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Abstract

One-shot voice conversion (VC) aims to convert speech from any source speaker to an arbitrary 

target speaker with only a few seconds of reference speech from the target speaker. This relies 

heavily on disentangling the speaker’s identity and speech content, a task that still remains 

challenging. Here, we propose a novel approach to learning disentangled speech representation 

by transfer learning from style-based text-to-speech (TTS) models. With cycle consistent and 

adversarial training, the style-based TTS models can perform transcription-guided one-shot VC 

with high fidelity and similarity. By learning an additional mel-spectrogram encoder through a 

teacher-student knowledge transfer and novel data augmentation scheme, our approach results 

in disentangled speech representation without needing the input text. The subjective evaluation 

shows that our approach can significantly outperform the previous state-of-the-art one-shot voice 

conversion models in both naturalness and similarity.
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1. INTRODUCTION

Voice conversion (VC) is a technique that converts one speaker’s voice into another’s voice 

while preserving linguistic and prosodic information such as phonemes and prosody. Recent 

advances in deep learning have enriched research on one particular type of voice conversion: 

one-shot voice conversion. This type of voice conversion, also known as any-to-any voice 

conversion, aims to convert speech from any source speaker to an arbitrary target speaker 

using only a few seconds of reference audio from the target speaker. To convert an unseen 

speaker’s voice into another speaker’s voice unseen during training, the model needs to 

learn a shared representation of speech across all potential sources and target speakers [1]. 

Therefore, learning disentangled representations of speech and speaker identity is crucial for 

successful one-shot voice conversion.
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Several techniques have been proposed for learning disentangled representations, including 

instance normalization [2, 3, 4], vector quantization [3, 5, 6, 7], transfer learning from ASR 

or TTS models [8, 9, 10, 11, 12], and adversarial training [13, 14]. These methods, albeit 

effective, do not guarantee that the empirically trained representations contain no source 

speaker information. VC systems such as Mellotron [15] and Cotatron [16], on the other 

hand, use phoneme alignment and pitch curve from the source speech and re-synthesize 

the speech of the target speaker. Since phoneme alignment and normalized pitch curve are 

largely speaker-agnostic, the re-synthesized speech should only reflect the speech content 

and prosody of the source audio without leaking any other source-specific information. 

These TTS-based methods that theoretically guarantee a disentangled representation still 

suffer from two essential problems. The major drawback of TTS-based models is that this 

method requires input text or a sequence of phonemes to generate the alignment which 

limits its potential for applications in real-time inference. Zhang et. al. [10] has made an 

attempt to address this problem by training an additional mel-spectrogram encoder that 

produces the same latent representation as the one generated from phoneme alignment and 

text representation. This is equivalent to training an automatic speech recognition (ASR) 

system, but as we show here, this way of encoder training is not optimal. Another obstacle 

endured by the TTS method is the generalization problem. Since the original TTS models 

are trained to only reconstruct speech from the pitch and phoneme alignment of the source 

speaker, there is no guarantee that the synthesized speech will sound natural and similar 

to the target speakers when the input pitch and phoneme alignment are from a different 

speaker.

In this paper, we present StyleTTS-VC, a non-parallel one-shot voice conversion framework 

based on StyleTTS [17], a style-based text-to-speech model. We address the aforementioned 

generalization problems by first training a StyleTTS speech decoder with a cycle 

consistency loss function and adversarial objectives. We then train a mel-spectrogram 

encoder to produce representations that reconstruct the decoder output generated using 

representations from phoneme alignment for all speakers in the training set with both 

synthesized and real speech as input. Unlike the previous method [10], our proposed 

technique does not force the encoded representations to be close to the phoneme alignment 

representations. The subjective human evaluation shows that our model outperforms the 

previous state-of-the-art one-shot voice conversion model, YourTTS [11], and two other 

baseline models, AGAIN-VC [4] and VQMIVC [6], for unseen source and target speakers. 

Moreover, since our model consists of only convolutional layers without non-causal RNN or 

transformers, our model has the capability to perform real-time inference with a faster-than-

real-time vocoder.

Our work makes multiple contributions: (i) we show that the cycle consistency and 

adversarial objective are effective in training both TTS decoder and mel-spectrogram 

encoder for VC applications, (ii) we introduce novel data augmentation using text-guided 

voice conversion results as both input and target during training, and (iii) we demonstrate 

that the loss function proposed in [10] is suboptimal for transfer learning from TTS 

models for voice conversion applications and propose an alternative solution with a mutual 

information (MI) maximization objective. The audio samples from our model are available 

at https://styletts-vc.github.io.
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2. METHODS

2.1. StyleTTS

StyleTTS [17] is a style-based non-autoregressive text-to-speech model that integrates 

style information through adaptive instance normalization (AdaIN) [18]. The StyleTTS 

framework consists of eight modules: text encoder, style encoder, discriminator, text aligner, 

pitch extractor, speech decoder, duration predictor, and prosody predictor. Since we only 

use the speech decoder for voice conversion, we only describe the modules and objectives 

needed to train the speech decoder here. We do not use the duration and prosody predictors 

because they are not relevant to the VC application. For simplicity, we assume that the 

text aligner and pitch extractor are pre-trained and fixed during training. An overview of 

StyleTTS decoder training is given in Figure 1a.

Text encoder.—Given input phonemes t, our text encoder T encodes t into latent 

representation htext = T t . We use the same text encoder as in Tacotron 2 [19].

Style encoder.—Given an input mel-spectrogram x, the encoder extracts the style code 

s = S x . For the voice conversion application, s is roughly equivalent to the speaker 

embedding. The style encoder is the same as in StarGANv2-VC [20] without the domain-

specific linear projection layers.

Decoder.—The decoder G synthesizes the mel-spectrogram x̂ = G htext ⋅ dalign, s, px, nx  from 

an input audio x, where htext ⋅ dalign is the aligned latent representation of phonemes, s is the 

style code of target speaker, px is pitch contour and nx is the log norm (energy) of x per 

frame. Our decoder consists of seven residual blocks with AdaIN (equation 1), with which 

the style code s is introduced into G. The px and nx are normalized and concatenated with the 

output from every residual block as the input to the next residual block.

AdaIN x, s = Lσ s x − μ x
σ x + Lμ s , (1)

where x is a single channel of the feature maps, s is the style vector, μ ⋅  and σ ⋅  denotes 

the channel mean and standard deviation, and Lσ and Lμ are learned linear projections for 

computing the adaptive gain and bias using the style vector s.

Discriminator.—We employ the same discriminator D as in StarGANv2-VC [20] for seen 

speakers during training. The discriminator has the same architecture as the style encoder 

but with the domain-specific linear projection layer for each speaker. The domain-specific 

layer helps the discriminator to capture detailed features of each speaker in the training set.

Text aligner and pitch extractor.—The text aligner A is based on the decoder of 

Tacotron 2 with attention. It is pre-trained for automatic speech recognition (ASR) task on 

the LibriTTS corpus [21]. The pitch extractor F  is a pre-trained JDC network [22] trained on 

LibriTTS with ground truth F0 estimated using Harvest [23]. The text aligner is the same as 
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the ASR model in [20], and the pitch extractor is the same as the F0 network used in [20]. 

Both models are pre-trained and fixed during training.

2.2. StyleTTS-VC

For voice conversion without text input, we train an additional encoder E that encodes 

a mel-spectrogram x into hen such that G htext ⋅ dalign, s, px, nx = G E x , s, px, nx . That is, the 

encoder learns to produce representations that can be used by the decoder to synthesize 

the same speech as from the representations generated by the text encoder and phoneme 

alignment. The encoder consists of six 1-D residual blocks with instance normalization [24], 

similar to those used in [4] and [20]. Unlike [10], we do not enforce hen = htext ⋅ dalign, in which 

case the encoder becomes an ASR model and may produce unnatural speech. The effect of 

enforcing hen = htext ⋅ dalign is examined in section 3.4.

During inference, for any given input xin, we extract the pitch pin = F xin  and energy 

nint = log ∑n = 1
N xn, t

2 where xn, t represents the nth mel of the tth frame, N the number of 

mels, and the speech content hen = E xin . We compute the style code s = S xref  to synthesize 

x̂trg from the target speaker. Since both pin and nin are 1-dimensional normalized curves, they 

cannot contain more information than pitch and volume. Since hen is trained to replicate 

the effects of htext ⋅ dalign for all possible speech generated by G, hen is also a disentangled 

representation for phonemes that contain no speaker information. An overview of StyleTTS-

VC is provided in Figure 1b.

2.3. Training Objectives

We train our model in two steps. We first train the decoder with a cycle consistency loss 

function, and we then train the encoder with the aforementioned objective with a fixed 

pre-trained decoder. Given a mel-spectrogram x ∈ Xysrc, a reference xref ∈ Xytrg, the source 

speaker ysrc ∈ Y and the target speaker ytrg ∈ Y, we train our model with the following loss 

functions.

Mel reconstruction loss.—Given a mel-spectrogram x ∈ X and its corresponding text 

t ∈ T, the decoder is trained with

ℒrec = Ex, t x − G htext ⋅ dalign, s, px, nx 1 , (2)

where htext = T t  is the encoded phoneme representation, dalign is the attention alignment 

pre-computed from the text aligner, s = S x  is the style code of x, px = F x  is the pitch F0 

of x and nx is the energy of x. We use the monotonic version of the attention alignment 

obtained by a dynamic programming algorithm [25] for 50% of the time because the 

attention alignments are not strictly monotonic and can contain speaker information.

Style reconstruction loss.—To learn meaningful style code that represents speaker 

embeddings, we used a self-supervised style reconstruction similar to [20]
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ℒsty = Ex, t, xref S xref − S xtrg 1 , (3)

where x̂trg = G htext ⋅ dalign, S xref , px, nx , the reconstructed mel-spectrogram under style code of 

xref with the phonemes, alignment, pitch, and energy information of x.

Encoder loss.—When training the encoder, we require the encoder to produce 

representations that can be used by the decoder to produce the same speech as those 

generated using representations through phoneme alignment under the encoder loss for an 

arbitrary target speaker in the training set

ℒen = Ex, t, xref  x − G E x , S xref , px, nx 1 , (4)

where x̂ = G htext ⋅ dalign, S xref , px, nx  the converted speech using text representation and 

phoneme alignment.

Here x can be either ground truth from the training set or synthesized data. 

x = G ĥtext ⋅ d̂align, S x̂ref , px̂, nx̂  when x is synthesized, where ĥtext and d̂align are text and alignment 

of another speech sample x̂ and x̂ref is another reference audio different from xref. That is, 

when x is synthesized, it is a converted speech sample used as an input. This novel data 

augmentation fully explores the input and target space of the pre-trained TTS decoder and 

produces more robust models compared to those trained without this technique.

Phoneme loss.—Since we do not demand E x = htext ⋅ dalign, there is no guarantee that the 

generated speech keeps the original phoneme content. We employ a phoneme loss function 

to maximize the mutual information (MI) [26] between the encoded representations and the 

phonetic content through a linear projection P  for each frame of the input

ℒMI = Ex, t
1
T ∑

i = 1

T
CE dalign  ⋅ t i, (P ⋅ E x )i , (5)

where T  is the number of frames and CE ⋅  denotes the cross-entropy loss function.

Cycle consistency loss.—To make sure that the decoder generalizes to different input 

style codes independent of text, pitch and energy, we also employ a cycle consistency loss 

function

ℒcycle = Ex, t x − G h, S x , pxtrg, nxtrg 1 , (6)

where px̂trg is the pitch curve and nx̂trg is the energy of the converted speech x̂trg. When training 

the decoder, h = htext · d̂align. and x is the ground truth where d̂align is the attention alignment of 

the converted speech x̂trg. When training the encoder, h = E x  and x = x̂ in equation 4.

Adversarial loss.—We use two adversarial objectives: the original cross-entropy loss 

function for adversarial training following [20] and the additional feature-matching loss 

following [27]
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ℒadv = Ex, ysrc log D x, ysrc + Ex, t, ytrg log 1 − D xtrg, ytrg , (7)

ℒfm = Ex, x ∑
l = 1

L 1
Nl

Dl x, ysrc − Dl x, ysrc 1   ,   (8)

where D ⋅ , y  denotes the output of discriminator for the speaker 

y ∈ Y, x̂trg = G h, S xref , px, nx  the converted speech, x̂ = G h, s, px, nx  the reconstructed 

speech, L is the total number of layers in D and Dl denotes the output feature map of 

lth layer with Nl features. The values of x and h are the same as in equation 6 depending on 

whether the encoder E or the decoder D is trained.

Full objectives.—Our full objective functions for training the decoder can be summarized 

as follows:

min
G, T , S

max
D

ℒrec + λstyℒsty + λcycleℒcycle + λadvℒadv + λfmℒfm, (9)

and full objective functions for the encoder are:

min
E, P

max
D

ℒen + λcycleℒcycle + λMIℒMI + λadvℒadv + λfmℒfm . (10)

3. EXPERIMENTS

3.1. Datasets

We used the VCTK [28] corpus to evaluate our models. The VCTK dataset consists of 

109 native English speakers with various accents, each of which reads approximately 400 

sentences. We followed the same procedure described in [6], where the 89 speakers were 

randomly selected for training and the rest 20 speakers were used as unseen speakers for 

testing. We further divided samples of the selected 89 speakers into training and validation 

sets with a 90%/10% split. The samples were downsampled to 24 kHz. We converted 

the text sequences into phoneme sequences using an open-source tool1. We extracted mel-

spectrograms with a FFT size of 2048, hop size of 300, and window length of 1200 in 

80 mel bins using TorchAudio [29]. The generated mel-spectrogram was converted into 

waveforms using the Hifi-GAN [27] and downsampled to 16 kHz to match the baseline 

models.

3.2. Training Details

We first trained the decoder for 100 epochs with λsty = 0.2, λcycle = 1, λadv = 1 and λfm = 0.2, and 

we then trained the encoder for 100 epochs with λMI = 1. We trained both models using the 

AdamW optimizer [30] with β1 = 0, β2 = 0.99, weight decay λ = 10−4, learning rate γ = 10−4

1 https://github.com/Kyubyong/g2p 
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and batch size of 64 samples. We randomly divided mel-spectrograms into segments of the 

shortest length in the batch.

3.3. Evaluations

We conducted subjective evaluations with two metrics: the mean opinion score of 

naturalness (MOS-N) which measures the naturalness of converted speech and the mean 

opinion score of similarity (MOS-P) which evaluates the similarity between converted and 

reference speech. We recruited native English speakers located in the U.S. to participate in 

our evaluations using an online survey through Amazon Mechanical Turk. We compared 

our model with two recent baseline models, AGAIN-VC [4] and VQMIVC [6], and one 

state-of-the-art model, YourTTS[11], for any-to-any voice conversion. All baseline models 

were trained with official implementation234 using the same train and test speaker split. For 

a fair comparison, the mel-spectrograms converted from all models were synthesized with 

HifiGAN [27] and downsampled to 16 kHz in our evaluations.

In every experiment, we randomly selected 40 sets of samples. When evaluating each set, we 

randomly permuted the order of the models and instructed the subjects to rate them without 

revealing the model labels. For each set, we required that there were at least five different 

speakers reading the same sentence, in which one was used as the ground truth and the rest 

four were used as the source input for our model and the three baseline models. This ensures 

that different samples have different lengths so that raters do not find out which one is the 

ground truth. The method is similar to multiple stimuli with hidden reference and anchor 

(MUSHRA), enabling the subjects to compare the subtle difference among models. We used 

the subjective rating of the ground truth as an attention check: all ratings from a subject were 

dropped from our analyses if the MOS of the ground truth was not ranked the highest among 

all models. Each set was rated by 10 raters after disqualified raters were dropped.

In addition to subjective evaluations, we also performed objective evaluations using speaker 

classification and phoneme error rate (PER) from an ASR model to evaluate the speaker 

similarity and speech intelligibility [20]. The speaker classification model consists of a 

ResNet-18 network that takes a mel-spectrogram to predict the speaker label. The model was 

trained on the test speakers and we report the classification accuracy (ACC) of the trained 

models on samples generated with different models. We converted speech waveforms to text 

using an ASR model from ESPNet [31] and converted the text to phoneme sequences to 

calculate PER.

3.4. Ablation Study

To demonstrate that our approach to addressing problems in TTS-based methods is effective, 

we conducted an ablation study with both subjective and objective evaluations described 

in section 3.3. We ablated ℒMI and ℒcycle when training the encoder and the decoder, 

respectively. In addition, to show that the latent loss introduced in Zhang et. al. [10] hurts the 

performance, we have added the loss for the encoder training defined as

2 https://github.com/KimythAnly/AGAIN-VC 
3 https://github.com/Wendison/VQMIVC 
4 https://github.com/Edresson/YourTTS 
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ℒlatent = Ex, t dalign  ⋅ htext − E x 1 , (11)

in which the latent representation produced by E is forced to be the same as that generated 

through text encoder and phoneme alignment. We refer to this case as +ℒlatent in Table 2. To 

demonstrate that the data augmentation for the encoder loss is effective, we also trained a 

model without the data augmentation. That is, we set x̂ = x and only use ground truth from 

the training set as x in equation 4.

4. RESULTS

Table 1 and 2 show the results of comparison between different models and the ground 

truth. Our model significantly outperforms the other baseline models in both naturalness and 

similarity in the subjective evaluation experiment. Our model also scored higher in testing 

accuracy and PER than other baseline models except for YourTTS in PER. However, we 

do note that the difference is small as shown in Table 2. In addition, since our model is 

not Flow-based, we do not need to compute the Jacobian and matrix inversion required by 

Flowbased YourTTS. This makes our model significantly faster than YourTTS as indicated 

by RTF in Table 2. The ablation study results in Table 3 and 4 show that removing 

ℒMI or ℒcycle decreases both naturalness and similarity of the synthesized speech. The 

baseline model with full objectives also outperforms models trained without ℒMI or ℒcycle

in classification accuracy and PER. Training without data augmentation also decreases the 

rated naturalness and objective metrics.

It is worth noting that the rated naturalness and similarity drop significantly when we add 

the proposed ℒlatent in [10]. We hypothesize that by enforcing dalign ⋅ htext = E x  through ℒlatent, 

we essentially obtain an ASR model because E is trained to produce an aligned version 

of htext which consists of merely phoneme token embeddings. We show an example of 

inverted alignment using E x  to illustrate our hypothesis. As shown in Figure 2, the inverted 

alignment E x ⋅ htext
−1  successfully reconstructs the monotonic alignment dalign with some noise 

when E is trained with ℒlatent. This shows that E x  consists roughly of discretized phoneme 

representations as dalign can be recovered through a pseudoinverse of htext. On the other hand, 

the encoder trained without ℒtext fails to recover dalign with htext
−1 , indicating that E learns a 

different representation that the decoder can use to reconstruct the natural speech produced 

by monotonic alignment and text representation. Training without ℒlatent avoids the problems 

associated with ASR models such as incorrectly recognized phonemes that can make speech 

unclear or produce incorrect phonetic content.

5. CONCLUSIONS

We propose a framework using a style-based TTS model for one-shot voice conversion with 

novel cycle consistency and phoneme MI maximization objectives in place of the latent 

reconstruction objective. The framework employs a novel data augmentation scheme that 

fully explores the input and output space of pre-trained TTS decoders. The proposed model 

achieves state-of-the-art performance in similarity and naturalness with both subjective 

and objective evaluations where our models scored significantly higher in various metrics, 
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including MOS, ACC, and PER than previous models. We also demonstrate that using the 

latent reconstruction loss ℒlatent proposed in [10] worsens speech similarity and naturalness 

and we illustrate a potential explanation for this effect. Moreover, unlike other one-shot 

voice conversion systems such as [6] and [10], our framework is completely convolutional 

and can therefore perform real-time inference with a faster-than-real-time vocoder. However, 

we acknowledge that our framework requires text labels during training, which can be 

prohibitive to train on unannotated large-scale speech corpora. Future work includes 

removing the need for text labels through semi-supervised or self-supervised learning. We 

would also like to improve speaker similarity by learning a better speaker representation that 

can reproduce the accent of unseen speakers.
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Fig. 1. 
Training and inference schemes for StyleTTS-VC. The modules in blue are trained while 

those in orange are pretrained and hence fixed during training. (a) Step 1 of training where 

the decoder is trained to synthesize target speech from a reference mel-spectrogram and 

pitch curve, energy, phoneme alignment and text from an input mel-spectrogram. (b) Step 2 

of training and inference procedures where the text aligner and text encoder are replaced by 

a mel-spectrogram encoder.
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Fig. 2. 
Example of attention alignment dalign and inverted alignments obtained through E x ⋅ htext

−1

where htext
−1  is a pseudoinverse of htext. The representation trained with ℒlatent clearly reproduces 

the monotonic alignment, indicating that E acts like an ASR model.
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Table 1.

Comparison of MOS with 95% confidence intervals between different models.

Method MOS-N MOS-P

Ground Truth 4.68 (± 0.05) 4.58 (± 0.07)

StyleTTS-VC 3.89 (± 0.09) 3.66 (± 0.10)

YourTTS 3.70 (± 0.10) 3.45 (± 0.10)

VQMIVC 2.85 (± 0.09) 2.50 (± 0.10)

AGAIN-VC 2.11 (± 0.08) 2.16 (± 0.10)
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Table 2.

Objective evaluation results of test accuracy (ACC), phoneme error rate (PER) and real time factor (RTF) 

between different models. The RTF was calculated under a single NVIDIA GeForce RTX 3090 Ti GPU.

Method ACC ↑ PER ↓ RTF ↓

Ground Truth 100% 2.9% –

StyleTTS-VC 91.7% 6.17% 0.0128

YourTTS 49.4 % 5.58% 0.0369

VQMIVC 36.0% 26.0% 0.0115

AGAIN-VC 70.0% 24.6% 0.0143
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Table 3.

Subjective evaluation results of mean opinion scores (MOS) with 95% confidence intervals (CI) between 

different training objectives.

Method MOS-N MOS-P

Proposed 3.85 (± 0.09) 3.67 (± 0.11)

w/o augmentation 3.78 (± 0.09) 3.67 (± 0.12)

−ℒMI 3.74 (± 0.10) 3.63 (± 0.12)

−ℒCycle 3.70 (± 0.10) 3.62 (± 0.11)

+ℒlatent 3.60 (± 0.10) 3.58 (± 0.11)
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Table 4.

Objective evaluation results of speaker-classification test accuracy (ACC) and phoneme error rate (PER) 

between different training objectives.

Method ACC ↑ PER ↓

Baseline 91.7% 10.4%

w/o augmentation 90.5% 11.5%

−ℒMI 91.4% 14.9%

−ℒCycle 90.0% 17.1%

+ℒlatent 91.2% 20.6%
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