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Abstract

The precise role of the human auditory cortex in representing speech sounds and transforming 

them to meaning is not yet fully understood. Here we used intracranial recordings from the 

auditory cortex of neurosurgical patients as they listened to natural speech. We found an 

explicit, temporally ordered and anatomically distributed neural encoding of multiple linguistic 

features, including phonetic, prelexical phonotactics, word frequency, and lexical–phonological 

and lexical–semantic information. Grouping neural sites on the basis of their encoded linguistic 

features revealed a hierarchical pattern, with distinct representations of prelexical and postlexical 

features distributed across various auditory areas. While sites with longer response latencies and 

greater distance from the primary auditory cortex encoded higher-level linguistic features, the 

encoding of lower-level features was preserved and not discarded. Our study reveals a cumulative 

mapping of sound to meaning and provides empirical evidence for validating neurolinguistic 

and psycholinguistic models of spoken word recognition that preserve the acoustic variations in 

speech.

Speech comprehension is the process of extracting meaning from a sound pressure 

waveform produced by a speaker. In each language, speech sounds can be abstracted at 

multiple levels of analysis, the smallest of which consists of a finite set of perceptually 

distinct phonetic features (for example, voicing and aspiration). Certain combinations of 
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these features form the phonemes—the smallest units of speech that can alter meaning 

(for example, /b/ in ‘bad’ versus /d/ in ‘dad’). Combinations of multiple phonemes form 

prelexical units that subsequently give rise to words, or the lexicon that conveys semantic 

meaning. The interactions between units at each level follow certain rules. For example, 

phonotactic probabilities describe the likelihood of certain phoneme combinations1,2 

(for example, /ba/ is more likely than /bu/ in the English language), whereas lexical–

phonological probabilities describe these likelihoods in the context of word formation 

(for example, in the English lexicon, /ə·k·aʊ·n·t·ə·b·ɪ/ fully predicts the next phonemes of 

‘accountabi.lity’)3. Words, in addition to their frequency of occurrence, are related to each 

other through phonological and semantic associations (for example, ‘cat’ is a phonetic 

neighbour of ‘cap’ and a semantic neighbour of ‘dog’)4,5. How and where this intricate 

mapping of speech sounds to meaning occurs in the human auditory cortex remains largely 

unclear.

Our understanding of the cognitive processes that extract meaning from speech has 

been shaped largely by psycholinguistic studies of spoken word recognition (SWR). 

Behavioural studies have established that the process of word recognition entails gradual 

integration across multiple phonemes6–9. The evidence suggests that spoken words are 

recognized relationally in the context of the mental lexicon4. This means that as a 

word is being heard, multiple candidate words are activated in parallel in proportion 

to their phonetic and semantic similarity and prior probability (for example, word 

frequency and contextual constraints), and these words then compete for recognition. Many 

computational models have been proposed to account for various SWR phenomena10–12, 

including categorical perception of speech sounds13, the influence of phonotactic 

probabilities on phoneme recognition2, early and pre-offset identification of words14, and 

the impacts of word frequency and phonological15 and semantic5,16–18 neighbourhoods 

on word recognition accuracy and speed. While these models can successfully predict 

many behavioural effects, they widely differ in the nature of the activation and 

competition mechanisms they employ11. This diversity can be seen particularly in the 

assumed intermediate representations that are used to map sounds to meaning, ranging 

from articulatory and acoustic–phonetic features8,19,20, phonemes21,22, allophones and 

probabilistic phonotactics23, to distributed representations of abstract prelexical states24,25. 

This diversity underscores the insufficiency of behavioural outcomes alone in constraining 

and specifying the exact nature of the intermediate representations and interactions that are 

used as the brain makes sense of speech, which highlights the critical role of neurobiological 

studies of SWR.

In parallel to psycholinguistic research, neuroimaging studies have provided complementary 

evidence by investigating the anatomical and functional organization of language in the 

human brain. Researchers have hypothesized that various levels of processing occur 

hierarchically in the human brain26–28; the processing of low-level acoustic features is 

suggested to occur in subcortical areas and the primary auditory cortex (PAC)29,30, whereas 

neural encoding of phonetic features29,31–34 and units that require more extended temporal 

integration has been suggested to emerge in higher auditory areas26,29,35–39. This view 

is also supported by studies of focal brain injury, which can cause selective impairments 

at various linguistic levels between speech sounds and meaning. These anatomically 
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specific selective impairments include difficulty in the identification of acoustic–phonetic 

cues and phonemes40,41, lexical–phonological forms42–44, and semantic and syntactic 

information45–47. The heterogeneity in impairment patterns raises questions regarding the 

specificity of processing stages across brain regions. Together with neuroimaging studies, 

these findings have produced a coarse anatomical map of where acoustic, phonetic and 

semantic processing occurs in the brain26,48,49. However, a more fundamental question 

than anatomical localization that has remained unanswered is how the various levels of 

linguistic features are encoded by cortical activity—that is, the precise relationship between 

different levels of linguistic representation and the neural responses in auditory cortical 

regions. Without such knowledge, the existence and the exact nature of phonological, 

prelexical, lexical and semantic representations in the human auditory cortex remain 

speculative. In particular, are the hypothesized intermediate linguistic features at different 

levels of abstraction explicitly encoded in the auditory cortex? Are the increasingly complex 

linguistic units formed successively and disjointly in different populations of neurons in the 

ascending auditory pathway19,21, or are they represented jointly by the same population of 

neurons24,50? How are prelexical and postlexical linguistic features organized in the primary 

and non-primary auditory cortical areas?

To address these questions, we directly measured the neural responses to natural speech 

from the auditory cortex of neurosurgical patients undergoing invasive electrophysiological 

monitoring for epilepsy surgery. Using a ridge regression encoding model, we measured 

the encoding of five broad levels of linguistic features—phonetic, phonotactic, frequency, 

lexical–phonological and lexical–semantic. By characterizing neural sites on the basis 

of the pattern of their linguistic feature encoding, our results shed light on the nature 

and organization of the neural basis of speech perception at various levels of linguistic 

processing with implications for neurobiological and computational SWR models.

Results

We recorded intracranial electroencephalography (iEEG) data from 15 human participants 

implanted with subdural (electrocorticography) and depth (stereotactic EEG) electrodes 

(Fig. 1a and Extended Data Figs. 1 and 2). The participants listened to 30 minutes of 

continuous speech spoken by four speakers (two male). To ensure that the participants were 

engaged in the task, we paused the audio at random intervals and asked the participants to 

report the last sentence of the story before the pause. All participants were attentive and 

could correctly repeat the speech utterances.

We extracted the envelope of the high-gamma (70–150 Hz) band, which has been shown 

to correlate with neural firing in the proximity of the recording electrode51,52, as the neural 

response measure of the recorded signals. We restricted our analyses to speech-responsive 

sites in the auditory cortex that had a higher response to speech than to silence (Methods). 

This criterion resulted in a total of 242 responsive neural sites, of which 113 were in 

Heschl’s gyrus (HG), 32 in the planum temporale (PT), 46 in the anterior superior temporal 

gyrus (aSTG) and 51 in the posterior STG (pSTG). The electrodes were split evenly between 

hemispheres (N = 121 each). Figure 1a shows the response latency of the electrodes, which 

shows a gradient of low to high latencies from medial to lateral auditory cortex (the mean 
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and standard deviation of latency are 92 ± 36 ms in HG, 94 ± 22 ms in the PT, 112 ± 27 ms 

in the aSTG and 108 ± 48 ms in the pSTG), consistent with anatomical studies showing the 

primary auditory function of HG and the non-primary function of the PT and the STG53. We 

also used an anatomical measure of distance from PAC, choosing posteromedial HG (TE1.1) 

as a reference point for PAC (Fig. 1a)54,55. The relation between response latency and 

anatomical position was tested using a linear mixed-effects model trained to predict response 

latency from distance to PAC and hemisphere, with random intercepts for participants. 

Distance but not hemisphere had a significant effect on response latency (distance: F1,239 = 

27.79; P < 0.001; βdist = 1.47 ms mm−1; 95% CI, 0.92 to 2.01; hemisphere: F1,239 = 0.26; P 
= 0.61; βhemi = −2.35 ms/(left − right); 95% CI, −11.46 to 6.79).

Linguistic information of speech stimuli

To measure the encoding of different levels of linguistic information in the neural responses, 

we first needed to define and quantify these features in our speech stimuli. We chose a 

broad set of linguistic descriptors to represent different aspects of linguistic processing as 

put forward by psycholinguistic studies4–8,56 (Fig. 1b).

Phonetic features (P): Our first level uses the smallest contrastive units of language, 

called phonemes. We represented each phoneme with 22 phonetic features corresponding 

to its distinctive features of voicing, manner of articulation and place of articulation57,58 

(Extended Data Fig. 3). This level represents the transformation and normalization of 

allophonic variations into a small set of perceptual categories.

Phonotactic frequency (T): For phonotactics, which represent the phoneme transition 

probabilities, we used the logarithm of phoneme transition frequencies (biphone 

frequencies), calculated from a large English corpus59. The frequency of a phoneme bigram 

represents the degree of exposure of an average native listener to that bigram and measures 

its probability in natural speech. We purposefully chose a non-position-specific measure of 

phonotactics (as opposed to the more common approach2) to maximally dissociate this effect 

from lexical processes. This level represents the expectation and the surprisal of the listener 

when hearing a new phoneme, based on the immediate past. This prelexical phonotactics 

feature could indicate predictive coding mechanisms that operate at the phonemic level60–63.

Word frequency (F): Out of all possible phoneme sequences, a small subset forms the words 

of a language (lexicon). Some words are used more frequently than others, with behavioural 

influences that appear soon after the word onset and increase as more of the word is heard64. 

Word frequency biases the reaction time of a listener, where high-frequency words are 

detected faster. We quantified word frequency as the log-frequency of words calculated from 

a large English language corpus59. This level represents the listener’s context-independent 

expectation of hearing a particular word.

Lexical–phonological features (L): Because words in spoken language are heard gradually, 

each phoneme in a word conveys a varying amount of information towards the identification 

of the actual word15. Lexical–phonological features consist of lexical entropy and lexical 

surprisal (equivalent to cohort entropy and phoneme surprisal in ref.63), which are calculated 

for each prefix phoneme substring within a word (for example, /k/, /k·æ/ and /k·æ·t/ for the 
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word ‘cat’). The lexical entropy for a phoneme prefix in a word is the Shannon entropy 

of the set of all words in the lexicon that start with that same phoneme sequence (‘onset 

competitors’), while the surprisal is the negative logarithm of the probability of hearing 

the final phoneme of the sequence given the preceding phonemes. This feature represents 

the gradual competition among phonologically similar words in the lexicon according to 

the cohort theory of SWR65 as the target word is being heard one phoneme at a time. 

More specifically, entropy represents the residual uncertainty in identifying the current word 

depending on the remaining competitors, while surprisal represents a predictive coding 

process that operates at the word level. At the lexical level, the prior expectation is formed 

by the knowledge of the lexicon as opposed to the low-level phonemic statistics. The 

behavioural effects of both entropy and surprisal have been reported in prior studies66,67.

Semantics (S): Finally, some words can have more similar meanings even though they may 

be very different acoustically and phonologically. We refer to this semantic relation between 

a word and the rest of the lexicon as lexical–semantic information. We chose semantic 

neighbourhood density (SND), obtained from the English Lexicon Project56,68, to represent 

lexical–semantic features of words. This measure indicates the relative distance between 

a word and its closest semantic neighbours, obtained from a global co-occurrence model. 

This parameter influences behaviour during word recognition5,56,69,70 and can represent the 

degree of activation of semantically related words when one hears a target word. This final 

level represents the next logical step in the word recognition process, which is the linking 

of words as acoustic objects to their conceptual meanings. Specifically, this parameter can 

capture the spreading of semantic activation. Notably, the behavioural studies of lexical 

access have shown that the semantic spreading effects may occur even before the word is 

fully recognized5,56,69.

In analysing the neural data, we have distinguished between prelexical and postlexical 

features. We define this contrast by whether a feature is still meaningful in the absence 

of the lexicon or whether it can be defined only in the context of the lexicon. By this 

definition, phonetics and phonotactics are assumed to be prelexical, as they can be fully 

characterized without any knowledge of the lexicon. In contrast, word frequency defines 

the relative frequency of one word compared with those of the other words in the lexicon, 

lexical–phonological features define the competition dynamics between competing words in 

the lexicon and lexical semantics determines the relation between a target word and other 

semantically related words in the lexicon. A complete description of the features and their 

calculation procedures can be found in the Methods.

Linguistic encoding in neural data

Having quantified several levels of linguistic features in our speech stimuli, we examined the 

ability of these features to predict unseen neural data using a cross-validated ridge regression 

framework (Fig. 1c). The input to the regression model (predictors) was a 510 ms (51 time 

samples at 100 Hz) time course of all included features (acoustic and linguistic) stacked 

together (59 dimensions). The input was fed to the model such that the stimulus window 

corresponding to the time samples [t − 50, t] was used to predict the neural responses at 

time t, making it a causal time-domain convolution. The window size was determined to 
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maximize the cross-validated prediction accuracy of left-out data (Extended Data Fig. 4). 

For each electrode, we first fitted a model that contained all acoustic and linguistic features 

(P, T, F, L and S), computing a cross-validated prediction accuracy by fitting the model 

on N − 1 trials and testing on the left-out trial, and then averaging the N correlation r 
values of the test predictions against the observed neural data. We then tested the predictive 

power of each feature one by one by replacing that feature with 100 randomly permuted 

control distributions (null hypotheses), refitting the regression model and computing the 

new average cross-validated r values, as well as the difference from the r value of the 

true model (Δrc, 1 ≤ c ≤ 100). We interpreted the magnitude of change of cross-validated 

prediction accuracy in the negative direction as each feature was replaced with a control 

(or, equivalently, the amount of increase in prediction accuracy of the true model over the 

control) as the degree to which that feature was encoded in the neural response29,63,71–73. To 

quantify this change, we performed a one-sample t-test on the distribution of Δrc such that 

a positive t value denotes better prediction by the true model, and we chose the t statistic 

as the measure of encoding. This method is advantageous over an incremental model where 

features are added to the model one by one in a fixed order63,71–73 due to the correlations 

that exist between different linguistic features (Extended Data Fig. 5). Moreover, our method 

does not necessitate any assumptions regarding the order, timing or hierarchy of these 

features.

The null condition simulated features with the same dimension, distribution and timing as 

the true features, except that the values were drawn from permuted linguistic distributions, 

such that for a given control fc(wi) = F(wj), where fc is the permuted feature and F is 

the true feature, and wi and wj are two phonemes, biphones, phoneme sequences or words 

(depending on F). An important aspect of our control permutation tests is the consistency 

across tokens of the same type, where all occurrences of the same bigram, prefix or word 

are given the same value, albeit this value is not derived from the actual distribution in 

the English language. For example, the null condition for the phonotactic feature always 

assigned the same value to a particular phoneme sequence such as /ba/; however, this value 

was chosen randomly and did not correspond to the true probability of that sequence in the 

English language. These control conditions are stricter than the commonly used shuffling of 

the features63,73 because unconstrained shuffling can artificially lower the out-of-sample 

prediction accuracy due to the added randomness (noise) in the regression predictors. 

Additionally, the speech auditory spectrogram and its half-wave rectified temporal derivative 

were included to account for the nonabstract acoustic information and the effect of acoustic 

edges in the neural response (Fig. 1c)63,74–76.

Diversity in linguistic encoding across neural sites

Figure 1d shows six example electrodes chosen to represent the diversity in linguistic feature 

encoding across neural sites. The first example electrode (E1 in HG) did not show any 

significant improvement in prediction accuracy compared with the null model for any of the 

linguistic features. The second electrode (E2 in HG) showed a significant improvement only 

for phonetic features. The third to sixth electrodes (E3 in HG and E4–E6 in pSTG) showed 

significant encoding of phonetics based on different combinations of higher-level linguistic 

features. For example, E3 encodes phonotactics; E4, E5 and E6 encode lexical–phonological 
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information; and E5 and E6 encode semantics. These six example electrodes exemplify the 

heterogeneity in linguistic feature encoding across the neural population. Motivated by this 

observed diversity, we then characterized the encoding patterns across the entire population 

of electrodes.

To uncover the patterns of linguistic encoding across all sites, we first quantified the 

encoding significance of each linguistic feature for each site and performed double 

agglomerative hierarchical clustering to group linguistic features and electrodes on the basis 

of the similarity of their encoding patterns. Figure 2a shows the results of the clustering 

analysis. Clustering the rows (linguistic feature dimension) groups different linguistic 

features by the similarity in their encoding patterns across the neural population. Clustering 

the columns (electrodes) groups neural sites by the similarity in their linguistic feature 

encoding. This analysis thus revealed the encoding patterns across both the feature and 

electrode dimensions. The correlation values between the encoding of linguistic features 

across the neural population (rows of the matrix in Fig. 2a) are also shown in Fig. 2b.

Clustering the linguistic features (rows) on the basis of their population encoding revealed 

a separate grouping of lexical features (L, F and S) from the prelexical features (P and T) 

(Fig. 2a, red versus black horizontal groups). This separate grouping confirmed a distinct 

encoding of prelexical and postlexical features across the neural population. This notion was 

also supported by the higher correlation between the encoding patterns of lexical features 

(F, L and S) across sites (Fig. 2b, red square) than the correlation between them and other 

prelexical features (P and T). The clustering of the features also suggested a cumulative 

encoding from phonetic (P) to prelexical (T) to lexical (L, F and S) representations.

Clustering the electrodes on the basis of their linguistic feature encoding also revealed a 

few notable patterns. First, phonetic features were encoded in most electrode sites (71.9%), 

in contrast to the other features (T, 21.1%; F, 30.2%; L, 22.7%; S, 13.2%). Most sites 

jointly encoded phonetics and other features, and there was a smaller group of sites that 

simultaneously encoded all linguistic features. Second, except for phonetic features, the 

encoding of all other features increased with response latency, as seen in the significant 

positive correlations shown in Fig. 2c. This positive correlation with latency indicates 

a progressive transformation of acoustic to linguistic features, where neural sites with 

higher response latencies also encoded higher levels of linguistic representation. This 

progression is consistent with the average distance of electrodes from PAC (Fig. 2d), 

where the representation of P/T to F/L to S increased as we moved further away from 

posteromedial HG. Third, the electrode sites that encoded prelexical phonotactics (T) and 

lexical–phonological (L) features only partially overlapped, which indicated that while a 

group of electrodes encoded both T and L, there were other electrodes that encoded only 

T or only L; this finding suggests that phoneme combination is a process that may start 

prelexically, and lexical influences on phoneme combinations may come later and in higher 

areas. This notion is supported by the higher correlation between L encoding and the 

response latencies in the neural population than between T encoding and response latencies 

(Fig. 2c) and by the higher average distance of sites that encode L features from PAC than 

the distance of sites that encode T features (Fig. 2d). The L sites were farther away from 

PAC54,55 and hence probably in higher auditory cortical areas. This observed hierarchical 
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encoding is consistent with the hypothesized linguistic processing that posits transitions 

from phonetic to prelexical to lexical to semantic features. Finally, projecting the linguistic 

feature encoding of electrode sites on a two-dimensional plane (Fig. 2e) shows a distinct 

encoding pattern across anatomical regions of HG, the PT and the STG, with apparent 

separation between the linguistic encoding patterns in HG (blue dots) and the STG (red dots) 

and an in-between encoding pattern for PT electrodes (yellow dots).

To further examine the encoding of linguistic features across different anatomical regions, 

we measured the proportion of neural sites in each region that significantly encoded a 

feature (t > 19, corresponding to the true feature being better than 97% of controls) (Fig. 

2f). This analysis showed that phonetic features were encoded across all regions, yet the 

proportion of sites that encoded phonetic features was higher in HG and the PT. Prelexical 

phonotactic features (T) were encoded mostly in PT electrodes, at a level significantly more 

than in aSTG and pSTG. Lexical-level features (F, L and S) were not encoded in HG, but 

they were encoded in both the PT and pSTG electrodes. Anterior STG, on average, had a 

word frequency (F) encoding between HG and PT/pSTG, and no L or S encoding. Notably, 

the pSTG encoded only postlexical (L) but not prelexical (T) phoneme combinations. 

Together, these results reveal a hierarchical and distributed encoding of linguistic features 

where higher auditory cortical areas gradually represent higher-order linguistic information 

and show how features at different levels of granularity are simultaneously encoded across 

the auditory cortex.

Temporal dynamics of linguistic encoding

To examine the temporal characteristics of phonetic, phonotactic and lexical feature 

encoding in the auditory cortex, we analysed the β coefficients of the temporal response 

functions (TRFs) that predict the neural data from all features (the model in Fig. 1c). To 

find a representative TRF for each feature, we first selected the subset of electrode sites 

that showed a significant encoding of that feature (determined by t > 19—that is, the true 

distribution was better than 97% of the controls). We then computed the first principal 

component (PC) of the regression weights across recording channels to find the TRF that 

represented the maximum variance for the target feature (see Extended Data Fig. 6 for the 

explained variance of components). For features that have multiple dimensions (A1, A2 and 

P), we performed the principal component analysis (PCA) jointly across feature dimensions 

and channels. For a measure of robustness, we repeated this analysis for each feature by 

bootstrapping the electrode subset 1,000 times. Figure 3a shows the average and standard 

deviation of the first PCs computed from the TRF of each feature. Figure 3b shows the time 

of the TRF peak as an approximation of the processing delay using the same bootstrapping 

procedure. Taken together, Fig. 3 reveals a temporally ordered appearance of features. 

This successive temporal emergence of features from the basic acoustic representation 

(spectrogram) to prelexical (phono-tactics) and lexical surprisal to phonetics, frequency, and 

lexical–phonological and lexical–semantic representations is consistent with the suggested 

hierarchy of processing in the correlation results in Fig. 2b. Moreover, Fig. 3 underscores the 

gradual computation of linguistic features, which starts from processing the speech sound 

components as early as 100 ms after hearing the acoustic components until up to hundreds 
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of milliseconds, which is needed for the accumulation of sounds and the extraction of their 

semantic content.

Anatomical organization of linguistic encoding

We quantified the relation between anatomical position and feature encoding using a linear 

mixed-effects model trained to predict the encoding of each feature (t values) from distance 

to PAC and hemisphere, with random intercepts for participants. Distance from PAC had 

a strong effect on F/L/S encoding such that farther populations are more likely to encode 

those features, and a weak effect for T encoding in the opposite direction (P: F1,239 = 3.48; 

P = 0.063; βdist = −0.65; 95% CI, −1.33 to 0.04; T: F1,239 = 6.01; P = 0.015; βdist = −0.32; 

95% CI, −0.57 to 0.06; F: F1,239 = 13.37; P < 0.001; βdist = 0.75; 95% CI, 0.35 to 1.16; L: 

F1,239 = 21.22; P < 0.001; βdist = 0.46; 95% CI, 0.26 to 0.66; S: F1,239 = 32.91; P < 0.001; 

βdist = 0.47; 95% CI, 0.31 to 0.63). In contrast, hemisphere only had a significant effect for 

semantic (S) encoding, where the left hemisphere was more likely to encode S (P: F1,239 = 

3.30; P = 0.071; βhemi = −10.13; 95% CI, −21.12 to 0.86; T: F1,239 = 0.12; P = 0.73; βhemi 

= −0.73; 95% CI, −4.79 to 3.33; F: F1,239 = 3.39; P = 0.067; βhemi = 6.11; 95% CI, −0.42 to 

12.65; L: F1,239 = 0.29; P = 0.59; βhemi = 0.87; 95% CI, −2.32 to 4.05; S: F1,239 = 7.87; P = 

0.005; βhemi = 3.62; 95% CI, 1.08 to 6.17).

To study the spatial organization of linguistic feature encoding in more detail, we show the 

distribution of t statistics for each feature across the medial–lateral and anterior–posterior 

axes of the auditory cortex (on the FreeSurfer average brain77), interpolated using k-nearest 

neighbours with k = 5 (Fig. 4). These plots show the widespread encoding of phonetics, 

as seen in Fig. 2a, and reveal the increasing encoding of lexical features as we move from 

medial HG to lateral STG. Additionally, we observe an asymmetry between the linguistic 

feature encoding in the left and right hemispheres, consistent with the hemisphere effect 

observed in the linear mixed-effects model.

Discussion

Direct neural recordings from the human auditory cortex revealed an explicit and distributed 

neural encoding of multiple levels of linguistic processing between the auditory stimulus 

and lexical semantics, meaning that these linguistic features could linearly predict the neural 

responses significantly better than null features. Grouping neural sites on the basis of 

the similarity of the linguistic features they expressed revealed distinct encoding patterns 

across neural sites, with contrasting representations of prelexical and postlexical features. 

Anatomical and functional localization of neural sites showed that the encoding of low- 

to high-level linguistic features appeared gradually from primary to non-primary auditory 

cortical areas. This anatomically distributed and temporally ordered appearance of various 

levels of linguistic features suggests a hierarchical processing scheme that enables the 

human auditory cortex to gradually transform speech sounds to decode meaning. Combining 

multilevel linguistic features and invasive electrophysiological recordings reveals a joint 

encoding of different levels of linguistic processing in relation to each other across different 

anatomical areas and times.
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SWR models have been attempting to account for a variety of SWR phenomena10–12, 

including categorical perception of speech sounds13, the influence of phonotactic 

probabilities on phoneme recognition2, early and pre-offset identification of words14, and 

the impacts of word frequency and phonological and semantic neighbourhoods on word 

recognition accuracy and speed5,15,18. A major difference between these SWR models is in 

the assumed intermediate representations that are used in the mapping of sounds to meaning. 

Some models assume explicit abstractions such as articulatory and acoustic–phonetic 

features8,19,20, phonemes21,22 or allophonic patterns23, while others assume distributed 

representations of abstract prelexical states24,25. Our results shed light on this question 

by showing the levels of linguistic processing that are explicitly encoded in various 

parts of the auditory cortex, including the acoustic manifestation of allophonic variations 

(spectrogram features), the ubiquitous appearance of phonetic distinctions in most recorded 

sites, prelexical phonotactics and postlexical features including lexical–phonological and 

lexical–semantic features. Moreover, while SWR models often assume a sequential change 

in the encoded features, our results show a joint encoding of multiple features in the 

same neural response, suggesting that the higher-level distinctions gradually accumulate 

and are jointly encoded, and the lower-level representations are not discarded. This finding 

is particularly important in the context of a major topic of scientific debate regarding 

SWR models, which is the degree of abstraction/normalization that is assumed as sounds 

are mapped to meaning. Some models of SWR assume discrete abstract representation 

of intermediate linguistic elements (for example, phonology and syllables) and word 

forms, treating individual variations in speech as noise78,79. Other models argue that such 

abstractions are ‘social objects’ learned from society rather than natural phenomena, that 

the rich acoustic representation of speech is faithfully encoded and stored (exemplars), and 

that word recognition entails comparing the new stimulus with the many stored exemplars. 

These models propose that abstractions emerge only at the retrieval stage80–82. This view 

is supported by the ability of a listener to recall and reproduce not only the linguistic 

content of a spoken utterance but also its paralinguistic features such as the speaker’s voice, 

prosody and emotional tone. More contemporary studies have argued that pure abstractionist 

or episodic approaches to lexical representation that sidestep any level of abstraction cannot 

fully explain the behavioural results. Instead, they suggest that both normalization and 

maintaining episodic memories of words are important parts of the process83–85 and need 

not be mutually exclusive78,86. Our results support this view, as we found that fine-grained 

continuous acoustic–phonetic and low-level details of speech are not discarded as higher-

order lexical representations emerge in downstream areas of the auditory cortex. Instead, 

general representations at higher levels of the auditory cortex (for example, the STG) can 

encode both acoustic variability and invariant prelexical and lexical abstractions, hence 

supporting the hypothesis that humans encode and store not only lexical information but 

also the unique attributes of each utterance, which can be used for retrieving earlier features 

such as prosody. It is worth noting that our observed joint encoding of low- and high-level 

features could be limited to the auditory cortex. Future research examining other parts of the 

speech cortex can further address this question.

Psycholinguistic studies of SWR have identified multiple levels of linguistic processing that 

directly and indirectly interact with each other. These linguistic levels include phonetics, 
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phonotactics87, word frequency23,64, phonological neighbourhoods23,65 and semantics16–18. 

Our results shed light on the neural mechanisms that underlie these behavioural findings 

by showing an explicit encoding of these distinct linguistic levels in the ascending auditory 

pathway. In particular, psycholinguistic studies have shown a ubiquitous effect for word 

frequency in SWR, which starts early after onset and gradually increases as a word unfolds 

over time64. Consistent with this behavioural result, our temporal analysis showed an early 

neural encoding of word frequency compared with the other lexical features. The TRF for 

mapping word frequency to the neural data started early and gradually built up after the 

word onset. Another notable example is the prelexical influence of probabilistic phonotactics 

on SWR, as opposed to the lexical influence of neighbourhood density87. Our results show 

that probabilistic phonotactics, both prelexical and lexical (in the form of lexical surprisal), 

were indeed encoded early, while lexical competition and neighbourhood density effects 

emerged considerably later in the neural responses. Phonotactics and lexical surprisal both 

reflect the expectedness of hearing the current phoneme given the preceding phonemes, 

although these expectations reflect different levels of representation: phonetic for the 

phonotactic feature and lexical for the lexical surprisal feature. Lexical entropy, in contrast, 

reflects the degree of lexical ambiguity that remains unresolved given the phonemes in a 

word that have been heard so far.

We found an anatomical gradient of change in the degree of linguistic representation 

where HG sites mostly encoded low-level linguistic features of phonetics and phonotactics. 

In contrast, the PT and STG were more responsive to higher-level lexical and semantic 

features. It is important to mention that these coarse anatomical boundaries do not 

necessarily conform to functional auditory fields, which is why we primarily used a 

functional clustering of neural responses rather than anatomical grouping. Nevertheless, 

cytoarchitectonic (cellular)88–90 and myeloarchitectonic (fibre)91 studies have shown a 

gradient of structural change from the PAC in HG to non-primary regions of the PT to non-

primary areas in the lateral STG. Our findings are consistent with these studies that identify 

HG as the locus of the PAC92,93, PT as an intermediary stage94 and STG as the processing 

location for high-level speech units32,58. However, there is disagreement on whether pSTG is 

critical for word comprehension95–97. Some argue that pSTG is involved in the phonological 

representation of words and has a supportive rather than critical role in word comprehension, 

while aSTG and the temporal pole are crucial for word comprehension96,97. At first glance, 

this runs contrary to our finding in Fig. 2f, which shows lexical–semantic encoding in 

pSTG and not in aSTG. A possible explanation for this discrepancy could be sampling bias, 

since we do not have adequate sampling of the more anterior part of aSTG as opposed 

to the more posterior parts of pSTG. The few electrodes in the most anterior part of left 

aSTG in Fig. 4 that have a stronger lexical–semantic than lexical–phonological encoding 

suggest that semantic representation may be stronger in the more anterior parts of aSTG. 

Future studies with higher-density recordings from these areas and other brain regions 

implicated in speech processing26,29,36 could further tease apart the linguistic response 

properties within each auditory field and provide critical information for fully describing 

the functional organization of the human speech cortex. Moreover, whether the observed 

linguistic feature encoding occurs at the single-neuron level or is an emergent property of 

population responses cannot be differentiated in our data because the high-gamma responses 
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recorded from electrocorticography electrodes reflect the neural firing of a large population 

of neurons in the proximity of the recording sites51,52. For example, if neuron A is tuned to 

feature X, and neuron B to feature Y, the nearby electrode will exhibit a tuning to feature X 
+ Y, which is not coded by any underlying individual neuron. Electrophysiological methods 

that allow recording from a smaller number of neurons98,99 will help further clarify the 

representational and computational properties of linguistic feature encoding in the human 

auditory cortex to better define the functional and anatomical organization of the speech 

cortex.

Our findings could have direct implications for studies of speech communication 

impairment. The acquired patterns of impairment show great heterogeneity, particularly 

in the level of linguistic processing that is impacted when mapping an auditory stimulus 

onto lexical meaning. Studies of focal brain injury have shown selective impairments in 

acoustic phonetic cues, phonemic categories, lexical–phonological forms, and semantic 

and syntactic representations, demonstrating that there must be distinct intermediary 

processing stages. For example, cortical deafness causes impairments in all tasks that require 

phonetic or phonological processing41. Patients with pure word deafness show deficits 

at the subphonemic level—for example, in the identification of voicing or the place of 

articulation in stop consonants42–44. Other kinds of deficits implicate representations or 

processes further upstream from the acoustic–phonetic level—for example, in the failure to 

map an acoustic representation onto phonemic categories40. Impairments selective to the 

lexical–phonetic level are seen in conditions such as word-meaning deafness45,47, where a 

participant can be better at repeating words than at repeating non-words, even though the 

participant is unable to comprehend spoken words45. A breakdown in the mapping from 

lexical–phonological forms to more abstract lexical–semantic representations also appears 

in patients with transcortical sensory aphasia46 and Wernicke’s aphasia, in which defective 

lexical comprehension occurs. These patients can repeat both words and non-words but 

exhibit impaired auditory comprehension. Finally, it has been shown that auditory lexical 

comprehension deficits in aphasic patients are not due to a perceptual deficit below the 

lexical level, as demonstrated by a weak correlation between comprehension measures and 

phoneme discrimination scores in these patients100. Our finding of anatomically distributed 

encoding of linguistic hierarchy, from prelexical to semantic levels, supports the notion 

that the route from sound to lexical meaning includes multiple intermediate processing 

stages that can be selectively disrupted by focal brain injury. However, the exact nature 

of these intermediate levels remains debated. In addition, with an encoding paradigm, 

we cannot prove causality; as such, we cannot rule out the possibility that a feature 

that first appears in a certain brain region is extracted in a higher region (inside or 

outside the auditory cortex) and then fed back upstream. To answer this question, we 

performed latency analysis comparing the latency of the same feature across different neural 

populations, but the results were inconclusive. Further research is needed to determine how 

these processes are impaired in various speech communication disorders—for example, 

by precisely mapping the anatomical distribution of the intermediate stages within each 

participant or distinguishing the feedforward and feedback mechanisms that contribute to the 

extraction of these linguistic features101,102.

Keshishian et al. Page 12

Nat Hum Behav. Author manuscript; available in PMC 2023 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Due to the inherent correlations between linguistic elements (Extended Data Fig. 5), 

linguistic information at two different levels can overlap in their predictive power. This 

confounding factor motivated us to disregard the shared information and only study the 

independent effects of each variable by controlling for competing possibilities. To this end, 

we included spectrograms with multiple frequency bins instead of a simple speech envelope 

to account for subphonetic spectral information, we included acoustic edges to account 

for effects that have been shown to correlate with phonetics76 and we chose a wide range 

of intermediate linguistic features to account for effects at different levels of coarseness. 

Nonetheless, we cannot entirely rule out the possibility that a neglected intermediate feature 

will be able to explain the effects of a higher-level feature included in our model.

We have intentionally limited the scope of our study to linguistic features that are insensitive 

to context. For example, in certain sentences there could be competing estimates of word 

boundaries from the perspective of the listener103. Since we choose firm boundaries for all 

words based on the speech transcript, we do not consider these competing estimates. The 

surrounding context can also alter a word’s meaning and recognition time. We presented 

the values for each feature over the entire duration of their corresponding units72—phoneme 

for P, T and L, and word for F and S—as opposed to presenting them only at the onset of 

each unit63,71. This choice allowed us to account for the natural variation in the duration of 

phonemes and words, but it does not account for different recognition times. An alternative 

is to present F and S features at each word’s uniqueness point as opposed to its onset. In 

the context of our study, it is not obvious that this is a better choice. For example, word 

frequency (F) has been shown to have early behavioural effects that start right after the 

word onset64. Additionally, the uniqueness point is more relevant to words that are heard in 

isolation, since different contexts can alter the exact time of recognition for a word and make 

it more difficult to pinpoint the uniqueness time. In either case, this phenomenon limits the 

temporal precision of any analysis performed on continuous speech data.

In summary, our results provide direct evidence for a sequential extraction of linguistic 

features in a hierarchy with a high degree of anatomical specificity. These findings shed light 

on the representational and computational organization of cortical speech processing and 

pave the way towards the construction of more comprehensive neurophysiological models of 

speech processing in the human speech cortex.

Methods

Participants and neural recording

Fifteen patients with pharmacoresistant focal epilepsy were included in this study (eight 

male, seven female; age mean, 36; s.d., 14; range, 19–58 years). All patients underwent 

chronic iEEG monitoring at North-shore University Hospital to identify epileptogenic 

foci in the brain for later removal. Twelve patients were implanted with stereoelectroen-

cephalographic depth arrays only (2 mm or 1.3 mm platinum cylinders, 4.4 mm or 2.2 mm 

centre-to-centre distance, 0.8 mm diameter; PMT Corporation), and three were implanted 

with both depth electrodes and subdural grids and/or strips (2 mm or 3 mm platinum disks, 

4 mm or 10 mm centre-to-centre distance; PMT Corporation). Intracranial EEG time series 

were manually inspected for signal quality and were free from interictal spikes. All research 
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protocols were approved and monitored by the institutional review board at the Feinstein 

Institutes for Medical Research, and informed written consent to participate in research 

studies was obtained from each patient before electrode implantation. No statistical methods 

were used to pre-determine the number of participants or electrodes, but our sample size is 

similar to those reported in previous publications58,104.

Intracranial EEG signals were continuously acquired with two different setups: nine patients 

were recorded at 3 kHz per channel (16-bit precision, range ±8 mV, DC) with a TDT data 

acquisition module (Tucker-Davis Technologies), and six patients were recorded at 1 kHz 

per channel with a Natus data acquisition module (XLTEK EMU128FS/NeuroLink IP 256 

systems; Natus Medical Inc.). A subdural or subdermal electrode was used as a reference, 

determined by signal quality at the bedside after online visualization of the spectrogram 

of the signal. The envelope of the high-gamma response (75–150 Hz) was extracted by 

first filtering neural signals with a bandpass filter and then using the Hilbert transform 

to calculate the envelope. The high-gamma responses were z-scored and resampled to 

100 Hz. Speech signals were simultaneously recorded with the iEEG to allow precise 

synchronization between the stimulus and the neural recording.

Electrode localization

Electrodes were localized using the iELVis toolbox105. Prior to the iEEG recordings, each 

patient underwent a T1-weighted 1 mm isometric structural magnetic resonance imaging 

(MRI) scan on a 3 T scanner. After the electrode implantation, a computed tomography (CT) 

scan together with a T1-weighted MRI scan at 1.5 T were acquired. The post-implantation 

CT and MRI scans were co-registered to the preoperative MRI scan using FSL’s BET 

and FLIRT algorithms106–108. Afterwards, the artefacts of the contacts on the co-registered 

CT were identified manually in BioImageSuite109. Volumetric information was obtained by 

processing and reconstructing the T1 scan using FreeSurfer v.6.0 (recon-all command)77. 

For the anatomical analyses across participants, we mapped the coordinates of the electrodes 

for each participant to the FreeSurfer average brain (fsaverage), which is a template brain 

based on a combination of MRI scans of 40 real brains.

Stimuli

The stimulus consisted of continuous speech (two male and two female speakers). Half 

the content was selected from a children’s storybook (‘Hank the Cowdog’), and the other 

half comprised four short instructional monologues on how to perform different tasks (for 

example, how to make waffles). The total duration of the auditory material was 30 minutes, 

and it was sampled at 11,025 Hz. The 30-minute data were recorded in 53 segments of 

roughly equal duration, each corresponding to a few sentences. There were no long pauses 

within a segment.

Task

The audio segments were presented to the participants in a fixed order with a short pause 

between segments belonging to the same story (usually less than a minute) and a longer 

pause (possibly a few minutes) between different stories. At the end of some segments 

chosen at random, the participants were asked to repeat the last sentence of the segment. 
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This was done to ensure that they were paying meaningful attention to the stimulus and 

following the storyline.

Electrode selection

To determine whether an electrode site responds to speech, we compared its neural activity 

during pre-stimulus silence ([−1, 0] second period relative to segment onset) and speech 

([0.5, 1.5] second period relative to segment onset). We concatenated the activity of each 

group across all 53 segments and performed a two-sided Wilcoxon rank-sum test between 

response time points in the speech and silence groups. Electrode sites with |Z| ≥ 10 were 

defined as responsive to speech and included in the analysis. Of the total 4,186 electrodes, 

535 passed this test. Since response to speech is compared with response to silence and not 

non-speech sounds, speech responsiveness in this case does not necessarily mean speech 

specificity.

Finally, we constrained our analyses to responsive sites within the auditory cortex—

specifically, HG, which includes the PAC or core110; the PT, which coincides with the 

parabelt; and the STG. Electrodes coregistered to MRI images were labelled independently 

by two authors (S.A. and S.B.) as being located in HG, PT, aSTG or pSTG, and any 

discrepancy was then discussed and resolved. The border between aSTG and pSTG was 

defined as the crossing of a virtual line extending from the trans-verse temporal sulcus with 

the lateral surface of the STG104,111. Of the 535 responsive electrode sites, 242 passed this 

criterion.

Acoustic features

An auditory spectrogram representation of speech was calculated from a model of the 

peripheral auditory system74. This model consists of the following stages: (1) a cochlear 

filter bank consisting of 128 constant-Q filters equally spaced on a logarithmic axis, (2) 

a hair cell stage consisting of a lowpass filter and a nonlinear compression function, and 

(3) a lateral inhibitory network consisting of a first-order derivative along the spectral axis. 

Finally, the envelope of each frequency band was calculated to obtain a time-frequency 

representation simulating the pattern of activity on the auditory nerve. The final spectrogram 

had a sampling frequency of 100 Hz. The spectral dimension was downsampled from 128 

frequency channels to 16 channels to reduce the model complexity. Acoustic edges were 

calculated per frequency bin as the half-wave rectified derivative of the spectrogram:

onset t, v = x t, v − x t − 1, v , x t, v ≥ x t − 1, v
0, otherwise

where x(t, ν) is the value of the spectrogram at time t for frequency band ν.

Phoneme and word alignment

We used the Prosodylab-Aligner112 to align the speech stimuli to the words in the speech 

transcript and partition the words into phonemes of the International Phonetic Alphabet for 

American English. The estimated phoneme and word boundaries were then inspected to 

make sure the alignment succeeded for all stimuli.

Keshishian et al. Page 15

Nat Hum Behav. Author manuscript; available in PMC 2023 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Phonetic features

The phonetic features for each phoneme included 22 binary phoneme attributes defining the 

voicing, manner of articulation and place of articulation of each phoneme (for the complete 

list, see Extended Data Fig. 3). To generate the control data for phonetic features, we took 

the Carnegie Mellon University pronunciation dictionary (http://www.speech.cs.cmu.edu/

cgi-bin/cmudict), grouped words by their length measured in phonemes and then shuffled 

the word-to-phoneme mapping within each group. As a result, each word has a consistent 

pronunciation at every occurrence, but words that share phonemes have independent 

pronunciations—for example, /kæt/ and /bæt/ no longer share two of their three phonemes. 

We constrained the reassociation to words of same length so that we kept the phoneme 

alignment information intact and because words of same length are more similar in 

frequency of occurrence (that is, shorter words tend to be more frequent). This is a rather 

strict control since shuffling pronunciations with other actual English words maintains the 

proper syllabic structure for English words.

Phonotactic features

As a measure of phonotactic probabilities, we used the logarithm of phoneme bigram 

(biphone) frequencies. To calculate the bigram frequencies, we used the Carnegie Mellon 

University dictionary to convert words to phoneme sequences and counted the total 

occurrence of each bigram using the SUBTLEX-US corpus, which is an English word 

frequency dataset calculated from movie subtitles59. We then computed a log-frequency 

metric for each bigram ab:

logfreqab = log freqab .

Since the biphone frequencies were calculated from a word frequency dataset and without 

access to word transition probability information, we counted the first phoneme transition 

of words separately from non-first phonemes. For example, the biphones for the phrase ‘red 

hat’ are the following: /#r/, /re/, /ed/, /#h/ (not /dh/), /hæ/ and /æt/.

To generate controls for the phonotactic feature, we shuffled the bigram-to-frequency 

associations (that is, the look-up table for bigram frequencies), which means that each 

bigram was associated with the frequency of a randomly chosen bigram from the true 

distribution. This control scheme maintained consistency across multiple occurrences of the 

same bigram. To counter the effect of the separation caused by the first versus non-first 

phoneme grouping, we performed the above shuffling separately for first phones (ones 

starting with #) and non-first biphones, so that any first versus non-first effect would be 

maintained in the control and thus discounted.

Word frequency

For the word frequency feature, we simply used the log-frequency of words from the 

SUBTLEX-US dataset. For the control condition, we grouped words on the basis of their 

phoneme length and shuffled the word-to-frequency associations within each group.
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Lexical–phonological features

To measure the lexical–phonological effect, we used lexical entropy and surprisal 

(equivalent to cohort entropy and phoneme surprisal in ref.63). These values were calculated 

for each phoneme within a word from the previous phonemes in that word. The surprisal 

caused by phoneme φi, S(i), in word w = φ1…φK indicates the improbability of hearing 

phoneme φi based on the previous i − 1 phonemes that came before it in the word and is 

calculated as follows:

s i = − log2
freq cohorti

freq cohorti − 1

where freq(cohorti) is the summed frequency of all words that start with the phoneme 

sequence φ1…φi. The lexical entropy, E(i), for phoneme φi is the entropy within all words 

that start with the phoneme sequence φ1…φi (the cohort)63:

E i = −
word ∈ cohorti

p word log2p word

where p(word) indicates the relative frequency of the word within the cohort. These two 

parameters together encode the incremental lexical competition among all phonologically 

consistent candidates as a word is being heard, weighted by their frequency. To compute 

lexical surprisal for the word-initial phoneme, we assumed a transition from the entire 

lexicon—that is, how surprising it is to hear a word starting with phoneme φ given all the 

words in the lexicon.

To generate lexical–phonological controls, we grouped all cohorts on the basis of the length 

of their shared phoneme sequence and shuffled the cohort-to-frequency associations within 

each group. We used this constrained shuffling to keep the effect of secondary information 

such as the phoneme position in the word and word length unchanged. This control scheme 

also satisfies consistency—that is, if two words share their first k phonemes, the cohort 

information for their first k positions is the same because the same cohorts are mapped to the 

same information.

Lexical–semantic features

To study the encoding of semantic information, we represented each word with its SND 

obtained from the English Lexicon Project, which refers to the relative distance between 

a word and its closest neighbours based on a global cooccurrence model56,68. The 

neighbourhood density can encode the degree of activation of semantically related words 

in the lexicon upon hearing the target word. The control for the semantic condition was 

constructed by grouping words on the basis of their phoneme length and shuffling the 

word-to-SND associations within each group.

Fitting TRFs

Regularized linear TRF models were fitted using ridge regression with the multivariate TRF 

(mTRF) MATLAB toolbox113. A TRF is equivalent to a one-dimensional convolution along 
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time or a finite impulse response filter. For each electrode, a causal model was trained 

to predict the neural response at each time point from the current and past 500 ms (time 

samples [t − 50, t]) of auditory stimulus (16 + 16 dimensions) and linguistic features (22 + 

1 + 1 + 2 + 1 dimensions). Including a constant bias term, each model for an electrode has 

a total of 51 × 59 + 1 = 3,010 parameters. Phonetic, phonotactic and lexical–phonological 

information was specified for the full duration of each phoneme, while word frequency and 

lexical–semantic information were specified for the full duration of each word. All linguistic 

information was convolved with a Hanning window with a width of seven samples (±30 

ms) to smooth the transitions between adjacent units while also capturing the coarticulation 

effect for phonemes. The optimal regularization parameter for each electrode was chosen by 

53-fold cross-validation based on the experimental trials. We used the average prediction r 
value from the 53 left-out trials as our main performance measure.

For visualization purposes in Fig. 3, we fit slightly modified models to the data. First, we 

did not convolve the linguistic features with a Hanning window to keep transitions sharp, 

improving the temporal precision of the model TRF weights. Second, we expanded the 

temporal width of the TRF by 100 ms from each side (710 ms total), making the model 

non-causal. This means that predictors in the future 100 ms (ten samples) can influence the 

model prediction at the current time step. We discarded 50 ms (five samples) from each side 

of the resulting TRFs for the analyses in Fig. 3 to avoid regression artefacts at the extremes 

of the model113. The encoding model for each electrode was only fit with the optimal 

regularization parameter that maximizes the cross-validated out-of-sample prediction for that 

electrode. The final model weights were obtained by fitting k = 53 models for the k-fold data 

and averaging across folds.

Determining the significance of encoding

The significance of each linguistic feature’s encoding was determined by comparing the 

encoding of the true distribution of that feature in the English language with 100 control 

conditions with permuted distributions, denoting significance as the t statistic of the one-

sample one-tailed t-test testing whether Δr > 0 being greater than 19, where Δr is the 

distribution of the difference of the true model out-of-sample prediction score from those of 

the control models. This threshold on the statistic corresponds to a confidence of 97.1%. In 

theory, the dimensionality of a feature could artificially affect its measured significance of 

encoding, especially for phonetic features, whose dimensionality is an order of magnitude 

higher than that of the other linguistic features. We explored this matter by recomputing the 

encoding of dimensionality-reduced (PCA) phonetic features and found that the degree of 

encoding is correlated with the variance explained rather than the number of dimensions, 

and that the reduction in phonetic encoding only leads to an increase in phonotactic 

encoding.

Computing distance from PAC

We used posteromedial HG (TE1.1) as a reference for the PAC (Fig. 1a)54,55. We calculated 

the Euclidean distance in the fsaverage space between each electrode and the reference point 

on the corresponding hemisphere.
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Measuring response latency

Electrode response latencies (Figs. 1a and 2c) were measured by fitting a spectro-temporal 

receptive field to each electrode (ridge regression from the time-lagged spectrogram to 

neural activity), taking the sum of squares of spectro-temporal receptive field coefficients 

across frequencies and finding the location of the peak of that curve. Feature-based latencies 

(Fig. 3b) were measured using the procedure described in the next section.

Computing the temporal response profiles of features

To compute the temporal response profile for a given feature fi with a measure of robustness, 

we selected the group of electrodes that significantly encoded fi and then randomly 

resampled that group 1,000 times with replacement (bootstrapping). For each subsample, 

we computed the eigenvector with the most explained variance (the first PC) of the model 

coefficients (TRFs) corresponding to feature fi by performing a PCA using singular value 

decomposition across the sampled electrodes.

For Fig. 3a, to generate the temporal response profile of fi, we took the mean and standard 

deviation of the 1,000 PCs, over all subsamples. For Fig. 3b, to measure the feature-based 

latency for fi, we first computed the latency of the peak of the first PC and then took the 

mean and standard deviation of the 1,000 latencies, over all subsamples. Extended Data 

Fig. 6 shows on average how much of the total variance is explained by the first PC in the 

case of each feature. For the features that represent multi-dimensional embeddings (auditory 

spectrogram, acoustic edges and phonetic features), we performed the PCA across channels 

and feature dimensions simultaneously. In other words, for the T × D × C weight tensor 

where T is the time window, D is the feature dimension (for example, 22 for phonetic 

features) and C is the size of the subgroup significantly encoding fi, we first reshaped the 

tensor into a T × DC matrix and then performed PCA across the DC dimension. Note that 

since the time course displayed in Fig. 3a is that of a PC and not the direct weight associated 

with an electrode, its sign is ambiguous.

Clustering feature encoding effects

The input to the clustering analysis was a feature-by-electrode matrix of t values denoting 

the prediction improvement in the true model over the null distribution of models that 

had one feature replaced by a control feature for each electrode. Since the t values varied 

in range from feature to feature, we performed a non-standard transformation on the t 
values prior to clustering, since a large-valued feature (that is, phonetics) could easily 

dominate the clustering. All t values less than 2.5 were clipped to 2.5, t values between 2.5 

and 7.5 remained linear, and t values greater than 7.5 were compressed through an x0.47 

transformation. The peculiar choice of parameters was aimed at achieving the most sensible 

automatic ordering of electrodes (x axis), since there are many valid orderings for the same 

clusters. Since our other (non-visual) analyses of t values are not sensitive to these outlier 

effects, we did not perform such transformations in other places.

We performed agglomerative hierarchical clustering on the transformed data to group both 

linguistic features and electrodes on the basis of the similarity of their improved prediction 

accuracies. For clustering the features (rows), we used the correlation metric for distance 
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and the average linkage clustering as the linkage criteria. We chose these parameters so that 

features that co-occur were grouped closer to each other. For electrode (column) clustering, 

we used the Euclidean metric as the distance and Ward’s criterion as the linkage function114. 

We chose Euclidean for two reasons: the low number of features can be noisy if computing 

correlations, and we did not want to disregard the relative sizes of the effects. Ward’s 

method is a linkage criterion suited for Euclidean distance when the number of elements 

being clustered is relatively large.

Extended Data

Extended Data Fig. 1 |. Electrode locations.
Electrodes are distributed across fifteen subjects and are either depth or subdural grids 

Cand/or strips. Shape indicates electrode type, where circles represent depth electrodes, and 

triangles represent subdural contacts. Shape colour indicates which of the fifteen subjects an 

electrode belongs to.
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Extended Data Fig. 2 |. Speech-responsiveness.
Circles represent electrodes in the immediate vicinity of the auditory cortex, based on 

their 3D coordinates in the ‘fsaverage’ space. Filled circles indicate speech-responsiveness, 

meaning the electrode site responds significantly differently to speech compared to silence 

(see ‘Electrode selection’ in Methods). Non-responsiveness could mean the electrode is 

not sound-responsive, is sound-responsive but not speech-responsive, or has insufficient 

signal-to-noise ratio (SNR). The non-responsive electrodes were excluded from all analyses.

Extended Data Fig. 3 |. Phonetic features.
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Each phoneme is represented by 22 binary features based on its voicing, place, and manner 

of articulation features.

Extended Data Fig. 4 |. Selecting stimulus window length for prediction.
A window size of 510 ms was chosen to maximize linear model performance with the 

minimal number of parameters. We fit multiple models, each with a different number of 

time-lags (window size), from 60 ms to 760 ms. Each model was trained with the full list 

of predictors shown in Fig. 1c on all electrodes selected by the selection criteria described 

in Methods (n = 242), and only differed from the other models in the number of lags. 

Error bars indicate standard error (SE) over electrodes. To compare two different sizes, we 

perform a paired-sample one-tailed t-test on the cross-validated out-of-sample prediction 

r-values to determine whether the larger model improves upon the smaller one. The 510 ms 

model (dashed line) showed a significant improvement over all smaller models (60 ms – 410 

ms, p < 0.001; 460 ms, p = 0.023). No larger model showed significant improvement over 

the 510 ms model (p > 0.5).
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Extended Data Fig. 5 |. Correlations among features.
The linguistic features defined in this study are themselves correlated with each other. 

This plot shows the absolute value of the Pearson correlation coefficient for all pairs of 

1-dimensional linguistic features (22-dimensional phonetic features excluded from figure; 

L1: lexical entropy, L2: lexical surprisal). The correlations are computed on the same 

30-minute dataset used for all other analyses. All correlations are statistically significant (p 
< 0.001).
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Extended Data Fig. 6 |. Explained variance of TRF diversity.
The bootstrapped (n = 1000) PCA analysis in Fig. 3 generates multiple eigenvectors at each 

bootstrap sample. We use the eigenvector that captures the most variance for computing the 

time courses (3a) and peak latencies (3b). This plot shows the mean and standard deviation 

of the explained variance for each of the top-10 principal components, computed using the 

same bootstrap procedure. In all cases, the first principal component captures roughly half of 

the total variance across all electrodes.
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Data availability

Linguistic features were extracted from the SUBTLEX-US word frequency dataset59 and 

the English Lexicon Project website (https://elexicon.wustl.edu/). The data that support the 

findings of this study are available upon request from the corresponding author (N.M.). The 

data are shared upon request due to the sensitive nature of human patient data.
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Fig. 1 |. Coverage and paradigm.
a, Electrode coverage and response latencies shown for 15 neurosurgical patients on 

the average FreeSurfer brain. The shaded regions indicate the general area of regions 

of interest. The blue triangles on the posteromedial HG sections indicate the reference 

point used for calculating distance from PAC. b, Different levels of linguistic features for 

the example word ‘cat’. c, Fitting TRFs using ridge regression for quantifying linguistic 

feature encoding in neural data. For each linguistic feature f, one at a time, we replaced 

that feature with a control variable f, generated by permuting values of that feature 

across the language. We then compared the accuracy of predicting the neural data with 

the true predictors versus control predictors where only f has been replaced with f. 

We repeated the process 100 times for each feature. d, Mean and standard deviation 

of the distribution of differences between true and control prediction accuracy (Δrc) 

for six example electrodes. Zero indicates that the control model performed the same 

as the true model, while positive values indicate that the true model outperformed the 

control model. We performed a one-sample t-test for each of the distributions against zero 

(P/T/F/L/S t values: E1, −3.46/2.32/0.76/−7.25/−0.22; E2, 80.38/11.66/9.09/7.56/−13.21; 

E3, 52.63/54.36/64.16/11.72/7.96; E4, 37.58/18.00/30.59/32.63/5.11; E5, 

33.24/10.15/9.61/20.96/31.93; E6, 29.34/4.99/93.65/19.31/19.50). The filled circles indicate 

that a feature was determined to be significantly encoded at the electrode site (t > 19).
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Fig. 2 |. Diversity in linguistic feature encoding.
a, Agglomerative clustering of the t values of prediction improvements over the 

corresponding control distribution (Fig. 1d) for all features and electrodes. Small values 

were clipped (white) and large values were compressed (dark brown) to reduce noise in 

clustering (Methods). The red horizontal line on the colour scale denotes the significance 

threshold (t > 19). b, Pairwise Spearman correlations between t values of different features 

computed across electrodes. The red square indicates lexical-level features (frequency, 

lexical–phonological and lexical–semantic) that are more highly correlated with each other. 

The values inside the boxes are the P values of the correlations. c, Spearman correlations 

of different feature encoding t values with neural response latencies of the electrodes (P 
values: P, 0.134; T, 0.044; F, <0.001; L, <0.001; S, 0.035). *P < 0.05; ***P < 0.001; 

NS, not significant. d, Mean and standard error of electrode distance from posteromedial 

HG (TE1.1) as a reference for the PAC. For each feature, we measured the mean and 

s.e. over the subset of electrodes that significantly encode that feature (t > 19; sample 

sizes: P, 174; T, 51; F, 73; L, 55; S, 32 electrodes). e, t-distributed stochastic neighbour 

embedding (t-SNE) representation of feature encoding values from a. The colours indicate 

brain regions. f, The normalized fraction of electrodes in each brain region significantly 

encoding the corresponding feature (t > 19; sample sizes: HG, 113; PT, 32; aSTG, 46; 

pSTG, 51 electrodes). First, the fraction of neural sites in each region that significantly 

encode a particular feature is calculated. Next, this fraction is normalized by the sum of all 

fractions across regions.
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Fig. 3 |. Temporal profile of linguistic feature encoding.
a, Mean (lines) and standard deviation (shading) of the first eigenvector of the regression 

weights assigned to each linguistic feature computed over all neural sites that showed 

significant encoding for that feature (t > 19; sample sizes: A1/2, 242; P, 174; T, 51; F, 73; 

L1/2, 55; S, 32 electrodes). The statistics were calculated using a 1,000-sample bootstrap. b, 

Mean and standard deviation of the peak latencies of the first PCs computed in a (n = 1,000 

bootstraps).
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Fig. 4 |. Spatial profile of linguistic feature encoding.
Interpolated two-dimensional maps of t statistics representing linguistic feature encoding 

across the auditory cortex. The interpolation was performed using k-nearest neighbours (k = 

5). Interpolated t values greater than 23 are shown with the same dark red and those less than 

0 are shown with the same dark blue. Darker shades of red indicate stronger encoding of the 

corresponding feature by neighbouring electrodes.
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