
 

1 | P a g e  

 

Efficient encoding of large antigenic spaces 
by epitope prioritization with Dolphyn 

 

Anna-Maria Liebhoff1,2, Thiagarajan Venkataraman2, William R Morgenlander2, Miso Na2, 

Tomasz Kula3,4, Kathleen Waugh5, Charles Morrison6, Marian Rewers5, Randy Longman7, June 

Round8, Stephen Elledge3,4, Ingo Ruczinski9, Ben Langmead1, H Benjamin Larman2 

 
1 Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA 
2 Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, 

MD, USA 
3 Department of Genetics, Harvard Medical School, Boston, MA, USA. 
4 Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham 

and Women's Hospital, Boston, MA, USA 
5 Barbara Davis Center for Diabetes, University of Colorado Denver, Aurora, Colorado, USA 
6 Behavioral, Clinical and Epidemiologic Sciences, FHI 360, Durham, NC, USA 
7 Jill Roberts Institute for Research in IBD, Division of Gastroenterology and Hepatology, 

Department of Medicine, Weill Cornell Medicine, New York, NY, USA 
8 Department of Pathology, Division of Microbiology and Immunology, University of Utah 

School of Medicine, Salt Lake City, UT, USA 
9 Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA 

 

Keywords: PhIP-Seq, public epitopes, peptides libraries, gut phages, antibody profiling 

Abstract 
We investigated a relatively underexplored component of the gut-immune axis by 

profiling the antibody response to gut phages using Phage Immunoprecipitation 

Sequencing (PhIP-Seq). To enhance this approach, we developed Dolphyn, a novel 

method that uses machine learning to select peptides from protein sets and compresses 

the proteome through epitope-stitching. Dolphyn improves the fraction of gut phage 

library peptides bound by antibodies from 10% to 31% in healthy individuals, while also 

reducing the number of synthesized peptides by 78%. In our study on gut phages, we 

discovered that the immune system develops antibodies to bacteria-infecting viruses in 

the human gut, particularly E.coli-infecting Myoviridae. Cost-effective PhIP-Seq libraries 

designed with Dolphyn enable the assessment of a wider range of proteins in a single 

experiment, thus facilitating the study of the gut-immune axis. 

Introduction 
The human gut microbiome is a critical determinant of human health. However, the 

mechanisms underlying the interactions between the host and the diverse microorganisms in 

the gut, including bacteria, fungi, phages, archaea, and other members of the microbiota, 

remain largely unknown. Gut phages, which infect bacteria in the gut, are increasingly 

recognized as important contributors to the host-gut axis. These viruses have even been 

described as the "puppet masters" of gut bacteria (Camarillo-Guerrero et al. 2021).  
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The immune system, which defends against foreign invaders and protects tissue homeostasis, 

plays a major role in gut related health. Secreted host antibodies may, for instance, directly 

impact the composition of the bacterial population in the gut by neutralizing specific gut 

phages. Exhaustively characterizing immune response to gut phages requires studying a 

large number of potential immune targets. Camarillo-Guerrero et al., recently published a 

database of gut phage sequences, most of which have not been previously described. Though 

it is smaller than that of gut bacteria, the gut phage proteome is still too vast to be represented 

via traditional synthetic means. 

Phage ImmunoPrecipitation Sequencing (PhIP-Seq) is a technique for profiling the reactivity 

of an individual’s antibody repertoire to a wide range of antigens. This technique involves 

designing peptides that tile across proteins, synthesizing oligo libraries that encode the 

peptides, and cloning the oligo libraries into a phage display vector. Phage display and 

immunoprecipitation are used to test serum samples for antibody binding to all peptides in 

parallel, since DNA sequencing is used to determine the relative abundance of the 

immunoprecipitated population. Protein reference sequences from public databases 

typically serve as the basis for these phage display libraries that normally consist of 56 to 90 

amino acid long peptides. PhIP-Seq libraries have been designed to span the human 

proteome (Larman et al. 2011), common viruses (Xu et al. 2015), allergens (Monaco et al. 

2021), selected gut bacteria (Vogl et al. 2021), and protein toxins (Angkeow et al. 2022), 

leading to novel insights into health and disease. 

To date, PhIP-Seq libraries have been designed using Pepsyn, a software tool that performs 

uniform peptide tiling across proteins (Mohan et al. 2018). Pepsyn has been typically used to 

generate peptides that overlap by half the tile size, which results in roughly double coverage 

of the input proteome. Representing the gut phage proteome in this manner would be 

intractable which led us to develop a new method for creating more compact PhIP-Seq 

libraries. 

To develop an efficient peptide library, it is necessary to selectively display antibody 

epitopes, i.e., protein regions that are bound by antibodies. As the study of gut phages 

remains limited, they are currently underrepresented in databases such as the Immune 

Epitope Database (IEDB) (Vita et al. 2019). However, it has been recently reported that 

epitopes recognized by many individuals, known as public epitopes, contain amino acid 

sequence features that are important for interactions with germline-encoded antibody 

domains (Shrock et al. 2023). This suggests that we can distinguish peptide sequences more 

likely to contain epitopes by their amino acid composition, which defines the primary and 

partially secondary structure of proteins.  

Our compact library design method, named Dolphyn, employs two components. The first is a 

binary machine-learning classifier, trained on public epitope reactivity, for prioritizing small 

peptides according to their probability of acting as epitopes. The second component is a new 

strategy for combining multiple regions of a protein into one peptide, allowing for the 

simultaneous testing of three potential epitopes in a single synthesized oligo. To demonstrate 

its utility, we used Dolphyn to create a PhIP-Seq peptide library and profiled gut phage 

proteome antibodies of healthy individuals. 
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Results 
Traditionally designed peptide libraries tend to contain only a small proportion of reactive 

peptides. Figure 1A shows the proportion of peptides frequently bound by serum antibodies, 

with the highest proportion  (15.4% per 100 individuals) found in the VirScan library (Xu et al. 

2015). The low fraction of reactive peptides even in libraries dominated by human pathogens 

highlights that such library designs may be significantly improved.  

We propose a new method for designing PhIP-Seq libraries for proteomes that are too large 

to tile exhaustively with Pepsyn. Our method effectively compresses the PhIP-Seq library to a 

practical size, with minimal loss of sensitivity to detect protein-level reactivity.   

Epitopes contained in reactive peptides 

To investigate public epitopes, we selected highly immunogenic peptides (wildtype) for 

examination in a cohort of 59 individuals (425 samples). The resulting Public Epitope Data Set 

(PEDS) profiles individual immune responses to two types of sub-peptides of varying lengths, 

the alanine scan and the k-mer scan (Methods and Fig 1B). 

The alanine scan library of peptides known to contain at least one epitope, contains replicas 

of the same reactive peptide but replacing each overlapping amino acid 3-mer with three 

alanines. Alanine substitutions can interrupt antibody reactivity and reveal the location of an 

epitope within a longer peptide sequence. Figure 1C normalizes, centers, and overlays this 

information for all individuals eliciting reactivity. 80% of the mean reactivity curve spans 14 

amino acid positions, suggesting that most linear public epitopes can be captured by 

peptides of this length.  

Figure 1D presents the results of the k-mer scan to assess reactivity for various peptide 

lengths. As expected, the number of non-reactive peptides increased with shorter peptide 

lengths. Wildtype peptides that are reactive may contain one or more epitopes, whereas the 

shorter sub-peptides derived from the wildtype peptides are likely to contain only one 

epitope. Shorter peptides are also unlikely to contain many excess amino acids outside of a 

reactive epitope, as compared to the 56 amino acids long peptides. So, the 15-mers were 

selected to serve as a dataset for training a binary classifier to determine whether or not a 

peptide includes an epitope.  
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Binary classification of epitope peptides 

Approaching epitope prediction as a binary classification problem, we trained a random 

forest (RF) classifier using peptides that are reactive in many individuals and an equally sized 

set of peptides that are not reactive in the PEDS cohort. Our model and training data are freely 

available on GitHub. We provide models for peptides of amino acid lengths 15 to 45. 

Fig 2A shows that our classifier fits the data well (AUC 0.99 on the whole dataset, training set 

was 95%), with the test-set (5%) AUC of 0.69. The higher out-of-bag (OOB) AUC of 0.76 is 

likely due to existing peptide sequence similarity in the training data, while the test set was 

selected to avoid sequence similarity to better measure general prediction capability.  

The 556 features used for the model (Fig 2B) included frequencies of amino acids, amino acid 

pairs, as well as frequencies of classes of amino acids defined by the DIAMOND alphabet 

reduction (Buchfink, Xie, and Huson 2015) and side-chain type. We found that amino acid 

Figure 1 – Antibody epitope analysis using programmable phage display of peptide libraries A Complexity and 

reactivity of previously published peptide libraries. Bars show number of peptides included in each library and 

the percentage of peptides that are reactive in at least 1 of 100 randomly selected samples from the VRC cohort. 

B The Public Epitope Data Set (PEDS) includes a k-mer scan and an alanine scan of 544 virus-derived 56 amino 

acid long immunodominant peptides in 59 individuals (425 samples). The k-mer scan consists of k = 15 to 45 

amino-acid-long sub-peptides of the wildtypes, starting every 5 amino acids. The alanine scan consists of 

modified versions of the wildtype peptide where triplets of amino acids were replaced with three alanines. 

Wildtype alanines are replaced by glycines. The library includes one peptide for each modification at each 

position of a wildtype. C Compilation of alanine scans from reactive peptides and individuals. Each grey line is 

the difference of the alanine peptide at that position to the wildtype reactivity in one individual. Only lines 

indicating a single epitope were included and shifted to the center. D Summarized k-mer scans. A peptide is 

considered reactive if more than one percent of samples react to it. The “Training Set” indicates those peptides 

used in the prediction model introduced in Figure 2. 
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frequencies were informative regardless of whether the model included their positions along 

the peptide.  

We discovered the most important features in predicting if a 15-mer contained an epitope to 

be the amino-acid side-chain frequencies. All four side-chain types were among the nine most 

important features (Fig 2C). Most crucial appears to be the number of polar uncharged amino 

acids in the peptide. For instance, Figure 2C illustrates that if a 15-mer peptide contains 

between 5 to 8 amino acids with a positively charged side chain, it has a higher likelihood of 

containing an epitope.   

The frequency of amino acids in the DIAMOND serine group (including threonine and alanine) 

is the most important feature. Lysine (K) frequency is also important, as is its DIAMOND group 

(including arginine, glutamic acid, aspartic acid, glutamine and asparagine), and K-

DIAMOND pairs. Interestingly, a recent, independent study also found lysine an important 

feature of epitopes. A germline encoded feature of antibodies called the “GRAB” motif was 

described as playing an important role in recognizing public epitopes (Shrock et al. 2023). In 

humans, these epitopes enrich lysines on their borders if recognized by antibodies using a 

lambda light chain.  

To assess performance on an independent dataset, we collected a set of Epstein-Barr-Virus 

(EBV) peptides that had been previously screened in a study by Monaco et al. (2021). None 

of the sub-sequences of this virus had been encountered by our classifier during training. 

Given the high prevalence of EBV infection worldwide (Arvin et al. 2007), this dataset 

provided a valuable ground-truth for evaluating the presence of epitopes in these peptides. 

Since the EBV peptides were 56 amino acids long, whereas our RF model was trained on 15-

mers, we evaluated all possible 15-mers within the 56-mer peptides and used their mean to 

generate the ROC curve shown in Figure 2D. Despite the necessary transformation to adopt 

the RF model, the model predicted antibody epitopes with an AUC of 0.65. 

We then used the RF model to predict epitopes from 7 Enterovirus strains and selected 757 

peptides with low and high probability. For evaluating antibody binding to these peptides 

with 55 human samples, we defined a peptide as reactive if at least one of these demonstrated 

reactivity. The ROC curve (AUC = 0.7) is shown in Figure 2E, confirming that the model can 

distinguish epitopes from non-reactive peptides based on amino acid composition. 
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Dolphyn: novel algorithm for peptide library design 

Simple tiling methods like Pepsyn (Larman et al. 2011) divide a protein into peptides of equal 

length with some overlap (Fig 3A). This approach wastes resources on synthesizing, cloning, 

and sequencing peptides that are not reactive. To improve efficiency, we developed a novel 

algorithm called Dolphyn that selects and combines peptides with a high probability of 

eliciting antibody reactivity. 

Dolphyn predicts whether each 15-amino-acid sub-peptide (15-mer) of a protein contains an 

epitope using the RF model described above that was trained on our public epitope dataset 

Figure 2 – Binary classification of 15-mer peptides containing an epitope. A ROC curves for random forest (RF) 

test and training sets. 5% of the training data was split off as a test set, with no overlap of wildtypes between the 

sets. B Various peptide features were used in a RF model, such as the frequency of natural and DIAMOND encoded 

AA and AA-pairs, and AA-side chain properties; 556 features in total. C Top nine most important features in RF 

model. The x-axis indicates the frequency of the AA sequence feature (max 15/15) and the y-axis shows the 

proportion of reactive individuals in the VRC cohort to each peptide in the training set. “d_” indicates a DIAMOND 

encoded amino acid. The number indicates the mean decrease in impurity, an importance score of a feature. D 

ROC curves on independent 56-mer Epstein-Barr virus (EBV) peptides, tested on the VRC cohort. E ROC curve of 

predicted 15-mer peptides in an Enterovirus peptide library, tested on the DAISY cohort. 
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(Fig 2). For each protein, Dolphyn selects the three non-overlapping 15-mers with the highest 

epitope probability (Fig S1). For long proteins, multiple sets of three 15-mers are selected if 

the probability of containing an epitope is greater than 0.5. These three are combined using 

Dolphyn's "stitching" step and separated via a flexible and inert linker sequence GGGGS (see 

Fig S2 for evaluation of different linkers). The resulting peptide is used to evaluate antibody 

reactivity at the protein level.  

Dolphyn is available as a modular Python package, with parameters controlling epitope 

peptide length, the linker sequence, the probability cutoff, the training data for the classifier, 

and the classifier itself (Fig 3B). For example, users can replace the classifier with Immune 

Epitope Database (IEDB) epitopes or their own classifiers.  

To evaluate the efficiency of Dolphyn and Pepsyn libraries based on cost-effectiveness, we 

accumulated the number of reactivities detected per new peptide added to the library (Fig 

3C). In order to detect the same number of immune responses as a Dolphyn library, a Pepsyn 

library requires about three times the number of peptides. 

Compressing the gut phage database for antibody profiling 

(Camarillo-Guerrero et al. 2021) constructed the gut phage database (GPD), which contains 

142,810 phage genomes derived from metagenomic stool samples. Roughly one third are 

marked “High Quality” and 5% were detected in samples from individuals marked as “North 

American” (Fig 3D). GPD also contains reference amino acid sequences for phage proteins. 

The authors clustered all proteins at a 95% similarity threshold, resulting in a number of 

clusters equal to 4% the number of proteins, indicating that the GPD contains many 

homologous proteins. 

We used the GPD reference to design a phage display library for antibody profiling and 

evaluating Dolphyn. We considered only high-quality phages that appeared in at least one 

North American individual, leaving 84,000 protein clusters. A Pepsyn-designed library that 

tiles these clusters would contain over 480,000 56 amino acid long peptides, whereas a 

Dolphyn designed library requires only about 100,000 peptides (Table 1). 

To compare Pepsyn versus Dolphyn library performance, we created a pilot library by 

selecting the 112 phages most prevalent in North American individuals. We selected one 

representative from each protein cluster present in these phages. Using Pepsyn’s standard 

tiling strategy, these proteins are covered 1.77 times using 23,745 56-mers (with 28 amino 

acid overlaps), whereas Dolphyn covers a third of the proteome, using 5,266 56-mers (Table 

1). Dolphyn therefore compresses these phage proteomes by nearly five-fold over the 

traditional approach. In the design of the full gut phage database proteome library, we 

observe a similar compression. 
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 Pilot Library North American Phageome  

Phages 112 7614 

Proteins 8023 588,783  

Protein Clusters 3354  84,306 

AA length of representative proteins 

concatenated 
750,776  15,637,136  

Pepsyn tiles + Coverage 23,745  1.77 484,761  1.74 

Dolphyn tiles + Coverage 5,266 0.32 106,762 0.31 

Compression ratio (Dolphyn/Pepsyn) 0.22 0.22 

 

Table 1 – Peptide library design statistics for Gut Phage Database protein sets. 

Figure 3E presents the protein composition of 12 selected phages from the pilot library. 

Heatmap colors represent the number of peptides in the library for each protein. Many 

proteins are shared across phages, and phages within GPD-defined phage clusters share 

most proteins. Dolphyn omits some of the smaller proteins where the number of potential 

epitopes required for efficient sketching is not sufficient. Consequently, these proteins are 

not represented in a Dolphyn-designed library, which is one limitation of the approach. 

 

Figure 3 – The Dolphyn library design algorithm. A Pepsyn tiles the protein sequence uniformly with fixed-size, 

overlapping peptides. Only a fraction of the peptides is reactive to antibodies. Dolphyn selects a smaller number 

of short peptides per protein, favoring peptides more likely to be epitopes and stitching them into one composite 

tile using G4S-linkers to separate the epitopes. B Dolphyn Workflow. The package includes modularized steps, 

e.g. including the RF model (Fig 2). C Cost-effectiveness of library design. As more peptides are included, i.e., 

synthesized and sequenced (x-axis), more immune responses were detected in the test cohort (y-axis). Dolphyn 

peptides are ordered by their mean prediction value of the contained epitopes, from highest to lowest. Pepsyn 

peptides are ordered randomly. D The metadata analysis of GPD-included phages, proteins and protein clusters 

reveals sub-sets of genome quality and abundance in North American metagenomic samples. E Library 

composition with Pepsyn versus Dolphyn. 12 randomly selected phage species (y-axis) were represented by 

Pepsyn or Dolphyn. Proteins are left out when fewer than three epitopes are predicted. 
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Effect of stitching on antibody detection sensitivity 

Dolphyn creates stitched peptides by combining potential epitopes from the same protein. 

Specifically, we used the 15-mer with the highest probability at the first position, followed by 

the second and third highest probabilities at positions two and three, respectively. In larger 

proteins that required compression onto multiple peptides, Dolphyn distributes the highest 

probability epitopes over the first positions of each stitched peptide so as to maximize the 

total number of independently reactive peptides per protein. 

Our pilot library includes both individual 15-mers and their corresponding stitched versions. 

Figure 4A shows reactivity data from these peptide sets for four representative samples, 

where two or more peptides were reactive. We observe that only one individual 15-mer was 

typically reactive, with a preference for the higher probability epitopes (Fig 4B). The log hit-

foldchange values for the stitched version were similar to those of the reactive individual 15-

mer (Fig 4A), indicating effective representation of the epitope.  

Reactivity of Dolphyn libraries 

We profiled plasma samples from 51 healthy individuals using the three pilot sub-libraries. 

The Dolphyn library contained a three times higher ratio of reactive peptides (log(hfc)>0 in 

at least one sample) compared to the Pepsyn library, in which 90% of the peptides were found 

to be non-reactive (Fig 4C). Individual predicted epitopes displayed only a slightly higher 

ratio of reactive peptides compared to Pepsyn. However, it should be noted that these 

peptides are only 15 amino acids long versus the 56 amino acid long Pepsyn peptides and are 

therefore expected to harbor fewer public epitopes on average.  

Immune response of healthy individuals to gut phages 

We then explored the immune response to gut phages in the 51 healthy individuals (Fig 4D). 

Using a phage-level aggregate metric (PhARscore, Methods), we detected antibody reactivity 

to a cluster (PC_4) of highly reactive phages in most individuals. Phages in this cluster that 

had a GPD-predicted taxon belonged to the Myoviridae phylum. The predicted phage hosts 

in this cluster are primarily Proteobacteria, especially E.coli.  

As the GPD does not provide predictions of phage taxonomy or host for all phages, we used 

BLAST to add annotations to the phage genomes. The “Blast E.coli” heatmap annotation 

indicates phages with genomes that had an alignment to an E.coli reference in the NCBI nt 

database. We assume that these alignments largely correspond to prophage sequences that 

have integrated into their host bacterium. 
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Dolphyn libraries recover observations made with Pepsyn 

We confirmed that E.coli phages and Myoviridae-annotated phages elicited a stronger 

immune response compared to other phages via Wilcoxon test. The mean PhARscore 

(Methods) for each phage across all samples is significantly higher in all three annotations for 

both library designs. (Fig 5A) 

Figure 4 – Healthy individuals’ antibody reactivity to 112 gut phages in pilot library. A Relationship between 

reactivities of stitched Dolphyn peptides and unstitched predicted epitope peptides. For four samples, all peptide 

quartets (three 15-mers and their stitched version) are shown where two or more peptides show reactivity. Peptide 

sets are ordered by highest to lowest reactivity from left to right. B The 15-mer peptides were stitched in the order 

of their probability score on the combined peptide, starting with the highest at position one. Accordingly, a 

difference in mean log reactivity score can be observed. Peptides are ordered by reactivity score per sample on 

the x-axis. C The phage proteomes in the pilot library were represented using three different approaches, Pepsyn, 

predicted epitopes and Dolphyn. The Pepsyn library with regularly spaced 56-mer probes and is the largest but 

least reactive.  The predicted epitopes alone achieve a similar proportion of reactive peptides despite the probes 

being small (15-mers, depicted by width of bar). The Dolphyn library achieves a greater proportion of reactive 

probes than the alternatives. D Anti-phage antibody reactivities in healthy individuals, depicted as binarized 

PhARscores, a phage-level aggregate reactivity score. The annotation on the top shows predicted phage 

properties and phage clusters. 
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The GPD is derived from a large set of metagenomic samples, which enabled Camarillo-

Guerrero et al. to identify phage presence in those samples. We calculated the prevalence of 

phages in North American individuals and created the pilot library that includes all phages 

detected in 50 or more North Americans. The few highly prevalent phages appear to elicit an 

immune response more commonly across all samples in our cohort, which includes only North 

American individuals. (Fig 5B) 

We investigated what protein level targets drive the immune response to the highly reactive 

phage cluster in healthy individuals. Figure 5C displays the number of reactive peptides in 

the proteins of the four most reactive phages in five individuals with the most robust antibody 

responses according to their PhARscores. We observe that some proteins are detected by 

several individuals’ antibodies, but overall, the individuals exhibited distinct immune 

response profiles. The proteins are ordered by size, and a higher number of reactive peptides 

is expected and observed for larger proteins (towards the left). 

Dolphyn-designed libraries demonstrate similar discovery power (accuracy) for identifying 

protein antibody targets, as shown in Fig 5D. Dolphyn peptides only recall a bit more than 

half the proteins that are reactive in Pepsyn partially because Dolphyn does not include some 

proteins. However, Dolphyn was able to identify some proteins that were not reactive in the 

Pepsyn library and considering this as a “fair” ground truth, Dolphyn achieves higher 

performance (Fig S3).  

The pilot phage library designed with Pepsyn produced several key observations that were 

recapitulated by the Dolphyn library. The Principal Component Analysis (PCA) shown in 

Figure 5E is based on sample PhARscores. Color is used in the plot to highlight phage 

attributes. The rightmost plots show the four identified phage clusters of the heatmap, initially 

found using the Pepsyn-designed library (Fig 4D). We observed that the Dolphyn-designed 

library preserved the same clustering for our cohort. 
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Figure 5 – Comparing Dolphyn and Pepsyn results A A significant difference in E. coli phage reactivity can be 

observed in mean PhARscore of Pepsyn and Dolphyn designed libraries (Wilcoxon test). B The phages detected 

in more samples in the GPD (x-axis) were also reactive in more individuals in our cohort (y-axis). Phages were 

only considered if present in both library designs. The spearman correlation is calculated based on reactivity. 

C Phage proteins from phages with PhARscores indicating high reactivity are displayed in sequential order (no 

shared proteins) for 5 individuals. Note that the Dolphyn library contains less peptides per protein and has 

consequently a lower number of reactive peptides per protein.  D Protein discovery power. Using reactivities to 

Pepsyn proteins as ground truth, performance metrics are shown for both Pepsyn and Dolphyn peptides in 

recovering protein by sample reactivities. E Principal component analysis (PCA) clustering of phages colored by 

different annotations. The PCs of phages according to the sample-reactivity vectors per phage are similar. Phages 

with same annotations and clustering in the heatmap (Fig 4) group together independently of the library design. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2023. ; https://doi.org/10.1101/2023.07.30.551179doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.30.551179
http://creativecommons.org/licenses/by/4.0/


 

13 | P a g e  

 

Discussion 
Here we introduce the Dolphyn algorithm for efficiently converting large antigenic spaces 

into tractable peptide libraries for antibody profiling applications. The algorithm reduces the 

number of peptides in a library for a given proteome by 78% and triples the reactivity per 

peptide, as compared to uniform protein tiling.  

Dolphyn employs a random forest model which aids in selecting peptides likely to contain an 

epitope based on their amino acid content. Training the model on public epitopes, we 

discovered that the majority of public linear epitopes span about 15 amino acids and that side-

chain information appears to be the most influential factor for distinguishing peptides with 

and without epitopes. Our results contrast prior work that could not reliably distinguish 

epitopes based on amino acid sequences alone (Akbar et al. 2021). In the future, it will be 

important to investigate whether using outputs from more complex algorithms like Alphafold2 

(Jumper et al. 2021) can improve predictions. The Dolphyn pipeline is prepared to accept 

new models. 

Using phage display libraries designed with Pepsyn and Dolphyn, we studied the immune 

response of healthy individuals to gut phage. We found that the majority of individuals showed 

reactivity to E.coli-infecting Myoviridae. Both libraries captured this relationship. It remains to 

be determined whether these antibodies are functional (e.g. enhancing or neutralizing), and 

what sorts of health-related phenotypes, if any, associate with these immune responses.  

In short, Dolphyn libraries require much fewer peptides to reveal key patterns in antibody 

reactivity, giving it an advantage over libraries that contain regularly spaced overlapping 

peptides. The modularity of Dolphyn, such as the interchangeability of the epitope prediction 

module, further highlights its potential for future applications in peptide library design for the 

immunological study of large proteomes, such as the entire gut, skin, or lung microbiome.  
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Methods 

Peptide libraries and cohorts 

Public Epitope Library  

(for the study of the nature of epitopes and training the random forest classifier):  

This T7 bacteriophage display library contains 357 56 amino acid long wildtype peptides that 

showed frequent antibody reactivity (public epitope peptides) in a previous VirScan study 

(Xu et al. 2015). Within each of these wildtype peptides, a series of shorter peptides of length 

15, 20, 25, 30, 35, 40 and 45 amino acids were designed to tile across the original 56 amino 

acid peptide in steps of 5 amino acids (Fig 1B). In addition, each of the wildtype peptides was 

subject to triple alanine mutation scanning as described previously (Xu et al. 2015). This 

library contains 46,070 peptides. 

GPD Phageome Pilot Library 

(for evaluating the performance and demonstrating the utility of the Dolphyn algorithm):  

This library contains three subsets of peptides, representing the same 112 prevalent phages 

in 3,354 protein cluster representatives:  

1) 19,117 peptides (length = 15 amino acids) that are likely to contain an epitope based on the 

random forest predictions (value > 0.5). These encoding oligonucleotides are padded on the 

5’ end to make them the same length as the other two peptide libraries (56 amino acids), with 

three stop codons and a random sequence generated with a pseudo-random generator, i.e. 

the Python random.choice() function.  

2) 5,266 peptides designed with the Dolphyn algorithm. 15-mer epitope peptides are 

grouped if they are present on several proteins. A Dolphyn peptide is created for every three 

epitope 15-mers, that are available per protein group. The 15-mer having the highest-

probability epitope goes first, then a GGGGS linker, then the 15-mer having the second 

highest probability, then a GGGGS linker, then the 15-mer having the third highest 

probability, then a stop codon, creating a peptide of 56 amino acid length. If two or more 

Dolphyn peptides are created per protein set, the second highest probability 15-mer gets the 

first position on the second peptide and all other epitopes are ranked and positioned 

accordingly.  

3) 23,745 Pepsyn peptides created by tiling the protein sequence with 56 amino acid long 

peptides and overlapping by 28 amino acids. If the protein length is not a multiple of 28, a full 

56-mer is created at the C-terminus of the protein, potentially overlapping more than 28 amino 

acids of the previous tile. 

All three sub-libraries were reverse translated with the Python Pepsyn package’s revtrans 

command to obtain 168-nt long oligonucleotides. A 16-nt long prefix 

(AGGAATTCCGCTGCGT) and suffix (ATGGTCACAGCTGTGC) were added to each oligo for 

PCR amplification, making the oligonucleotides 200-nt long. The final Dolphyn library is 

comprised of 48,128 individual 200-mers. The oligonucleotide library was synthesized by 

Twist Bioscience (San Francisco, CA). 
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Enterovirus Sublibrary:  

(for evaluating the prediction performance of the random forest classifier): 

This library contains 1,514 peptides derived from seven reference enterovirus sequences. 

The sequences were selected using the cd-hit tool to represent each species of Enterovirus 

A, B, C, D and Rhinovirus A, B, C. Based on the selected sequences, we designed two sets of 

peptides using Dolphyn and Pepsyn algorithms. The first half of peptides consists of 757 

epitope peptides with a length of 15 amino acids that were selected using the random forest 

scoring method. The second half was generated by adding a stop codon to the C-terminus of 

the first half of epitope peptides.  

To convert the designed amino acid peptides to oligonucleotide sequences of uniform length, 

the Pepsyn algorithm was employed. The function ‘revtrans’ reverse-translated the amino 

acids sequences into DNA sequences by randomly choosing codons based on the E.coli codon 

usage table, with a frequency threshold of 0.1. Since the designed peptides varied in length, 

they were padded to a length of 120nt with a linker sequence, 

GCAAGTCCTGCAGCTCCAGCCCCTGCAAGCCCAGCAGCTCCAGCACCAAGTGCACCTG

CTGGCGGAGGAGGTTCTGGCGGGGGCGGGAGC. Prefix AGGAATTCCGCTGCGT and 

suffix GTCGTGACTGGGAAAC were added for cloning purposes. Pepsyn’s ‘recodesite’ 

command was used to eliminate all EcoRI (GAATTC) and HindIII (AAGCTT) sites in the 

oligonucleotide sequences, as they were used to clone the library inserts into the T7 vector. 

The oligonucleotide library was synthesized by GenScript Biotech (Piscataway, NJ) using their 

oligonucleotide library synthesis platform. 

Enterovirus library screening cohort 

(used with the Enterovirus Sublibrary for evaluating RF prediction performance): 

The Diabetes Autoimmunity Study in the Young (DAISY) (clinicaltrials.gov identifier: 

NCT03205865) is a longitudinal study of children at high risk for development of Type 1 

Diabetes (T1D) due to genetic markers or family history. The cohort comprises approximately 

7% African American, 30% Hispanic, and 63% non-Hispanic white, with the remaining 

participants being of biracial or other ethnicity. The study follows participants from birth, 

collecting blood samples annually for autoantibody testing and other biological samples for 

future analysis. If T1D-related autoantibodies are found, the subjects are closely monitored 

for the onset of the disease. The DAISY cohort was recruited between 1993 and 2004, and 

follow-up data is available until February 2018 (Monaco et al. 2022). To conduct a PhIP-Seq 

screen with the Enterovirus sublibrary, a total of 55 patient samples were selected from a 

subset of six subjects, consisting of three T1D positive and three T1D negative individuals. 

VRC cohort 

(used with the GPD Phageome Pilot Library, and previously with VirScan (EBV results): 

 The Vaccine Research Center (VRC) cohort has been described previously (Venkataraman 

et al. 2022) and is comprised of 801 healthy community volunteers in the greater 

Baltimore/Washington DC area recruited for research studies. Of the 801 individuals, 535 are 

of European genetic ancestry, 194 of African genetic ancestry, 32 of Asian genetic ancestry 

and 40 belonging to other ancestral groups. The VRC cohort included 446 men, 351 women 

and 4 “unknown”. Their ages ranged from 18-70 years, with an average of 35.79 years. 

VirScan was performed on all 801 VRC subjects. A subset of 50 subjects were selected for a 
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PhIP-Seq screen with the GPD pilot library set. Of the 50 individuals, 41 are of European 

genetic ancestry, 4 of African genetic ancestry, 4 of Asian genetic ancestry and 1 belonging 

to other ancestral groups. The group consisted of 22 men and 28 women between ages 18 and 

64, with an average age of 39. 

PEDS cohort 

(used with the Public Epitope Library to create the Public Epitope DataSet (PEDS)): 

425 plasma samples (Table S1) for public epitope testing were obtained from the Genital 

Shedding (GS) Study (Uganda and Zimbabwe; 2001-2009), which evaluated the relationship 

between hormonal contraceptive use, genital shedding of HIV, and HIV disease progression 

among women with known dates of HIV seroconversion (Morrison et al., 2011). ART was 

recommended for study participants with CD4 cell counts below 250 cells/mm3, consistent 

with local treatment guidelines at the time the GS Study was performed. Data for CD4 cell 

count and viral load were collected in the GS Study (Morrison et al. 2011) data on the timing 

of ART initiation was obtained by review of clinic records.  

Experimental Methods 

Library construction 

Each oligonucleotide pool was resuspended in ultrapure H2O to a concentration of 10 ng/µl. 

A first round of 2 cycles of PCR was performed using 1ng of library DNA and the primers 

GCGCAAATGGGCGGTAGGCGTGAGGAATTCCGCTGCGT (forward) and 

GATTAACCCTCACTAAAGGGAAAGCTTGCACAGCTGTGACCAT (reverse). The PCR 

product was purified and a second round of 12 cycles of PCR was performed on all recovered 

PCR product with the primers CGCAAATGGGCGGTAGGCGTG (forward) and 

ATTAACCCTCACTAAAGGGA (reverse). The amplified DNA was purified using a PCR 

purification column, digested with EcoRI and HindIII, gel purified and ligated with 

EcoRI/HindIII digested T7FNS2 vector arms. (Shrock, Shrock, and Elledge 2022) The ligated 

inserts were packaged with the T7Select packaging kit (Millipore Sigma, St. Louis, MO) as per 

manufacturer's instructions. An adequate number of packaging reactions to ensure a 100X 

coverage of the library were set up, pooled and a "pre-amplification" phage stock was 

prepared by the plate amplification method. The pre-amplification phage library stock was 

titered, mixed with DMSO at a final concentration of 10% and stored at –80 °C for the long 

term. A "post-amplification" working stock of the library was prepared for PhIP-Seq, using the 

"liquid” amplification method, ensuring that a minimum plaque forming units (pfu) of at least 

a 100X the library size was used as input. The post-amplification library was titered and a pfu 

of 100,000X the size of the library was mixed with each sample for PhIP-Seq. 

Phage Immunoprecipitation Sequencing (PhIP-Seq) 

PhIP-Seq was performed as previously described. (Mohan et al. 2018) Briefly, 0.2 µl of serum 

sample was incubated with the phage library overnight at 4 °C. The serum-phage mixture was 

then incubated with a mixture of 20 µl magnetic protein A beads and 20 µl protein G beads for 

4 hours to immunocapture serum IgG antibodies and antibody-bound phage. The phage-

antibody complexes captured on the beads were washed to remove unbound phage.  After 

bead washing, peptide-coding DNA inserts from the phage were PCR amplified with forward 

and reverse primers containing dual indexed adapters suitable for Illumina sequencing.  The 
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PCR amplicons were pooled and subjected to DNA sequencing on an Illumina NextSeq 500 

instrument. 

Computational Methods 

Preliminary analysis of PhIP-Seq data  

The output from short-read sequencing of the immunoprecipitated phage libraries underwent 

initial processing using the edgeR pipeline as previously described (Chen et al. 2022). 

Sequencing reads of a phage library member were counted via exact matching of the first 50 

peptide coding nucleotides and a pseudocount was added. The magnitude of reactivity to 

each library member relative to mock immunoprecipitations, as defined by a fold change and 

associated p-value, was determined using the edgeR package in R (Robinson, McCarthy, and 

Smyth 2010). Significant reactivity or “hits” were defined as library members with counts 

greater than 15, fold change greater than five, and p value less than 0.001 (referred to as hit 

foldchange, “hfc”, throughout this manuscript). All other analysis of PhIP-Seq data was 

performed subsequent to this initial processing. 

Phage Aggregate Reactivity Score (PhARscore)  

To facilitate interpretation of complex antibody reactivity profiles, we modified the ARscore 

algorithm to aggregate antibody reactivity to all peptides that represent each phage 

(Morgenlander 2023). The GPD contains many homologous proteins, resulting in peptides 

that represent multiple proteins and phages. Phage-association of each peptide was tracked 

at every clustering step during the library design. Phage aggregate reactivity scores 

(PhARscores) were calculated for each phage represented by ≥ 25 peptides in a sublibrary 

(112 phages in the Pepsyn sublibrary, 88 phages in the dolphyn sublibrary). PhARscores from 

each sublibrary were generated separately. 

PhARscores for a given phage were calculated by comparing mean log2 foldchange of each 

phage-associated peptide set to distributions of mean log2 foldchange values of the same 

number of randomly drawn peptides from the same sublibrary. This process was then 

repeated whereby, in each iteration peptides from strongly reactive phage (PhARscore > 1) 

were removed from the pool of peptides used to generate random distributions. This process 

was performed a maximum of seven times or until no new phage met the reactivity threshold. 

ML training set  

The 15-mers of the PEDS serve as training data. A 15-mer from the PEDS dataset is considered 

to be reactive if 2 or more samples have a log(hit-foldchange) > 0. For negative examples, we 

choose 15-mers with high count on the (empty) bead samples with no reactivity in any sample, 

to avoid including sequences that may not show reactivity due to technical reasons. The 

dataset was constructed to have the same number of positive and negative examples 

(balanced dataset).  The advantage of this dataset is that many similar training examples 

(sequences) are contained with differing labels. When splitting test- and training-set (5/95%), 

we ensured that sequences derived from the same wildtype were not present in both sets.  

Random Forest Classifier  

For binary classification of 15 amino acid long peptides, a Random Forest model (Python 

scikit-learn package version 0.24.2 RandomForestClassifier) was trained on 556 features (Fig 
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2D). Default values for model parameters were used, including the number of trees (nestimators 

= 100) and setting the random_state = 42 for reproducibility. 

A random forest model combines several features' impact.  A particular feature’s importance 

(impurity based) is measured and can be extracted from the model. We report the top 9 

features in Figure 2C. A higher importance value indicates that the feature is more effective 

at distinguishing the two classes. The RandomForestClassifier also provides out-of-bag scores, 

summarizing the prediction performance of the random forest model on out-of-bag samples, 

which were used for Fig 2A. 

EBV Random Forest Testing 

Epstein-Barr Virus (EBV) peptides (56-mers, Pepsyn design) from the VirScan library were 

used to assess our model predictions. There were no EBV peptides present in the training 

dataset. 801 samples from the VRC cohort were used to establish a ground truth as to whether 

a peptide is reactive or not. A positive label is given when at least two members of the cohort 

showed reactivity. All sub-15-mers were evaluated with the Random Forest classifier. The 

mean probability of all 15-mers in the 56-mer determines the probability score for the 

peptide, from which the ROC curve in Figure 2B was constructed. 

Principal Component (PCA) 

The PCA (results in Figure 5E) was conducted with the base R (version 3.6.3) function prcomp 

(stats package) based on the PhARscore vector of all samples for each phage. The first two 

principal components were plotted and per panel colored differently for various phage meta 

information. 

BLAST for additional phage annotation 

To annotate phage genomes according to whether they potentially infect E.coli or other 

Bacteria, we used blastn version 2.13.0+ to scan the entire NCBI nt database for similarity. We 

considered that if a phage genome was contained in a bacterial genome in the database, the 

phage may have infected that bacterium and was sequenced alongside when the reference 

genome was created. A BLAST hit to a viral taxonomy might indicate a potential taxonomic 

annotation for these novel phages.  

For the binary annotation in this manuscript, an assignment is used that indicates whether an 

E.coli genome is among the top 15 BLAST hits that have an e-value < 1E-6. 

Metadata Analysis of the GPD 

The GPD (Camarillo-Guerrero et al. 2021) contains metadata for all phages. The predicted 

phage taxon and predicted host was used to annotate the heatmap in Figure 4D. Furthermore, 

this metadata contains a list of sample identifiers, corresponding to the cohort used in the 

study, of whose metagenomic samples the phage genomes were derived. We counted the 

amount of samples annotated as “North American” to i) select the locally prevalent phages in 

our pilot library and ii) conduct the prevalence study in Figure 5B. 

Data Availability 

The GitHub repository contains all data and script resources, such as the scripts for deriving 

the results (folder Manuscript Analyses), raw data, the Dolphyn python package and the ML 
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models as described in the manuscript. It is available at https://github.com/kepsi/Dolphyn 

and on Zenodo (https://doi.org/10.5281/zenodo.7979557). 
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