942 with a
+/− 0.02 standard deviation. EfficientNet-B2+ DenseNet-121 achieved an accuracy score
of 0.961 with a +/− 0.04 standard deviation. VGG-16+ EfficientNet-B2 achieved a 0.963
accuracy and a +/− 0.03 standard deviation. The results suggested that the proposed
ensemble model was fit and accurate enough to detect Alzheimer’s disease from the
multiclass MRI image dataset.

Table 9. K-fold cross-validation results for proposed models.

Model Accuracy Standard Deviation (std)

EfficientNet-B2+DenseNet-121 96.1% +/− 0.04
VGG-16+DenseNet-121 94.2% +/− 0.02
EfficientNet-B2+Xception 94.5% +/− 0.03
Xception+DenseNet-121 91.1% +/− 0.03
VGG-16+EfficientNet-B2 96.3% +/− 0.03

4.5. Comparison of Proposed Ensemble Model with Previous Studies

To show the effectiveness and robustness of the proposed ensemble model, we per-
formed a comparison of the proposed method with previous studies discussed in related
work. Table 10 depicts the results comparison for the detection of Alzheimer’s disease
cases. We chose those studies from the literature that considered multiclass datasets for
the comparison with the proposed method. Jain et al. [39] proposed convolutional neural
networks for AD classification using multiclass images with 95.73% accuracy. Similarly, an-
other researcher [42] used the CNN-based transfer learning architecture VGG-16 to classify
Alzheimer’s disease and achieved 95.70% accuracy. Yildirim et al. [23] employed hybrid
deep CNN models using a multilclass Alzheimer’s dataset and attained 90% accuracy. Liu
et al. [22] utilized a multi-deep CNN for automatic Alzheimer’s disease classification with
the lowest accuracy. The results shown in the comparison table were not satisfactory due
to the low accuracy and the fact that the models were not properly utilized to achieve out-
standing results. However, our proposed ensemble model classified Alzheimer’s disease
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with the highest accuracy and was more efficient than any other individual or previous
pre-trained models.

Table 10. Comparison of proposed ensemble model with previous studies.

Reference Model Dataset Accuracy

[39] VGG-16 Multiclass 95.73%
[22] Multi-deep CNN Multiclass 88.9%
[23] Deep hybrid model Multiclass 90%
[24] 3D CNN model Multiclass 89.47%
[41] AlexNet Multiclass 92.85%
[42] VGG-16 Multiclass 95.70%
[43] DEMNET Multiclass 95.23%
This paper Proposed method Multiclass 97.35%

5. Conclusions

The timely diagnosis and classification of Alzheimer’s disease using multiclass datasets
is a difficult task. To detect and treat the disease, an accurate automatic system is required.
This study proposed a deep ensemble model with transfer learning techniques to detect
Alzheimer’s disease cases from a multiclass dataset. The Alzheimer disease dataset was
highly imbalanced, and we used adaptive synthetic oversampling (ADASYN) to balance
the classes. The proposed model achieved an accuracy of 97.35% in detecting disease cases.
The DenseNet-121+Xception ensemble model achieved an 18% higher accuracy than the
individual DenseNet-121 and Xception models. Another ensemble model achieved 1.46%
better results when we compared it with individual EfficientNet-B2. Our proposed ensem-
ble model was less time-consuming, more efficient, worked well even on small datasets,
and did not use any hand-crafted features. The deep learning automatically extracted
relevant and key features from the samples, and an ensemble of deep learning models
captured various aspects of the given samples in depth. In the future, we will collect and
evaluate larger amounts of data to quickly and precisely diagnose Alzheimer’s cases and
combine various types of data to enhance the accuracy of detecting models.
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