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Distinct dynamics in different cortical layers are apparent in neuronal and

local field potential (LFP) patterns, yet their associations in the context of lam-

inar processing have been sparingly analyzed. Here, we study the laminar or-

ganization of spike-field causal flow within and across visual (V4) and frontal

areas (PFC) of monkeys performing a visual task. Using an event-based quan-

tification of LFPs and a directed information estimator, we found area and

frequency specificity in the laminar organization of spike-field causal connec-

tivity. Gamma bursts (40-80 Hz) in the superficial layers of V4 largely drove

intralaminar spiking. These gamma influences also fed forward up the cor-
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tical hierarchy to modulate laminar spiking in PFC. In PFC, the direction of

intralaminar information flow was from spikes→ fields where these influences

dually controlled top-down and bottom-up processing. Our results, enabled by

innovative methodologies, emphasize the complexities of spike-field causal in-

teractions amongst multiple brain areas and behavior.

Introduction

Whereas correlation models describe the dependence structure between observed variables,

causal models go one step further: they predict whether a variable directly affects a change

in another. Understanding the causal interactions between neural entities is central to study-

ing brain function. In this pursuit, several statistical methods have been developed at each

scale of the electrophysiological measures - spiking activity and local field potentials (LFPs).

In LFPs, Granger causality studies have implicated distinct frequency bands in several neuro-

physiological phenomena, including predictive routing (1, 2), top-down and bottom-up signal

processing (3–6), and working memory (7, 8). Pairwise correlations between single neurons

have identified network organization consistent with anatomical connectivity (9–13), detected

distinct functionally specialized populations (13, 14), and enabled foundational understanding

of behavior encoding processes (15–17).

However, studies in individual signal modalities only partially explain brain function. A

single neuron cannot support complex behavior like perception, cognition, and action. These

capabilities emerge only when networks of neural circuits, as a whole, define specific brain

functions. Because LFPs account for the joint activity of neuronal assemblies, they constitute

a critical ‘middle ground’ between single neuron activity and behavior (18, 19). To that end,

bridging this pathway from brain structure to function requires detailed knowledge of the effec-

tive influences across the signal modalities. Yet, the distinct class of spike-field causal analyses
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is not without challenges. Firstly, spike trains are discrete binary-valued signals modeled as

point processes, whereas field potentials are continuous signals preferably analyzed using clas-

sical signal processing tools. Secondly, compared with the millisecond dynamics of spiking

activity, LFP dynamics vary much too slowly at orders of a few hundred milliseconds. Lastly,

it is difficult to completely dissociate spiking-related events from LFPs, eventually contributing

to spurious associations between the signals (20). These inequalities in the multiscale brain

activity call for specialized methodologies that must explicitly incorporate the concepts of neu-

rophysiological signal generation, time resolution in the tens of milliseconds, and a shared

metric space between the modalities.

Any construct of an effective cortical network must consider the influence of the anatomi-

cal parcellations of its structure. Anatomical tracing studies in the cortex have found that the

laminar location of cell bodies and their termination patterns underlies a hierarchical organi-

zation of cellular connections (21, 22). In other words, its position in the hierarchy affects the

diversity of synaptic inputs a neuron receives, influencing its functionality. For instance, in

many parts of the cortex, areas higher up the hierarchy represent increasingly complex features

of the stimuli (visual, (23–25); auditory, (26, 27); somatosensory, (28)). Even globally, feed-

forward and feedback connections differentially recruit neuronal populations in a layer-specific

manner (2, 29–31). Likewise, quantitative modeling efforts of such a hierarchical flow have

generated testable predictions. Most noted is the microcircuitry developed by Douglas and

Martin (32). Based on their studies in the cat-visual cortex, they presented a conduction-based

connectivity model between the thalamic and cortical neurons. These results have since formed

the basis for canonicity over the cortical sheet. Another prediction borne out of hierarchical

quantitative modeling is that the brain may employ empirical Bayesian inference on its sensory

inputs (33–35), providing support for several neural computation theories, including predictive

coding, hierarchical message passing, and mean-field interactions.
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Although recent technological advancements in electrode design have enabled simultaneous

measurement of neurons and LFPs at multiple, interconnected hierarchical levels, only a few

studies have explored their associations while accounting for the hierarchical cortical processes.

Noteworthy analyses include those conducted by (36). Here, during a task of directed spatial

attention, primate visual areas 1, 2, and 4 (V1, V2, and V4, respectively) reported significantly

different spike-field coherence patterns between the superficial and deep layers. Single neurons

coherent with gamma band (40 − 60 Hz) frequencies were confined to the superficial layers,

while those synchronized with alpha band frequencies (6−16 Hz) were dominantly found in the

deep layers. In areas V2 and V4, spike-field coherence was modulated by attention - decreases

in alpha synchrony contrasted with increases in gamma synchrony. While these results set

precedence for spike-field association studies in the cortical column, the implemented metrics

allowed for correlative but not causal inferences. Further, spectral estimations of LFPs limit

access to timing information important to deciphering immediate causal influences between the

signals. Lastly, their findings only focused on the visual cortex.

In this work, we address the above challenges by implementing a neurophysiologically rel-

evant interpretation of the LFP traces in terms of their oscillatory burst patterns. Characterized

by their timing, amplitude, and duration, the bursts collectively summarize a marked point

process representation of the LFP traces (37) - therefore, bringing the two modalities into the

same algebraic space of point processes while maintaining the fine temporal structure of the

oscillations. Next, we introduce an information theoretic metric, directed information, in the

point process space enabling causal inferences between the signal modalities. To analyze the

specifics of feedforward and feedback spike-field connectivity, we apply our methodologies

on layer-resolved, simultaneous recordings of LFPs and spiking activity from the visual and

frontal areas of two primates performing a visual task with modulated stimulus predictability.

We build on previous analyses conducted on the same dataset (2) where causal connectivity be-

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2023. ; https://doi.org/10.1101/2023.01.17.524451doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.17.524451
http://creativecommons.org/licenses/by-nc-nd/4.0/


tween LFPs revealed interesting asymmetric networks in the beta and gamma frequency ranges.

Accordingly, we focus our analyses of spike-field causal connectivity with gamma bursts in

the 40 − 80 Hz frequency range and beta bursting in a broad frequency range of 8 − 30 Hz.

These analyses revealed layer and frequency-specific asymmetries in spike-field associations

and presented causal evidence for the direction of flow of these signals. The findings suggest

a complex dynamic between the two modalities consistent in frequency and layer asymmetries

while revealing a complicated directional influence pattern.

Results

Projection of field potentials onto the point process space

Recognizing the need for simultaneous studies of spiking activity and local field potentials

(LFPs), we propose to analyze causal connectivity patterns between the multiscale activity us-

ing an event-based quantification of LFPs. Specifically, we summarize each LFP trace as a point

process of transient bursts of narrowband oscillations in established frequency ranges (beta, 8 -

30 Hz, and gamma, 40 - 80 Hz). The resulting representation allows for a unified metric space

between spiking activity and LFPs while preserving the time resolution across the different

recording modalities. To realize such a representation, we developed an unsupervised learning

model named the ‘generative model for oscillatory bursts’ (37). Unlike other time-frequency

decomposition techniques, the generative model explicitly incorporates the concepts of neuro-

physiological signal generation and enables a high-time-resolution representation of transient

activity. The model achieves this by isolating oscillatory waveforms from the spontaneous

background of bandpass LFPs using sparse coding techniques. First, we divide the bandpass

LFP data into training and test sets. On the training data, identified oscillatory waveforms are

compiled into a dictionary of representative waveforms. The final point process representation

of the test signals is then obtained by a convolution between each bandpass LFP trace and the
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learned dictionary using adaptive thresholding on the burst power (Figure 1A).

To examine the role played by oscillatory dynamics in sensory information processing, we

apply the generative model to laminar LFPs recorded from visual area 4 (V4) and prefrontal

cortex (PFC) of two monkeys. During the recording, the monkeys actively engaged in a de-

layed match to sample (DMS) task (Figure 1C, bottom). In each session of the DMS task, the

predictability of the stimulus was additionally modified every 50 trials in one of two ways: 1)

the same stimulus was cued in consecutive trials during the ‘repetitive’ trial blocks, and 2) a ran-

domly sampled stimulus was cued in consecutive trials during ‘randomized’ trial blocks (Figure

1C, top). Across ten sessions and two monkeys, we analyzed LFPs in the gamma (40− 80 Hz)

and beta (8−30 Hz) frequency ranges. Learning on the model was performed per session, area,

and frequency range, culminating in 4 dictionaries per session (two areas and two frequency

ranges). Example waveforms from each dictionary are summarized in Figure S1.

The main advantage of a point process representation of LFPs resides in its interpretability

via rasters and rate plots. While the former supplies a platform for identifying precise timing-

based modulations, the latter enables inferences based on the general properties of the point

process. Figures 1D, E present representative rasters and rate functions over the complete trial

duration for all signal modalities in area V4 (PFC, Figure S5). For better visualization, we

plot rasters of beta and gamma bursts to demarcate each peak in an oscillatory burst. These

plots succinctly summarize associations observed in previous studies (2,38,39) between spiking

activity and gamma bursts (rV 4 = 0.66, rPFC = 0.93, p < 0.05) and their anti-correlation

with beta bursting (neuron, rV 4 = −0.62, rPFC = −0.13, p < 0.05; gamma, rV 4 = −0.50,

rPFC = −0.19, p < 0.05). This anti-correlation between the low and high-frequency signals

can be associated with the task. Increased spiking activity and gamma bursting are observed

during bottom-up processing tasks, i.e., during sample and response intervals. Whereas activity

in the beta frequency range is higher in the delay period, during which top-down processing
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streams are active.

To further validate the burst detections made by the generative model (Simulations, see

Methods, Figure S3), we replicate results from a previous study (2) on the same dataset. For

this, during the fixation and sample intervals, we analyzed the effect of stimulus predictability

on gamma and beta power in V4 and PFC (Figure S2). Power fluctuations in each frequency

range are determined by including the local burst power in the LFP point process’s rate function

(see Methods, Burst power). The high time resolution of the LFP point process allows for

sample-by-sample significance analysis of the signal local power enabling additional inference

on the timing of power modulations. Throughout the sample interval, we observed increased

gamma activity in V4 to ‘randomized’ stimuli (Figure S2A, right). Specifically, superficial layer

gamma power in the early sample period noted more significant increases than the deep layer

gamma power (p < 0.05, ANOVA). Gamma band power in the PFC was not modulated by

sample predictability. Opposite effects were observed in the beta band power. In V4 and PFC,

beta power increased during repeated stimulus presentations (p < 0.01, ANOVA). In this case,

beta power modulations to sample predictability were more prominent in the deep layers than

in the superficial layers across both areas (p < 0.05, ANOVA). This layer specialization of beta

activity was observed only in the later half of the sample interval. In the fixation interval, the

effect of stimulus predictability was most pronounced in the early periods, where beta power

modulations in the deep layers of V4 were significantly higher (ANOVA, p < 0.01) during

repeated presentations of the stimulus.

These results, combined with the results from (2), provide strong evidence for the involve-

ment of oscillatory LFP rhythms in bottom-up and top-down information processing, where the

separate pathways involving distinct cortical layers, timings, and frequencies point to a hierar-

chical system that mediates information integration.
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Visual stimulation reorganizes baseline network connectivity

Prior to studying the interactions between spiking activity and LFPs, we were interested in

analyzing the interactivity at each scale. While previous work ( (2)) has explored network inter-

actions among LFPs, here, we study the dynamical changes in the V4 neuronal networks during

sensory stimulation. To study these changes, we compared the interaction patterns between

single neurons across the fixation and sample intervals. Specifically, we estimated directed in-

formation (DI) to identify causal influences between neurons in individual cortical columns of

V4. DI is an information-theoretic measure that quantifies the magnitude and direction of in-

formation flow from one random variable to another. An improvement over mutual information

(equation 10), DI computes the causal influence between variables by limiting the support of

the causal variable only up to the current timestamp (equation 11). For our formulation of DI,

we combine techniques from information theory and kernel-based spike train representations.

Using methods shown in (40) for entropy estimation, we circumvent tedious probability esti-

mations for the metric (Figure 1B, equations 13 - 16). Additionally, the formulation allows for

DI estimation in a trial-wise manner.

Across neurons within the same cortical column, direct causal influences were identified in

three steps (Figure 2A). First, we evaluated the DI between each pair of neurons. Next, we

eliminated connections with non-significant DI by testing against the null hypothesis of non-

causality (p < 0.05, N = 100 randomizations). To construct the surrogate data for the null

hypothesis, we destroyed the causal structure between neural activity by repeatedly shuffling

the spiking activity of the causal neuron. Lastly, direct influences in the neural network were

teased apart from indirect influences by conditioning the DI on ‘side variables’ (equation 12).

A ‘side variable’ comprises activity from a single neuron potentially involved in a cascading or

proxy topological connection with the pair of neurons under study (Figure 2A, see Methods,

spike-spike interactions). Eliminating any indirect connections is essential for neuroscientific
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studies, especially in the visual cortex, where neuronal networks are heavily recurrent in their

connectivity. It must be noted that although DI does not determine the excitatory or inhibitory

nature of the connection, it can recognize both types of influences (see Methods, Simulations,

Figure S4). To aid interpretation, we use directed graphs to summarize causal connectivity

patterns. Each edge and its direction in the graph is identified by aggregating the identified

causal connections between the pair of nodes under study. The edge weights of the graphs

are constructed to describe the strength of the connection as the averaged DI across all direct

connections. For instance, an edge would be constructed between two nodes if a connection is

identified between them in any one of the sessions. However, the edge width would reflect the

average DI across all trials and sessions such that DI = 0 for non-significant connections.

To determine whether the neuronal interaction patterns in V4 change throughout the trial,

we separately analyzed direct causal influences in the fixation and early sample interval [0-

0.5]s. Across fixation and sample intervals, we observed a reversal in the within-column causal

influence patterns. During fixation, the dominant pathway of causal influence included the

deep→ superficial and the deep→ deep layer connections. The effect was two-fold. We not

only observed an increased influence of deep layer neurons on the cortical column, evident via

increases in DI (ANOVA, p < 0.001), we also noted an increased proportion of connections

originating from the deep layers (Figure 2C, B-inset). By contrast, during the sample interval,

causal neurons were concentrated mainly in the superficial layers such that there was an increase

in the strength and proportion of connections originating from the superficial layer neurons

(ANOVA, p < 0.001).

Overall, superficial layer neurons specialized more in processing information during the

sample period, while deep layer neurons controlled information processing during fixation.

Additionally, in line with anatomical projection patterns, these findings suggest that superfi-

cial layers support feedforward pathways channeling information from lower to higher-order
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cortical areas, while deep layers support feedback pathways.

Gamma bursts are the earliest visual response in V4

Having studied interconnectivity at each scale, layer-specific patterns across the two scales be-

came evident. During sensory stimulation, modulations in both gamma bursting and neuronal

connectivity patterns were observed in the superficial layers. Further, modulations in beta burst-

ing and neuronal interactions were confined to deep layers during fixation. To gain insights on

the directionality of influence (if any) between the scales, we studied the temporal latencies of

stimulus-evoked responses in both bursting activity and spiking in V4.

Using the high time resolution of the LFP point process, we noted the response latency of

beta and gamma activity in each trial as the start time of the earliest burst that appeared during

the 200 ms interval after stimulus presentation. The start time of each burst considers the burst

length, L (see Methods, Burst length), and is selected as t = L/2 − τ seconds, where τ is the

time-point corresponding to the center of the burst. For each of these bursts, we also identified

the half-power point as the time at which the burst’s instantaneous power is closest to half the

local maxima. For spiking activity, we estimated trial-wise response latencies as the time of

the first spike in a 20 ms window around the neuron’s maximum response during the 200 ms

interval after stimulus presentation (Figure 3A). Statistical analysis of the onset times across the

signal modalities revealed significantly different latencies (Figure 3C, ANOVA, p < 1e−3). In

most trials, the first gamma bursts began 50 ms post-stimulus presentation such that the gamma

bursts were already at their half-power point 68 ms after stimulus onset, approximately 30 ms

prior to the spike responses (Figure S6). In comparison, the first spiking responses appeared

93 ms post-stimulus presentation - registering an ∼ 40 ms delay between the first gamma event

and spiking responses in V4. This early initiation of gamma bursts, as compared to the evoked

neuronal response, could also be observed in the trial-averaged power across depths (Figure
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3B). Lastly, beta bursts were fewer, much delayed, and were most likely to appear after spiking

activity at 160 ms post-stimulus presentation. Overall, the sequence of responses followed the

order: gamma, spiking, and, finally, beta activity.

Next, we tested if stimulus predictability impacted the onset times of bursts and spiking

activity in V4 (Figure 3D). For this, we separately analyzed the onset latencies of spiking ac-

tivity, first gamma, second gamma, and first beta event in the ‘repetitive’ and ‘randomized’ trial

blocks. We identified the second gamma bursts as those that followed a gamma event in the

initial 200 ms. Since the beta activity was sparse in the initial 200 ms, we relaxed the constraint

on beta burst timings and considered the start times of the first beta burst over the entire sample

interval. The first spiking and gamma events were strongly locked to the stimulus and were

unaffected by stimulus predictability (ANOVA, gamma, p = 0.51; spiking, p = 0.3). However,

the first beta burst and the second gamma burst showed significant modulations (ANOVA, p

< 0.001). During repeated stimulus presentations, the first beta burst appeared ∼ 15 ms earlier

than when the stimuli were randomly presented. The reverse was observed in the timings of the

second gamma burst; these events appeared earlier during the randomized trial blocks by ∼ 12

ms than in the repetitive blocks.

The sequence of these stimulus-evoked responses made us wonder about the causal influ-

ence of gamma bursting on single neurons in V4. Accordingly, we set up DI to measure the

layer-wise causal influence of gamma bursts on spiking activity during the early sample interval

of [0 - 0.5s]. We observed a strong influence of gamma bursting on spiking that was confined

mainly to the superficial layers (ANOVA, p < 0.001, Figure 4B). These influences were largest

between superficial → superficial and superficial → deep layers (ANOVA, p < 0.001, Figure

S8A1 middle), similar to the single neuron connectivity patterns in the same interval (Figure

2C, right panel). Building upon the response latencies, we next analyzed the layer-wise causal

influence of spiking activity on beta bursting. Spiking activity in the deep layers had a more
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significant causal influence on beta activity in the cortical column (ANOVA, p < 0.001, Figure

S7), but the influences were generally weak. These results are in line with previous reports on

oscillatory responses in the visual cortex where spike to gamma coherence was found to be most

prominent in the superficial layers and spike to beta coherence in the deep layers (2,36,41,42).

Spike-field interactions display consistent layer and frequency specializa-
tion but dynamic directionality across areas

Findings in the preceding section suggest a systematic causal interplay between spikes and fields

in V4. To further understand these influences, we sought to study their directional asymmetries

across frequencies and cortical depth. To account for the timing differences we observed in

the dynamics of gamma and beta power functions (Figure S2), we separately analyzed activity

in the fixation ([-1 - 0s]) and sample period ([0 - 1s]). For the same reasons, we also split

the sample period into early ([0 - 0.5s]) and late ([0.5 - 1s]) intervals. Across DI estimates

evaluated in individual cortical columns, the dominant causal influence between spiking activity

and LFPs was identified by comparing the estimates across opposite directions (that is, A→ B,

if DI(A → B) > DI(B → A)). We visualized these results using directed graphs (Figure

4C, D), where each edge was weighted by the difference in DI between the counter-influences,

∆DI. Lastly, we color-coded the edges to represent the dominant causal variable (spikes/fields).

We found that field potentials largely drove V4 spiking activity (p < 0.001, Cohen-d > 0.2,

Figure 4C), while the frequencies involved correlated with the different trial intervals. During

fixation, both beta and gamma strongly influenced spiking activity, while only gamma bursts

drove spiking in the sample intervals (Figure 4C, top row). On resolving these connections into

the different cortical layers, we found interesting patterns of layer specialization in the beta and

gamma connectivity patterns. Beta bursting in all layers significantly affected spiking activity

in the fixation interval. However, these influences were strongest from the deep layers to the
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superficial layers (ANOVA, p < 0.001, Figures 4C column 1). The layer-specific trends of

beta influence on spiking activity approximately mimicked that reported in spike-spike causal

connections in the same interval (Figures 2C left, S8A2 left). Across fixation and sample pre-

sentation, superficial-layer gamma activity strongly influenced spiking in the superficial layers.

This influence significantly increased upon sample presentation and remained high through the

sample interval (ANOVA, p < 0.001). A primary difference between interactions in the early

and late sample periods was the activation of deep-layer gamma activity with a more significant

influence on superficial spiking activity (ANOVA, p < 0.001).

Given the well-established role of PFC in top-down attention and working memory and

its relevance to the cognitive processes engaged in the current task ( (4, 43), 31), we exam-

ined spike-field influences in the cortical columns of PFC. While neurons in V4 were primarily

driven by field potentials, causal signals in PFC switched roles between LFPs and spiking over

different trial intervals. Similar to V4, beta bursts induced spiking activity in PFC during fixa-

tion. However, these causal influences were significantly higher in PFC than in V4 (ANOVA,

p < 0.001). While the stimulus did not evoke any spike-field interactions in PFC during the

early sample period, we observed a reversal in the directionality of influence in the late-sample

period. During this interval, spiking activity induced beta and gamma bursting in the column

(Figure 4D, top row). Intrigued by such a reversal in directionality, we wondered about the

layer-wise influences of spike → field connectivity. Unsurprisingly, these influences revealed

consistent frequency specialization with that of V4. Despite the reversal in directionality in

the late sample period, neurons in the column drove gamma activity in the superficial layers,

with the strongest influences coming from neurons in the superficial layers. While superficial

layer neurons affected both gamma and beta bursting, the impact was significantly lower on

beta activity (ANOVA, p < 0.001). As expected, spiking→ beta influences were greatest from

the deep layers (ANOVA, p < 0.001, Figure 4D column 3). In the fixation interval, deep beta

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2023. ; https://doi.org/10.1101/2023.01.17.524451doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.17.524451
http://creativecommons.org/licenses/by-nc-nd/4.0/


activity strongly influenced spiking in the column (ANOVA, p < 0.001, Figure 4A, D column

1). During this interval, superficial beta activity also significantly modulated laminar spiking

activity (ANOVA, p < 0.001); however, the influences were weaker.

Feedforward and feedback spike-field interactions are frequency specific

To determine whether the cross-area laminar organization of spike-field communications adopts

a similar specialization, we next analyzed interlaminar connectivity between V4 and PFC. Sim-

ilar to the analysis in the preceding section, we identified the dominant causal influence by

comparing the DI estimates across opposite directions. To aid interpretation, we constructed

wheel plots to summarize the inter-area influence patterns (Figure 5). We weighted the edges

by the difference in DI estimates of the opposite directions. Lastly, each edge was color-coded

to correspond to the dominant directionality of causal influence, either feedforward (i.e., red,

V4→ PFC) or feedback (blue, PFC→ V4).

During fixation, overall feedback causal influences were larger than feedforward (ANOVA,

p < 0.001, S9 left), where beta activity drove all influences during fixation (Figure 5B left,

S9 left). In the feedback direction, beta activity in PFC showed causal connectivity with spik-

ing in V4, whereas feedforward beta in V4 weakly modulated spiking in PFC (ANOVA, p

< 0.001, Cohen-d > 0.2). Interestingly, both signals primarily originated in the deep lay-

ers of the respective areas (ANOVA, p < 0.001) and equally affected spiking in the deep and

superficial layers (ANOVA; feedback, p = 0.1; feedforward, p = 0.56). During stimulus presen-

tation, inter-laminar connections were predominantly feedforward such that gamma activity in

V4 modulated spiking in PFC (Figure 5A, columns 2-3, ANOVA, p < 0.001, Cohen d > 0.2).

A layer-wise comparison of these spike-field influences revealed a strong effect of super-

ficial gamma activity on spiking in the superficial layers of PFC (ANOVA, p < 0.001, S9A

columns 2-3) in both the early (Figure 5B, right) and late sample periods. However, the strength
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of feedforward causal connectivity between the areas reduced over the sample interval such that

stronger connections were observed in the early periods of stimulus processing. In the late sam-

ple period, feedforward gamma → spike connectivity additionally accompanied the feedback

connections between spiking activity in PFC and beta bursting in V4. As per the intralaminar

connections in PFC, the directionality of feedback influence was from spikes→ fields such that

neurons in PFC maximally modulated deep layer beta bursting in V4 (Figure 5A).

Stimulus predictability modulates spike-field interaction patterns

We next investigated the spike-field asymmetries that appear in response to variations in sample

predictability. Based on our results so far, we hypothesized that while repeated, predictable

samples would recruit feedback pathways inducing top-down processing (PFC → V4), pro-

cessing of unpredictable randomized samples would evoke signals that are fed forward up the

cortical hierarchy, distilling the information in a bottom-up fashion (V4→ PFC). Further, we

expected feedforward signaling to involve the gamma frequencies while feedback to involve

beta frequencies. To test these hypotheses, we compared the DI estimates across the ‘repetitive’

and ‘randomized’ trial blocks in previously identified significant spike-field causal connections.

We adopted a similar visualization style to the previous sections (Figure 6). We weighted the

edges by ∆DI, corresponding to the difference between the DI estimates in ‘randomized’ and

‘repetitive’ trial blocks. While we maintained the directionality of influence from the previ-

ous sections, each edge is color-coded to represent the stimulus type (either ‘randomized’ or

‘repetitive’) of higher DI for that specific connection.

First, we analyzed the variations in intralaminar spike-field connectivity in V4 and PFC. In

V4, spike-field connectivity was stronger during ‘randomized’ stimulus presentations (Figure

6B, S10A). During this trial block, intralaminar connectivity between gamma→ spike increased

in the early sample interval such that the most significant increments were between superficial
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layer gamma to deep layer neurons (ANOVA, p < 0.001, 6A, 6B middle, S10A middle). Next,

in the late sample period, we observed the most significant enhancement in connectivity from

deep gamma→ superficial spiking activity (ANOVA, p < 0.001, 6B right, S10A right). Lastly,

during fixation, the effect of deep layer beta activity on spiking was weakly higher to ‘random-

ized’ stimuli (6B left, S10A left).

In PFC, modulations in intra-laminar connectivity to sample predictability were only ob-

served in the late sample period and only in the connections from spike→field (6C right, S10B).

These influences had a dual response to stimulus type. While spike→ beta influences were en-

hanced during repeated stimulus presentations, spike→ gamma influences were stronger during

the ‘randomized’ trial block. When resolved layer-wise, neuronal connectivity was higher to

superficial-layer gamma during randomized stimuli (ANOVA, p < 0.001) and to deep-layer

beta during repeated stimulus presentations (ANOVA, p < 0.001).

As expected, variation in intralaminar connectivity to sample predictability implicated a role

of gamma bursts in the ‘randomized’ trial blocks and beta bursts in the ‘repetitive’ trial blocks.

To determine if these variations also associate with feedforward and feedback processing, we

applied our analyses to study the connectivity across areas in the two trial blocks. Indeed, inter-

area connections between V4 and PFC showed a clear separation in connectivity between top-

down and bottom-up processing (Figure 6D). Whereas feedforward connections reported signif-

icantly larger causal influences while processing unpredictable ‘randomized’ stimuli, all feed-

back connectivity was enhanced when the stimulus was predictable (‘repetitive’ trial blocks). In

the sample period, feedforward connections between gamma in V4 to spiking in PFC was most

significantly enhanced. While in the early sample period, we observed the most significant in-

creases along the pathways from superficial layers in V4 to superficial layers in PFC (ANOVA,

p < 0.001, Figures 6D top-middle, S11A middle), in the late sample period, this increase was

strongest along the pathways originating in the deep layers of V4 to the superficial layers in
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PFC (ANOVA, p < 0.001, Figures 6D top-right, S11A right). Lastly, feedforward connections

during fixation did not display any modulation to stimulus predictability.

Along the feedback pathway, spike-field connections strengthened when the sample was

predictable. During fixation, repeated stimulus presentations enhanced connectivity between

beta bursting in PFC and spiking activity in V4. Specifically, these connections showed in-

creased connectivity from deep layers in PFC to superficial layers in V4 (ANOVA, p < 0.05,

Figures 6D bottom-left, S11B left). While we registered no feedback connections during the

early sample period (Figures 6D bottom-middle, S11B middle), the influence of spiking activ-

ity in PFC on beta bursting in V4 increased during the late sample period (Figures 6D bottom-

right, S11B right). Like connectivity modulations during fixation, these connections showed

the largest modulations along the deep to superficial pathways (ANOVA, p < 0.05).

Discussion

In this work, we studied the causal dynamics of spike-field interactions by relating spiking ac-

tivity with oscillatory bursts in the LFPs. Using a novel unifying point process representation

for the multiscale brain activity, we systematically analyzed spike-field connectivity within and

across the visual and prefrontal areas. We independently analyzed the spike-field causal flow as

the brain switches between two modes of information processing: 1) the bottom-up mode dur-

ing which novel sensory inputs had to be processed on every trial, and 2) the top-down mode

when the same stimulus was presented on every trial alleviating the need to process it. Spik-

ing activity and LFPs are analyzed in the same Hilbert space using the same methodologies

and time resolutions. We also account for the distinct dynamics of neural activity in differ-

ent cortical layers, task rules, and stimulus types. We find that spike-field communication is

more complex than previously assumed (44–46) in that it is a dynamic task-modulated relation

where field fluctuations do not always reflect the temporal pattern of spiking activity near the
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electrodes. Spike-field connectivity also adheres to a consistent laminar-specific structure over

the cortex, similar to hierarchical anatomical connections. Specifically, our results reveal two

separate communication pathways during top-down and bottom-up information processing: 1)

interactions between gamma and spiking that traverse the pathways originating in superficial

layers and travel towards superficial layers during behavior that induces bottom-up processing,

2) interactions between beta and spiking activity that originate in the deep layers and travel

towards the deep layers during behavior that induces top-down processing. While our results

are consistent with previous findings on frequency-specificity (2, 36, 43), we also demonstrate

the dynamic change in interaction patterns with high time resolution. Below we summarize our

observations.

LFPs and spike generation: Rooted in the biophysical explanation of LFPs, it is commonly

accepted that the oscillatory structures observed ubiquitously in the signal reflect synchronized

inputs to a given area (47, 48). However, it is unclear if LFPs are a mere reflection of synchro-

nization due to an underlying rate modulation or if these oscillations also provide a framework

that allows for precisely coordinated spiking as predicted by an active assembly (49–51). Our

results provide support for the latter hypothesis. Firstly, the stimulus-related spiking response

of single neurons in V4 occurs about mid-way through the first gamma burst in the same area

(Figure 3). This observation is in line with neural synchronization models that suggest that

optimal communication between two groups of neurons can be achieved when synchronized

activity of presynaptic neurons, arriving as bursts at the post-synaptic cell, allow for maximal

input density at the target neuron; thereby, eliciting a response (52, 53). In V4, this mechanism

appears to be implemented by gamma bursts during the early sample period. We speculate

that the registered gamma bursts in V4 are not local to the cortical column but may be outputs

from presynaptic pyramidal neurons from an upstream area (like V1) or surrounding columns

in the visual cortex (54–56). This result also aligns with response latencies reported in (56),
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where engagement of V1 neurons begins around the same time we observed gamma bursts

starting to form in V4. The direct effect of gamma bursting on spiking in V4 is later captured as

gamma→ spike influence in our causality analysis Figure 4C. Secondly, layer organization of

spike-spike connectivity in V4 mimicked the organization of field → spike interactions in the

column corresponding to either frequency range (beta during fixation, gamma during sample

presentation). These associations support the active engagement of LFPs in coordinating spik-

ing activity. Lastly, 75% of all the significant spike-field causal connectivities identified in the

study were directed from fields → spikes, suggesting that oscillatory bursts in the LFPs carry

information that significantly influences future spike generation.

Frequency specificity of spike-field interactions: Properties of oscillations in the beta and

gamma frequency ranges have implicated their role in gating and control. While ubiquitously

observed over the cortex, they are anti-correlated (57, 58), Figure 1E. In the visual cortex,

gamma power is high and beta low during sensory stimulation, while the reverse is true when

a stimulus is filtered, ignored, or absent (36, 59, 60). In PFC, the same frequencies have been

implicated in the encoding, maintenance, and read-out of working memory signals (37, 58, 61).

These findings have led to the general idea that top-down signals are fed back through beta, and

gamma helps maintain the spiking activity carrying sensory inputs, thereby aiding feedforward

communication.

In our studies, these specializations broadly translate to spike-field causal connectivity. Gen-

erally, connectivity between spiking and beta activity was observed during fixation and late

sample periods, i.e., during the absence and filtering of sensory information. Contrary to beta,

connectivity between gamma and spiking was strongest when the subjects were visually stimu-

lated. Local spike-field interactions complemented global interactions showing a similar task-

modulated pattern. However, in the late sample period, we found that beta and gamma pathways

were simultaneously active over local and long-range connections. During this period, gamma

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2023. ; https://doi.org/10.1101/2023.01.17.524451doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.17.524451
http://creativecommons.org/licenses/by-nc-nd/4.0/


bursting in V4 maintained a feedforward influence on spiking activity in PFC, which simulta-

neously controlled gamma and beta bursting in the PFC column. In the same interval, feedback

influences were noted from spiking in PFC that stretched over beta bursting in V4. Such dual

processing in the beta and gamma pathways implicate a complex system that enables simul-

taneous local information integration and feedback pathway preparations between higher- and

lower-order areas (62). Notably, this dual processing by PFC followed after a period of quies-

cence. Although V4 gamma maintained a feedforward influence on spiking in PFC throughout

the sample period, information processing in PFC was only noted in the latter half. These tim-

ing delays are within the previously observed ranges for cortico-cortical interactions (63) and

represent an activation sequence of critical components of the attentional-control brain network.

Our findings suggest a signaling system where distinct high and low-frequency signals mediate

feedforward and feedback processing, respectively. Herein the top-down effect of beta bursting

helps regulate the processing of bottom-up inputs served by gamma bursts and spiking activity.

Hierarchical organization of spike-field connectivity: Current dogma holds that the cor-

tex is hierarchically organized, where cortical areas are classified by their laminar origin and

termination patterns (64–66). In this view, feedforward connections originate mainly from su-

perficial pyramidal cells and target the middle layers. Feedback connections originate primarily

from deep pyramidal cells and target layers other than the middle layers. While the current de-

scription is a simplified depiction of the complex brain networks, recent studies have revealed

physiological distinctions in layer-wise dynamics. For instance, neuronal synchronization is

asymmetrically distributed across cortical layers, wherein superficial layers show higher syn-

chronization and spike-field coherence in the gamma frequencies, while the deep layers prefer

low frequencies (2, 36, 41, 67). Granger-causality studies further support this functional asym-

metry, discernable even over long-range, inter-areal connections (3, 68). Given ample evidence

supporting the role of gamma (resp. beta) in feedforward (resp. feedback) processing, it is
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likely that superficial and deep layers constitute functionally distinct processing streams.

We noted the first evidence of the functional separation between layers in the direct causal

connectivities of single neurons in the V4 cortical column. While during fixation, we observed

more recurrent and lateral connections within the deep layers, the network connections com-

pletely reorganized on visual stimulation, predominantly recruiting superficial layer neurons for

stimulus processing (Figure 2). This result strongly supports that superficial layers are placed

hierarchically lower than deep layers and support feedforward processing. Next, the dynamic

interplay between the low and high-frequency spike-field causal influences revealed a further

distinction between layers. These dynamics were complementary not just in their timings but

also in their layer-specific influences. While superficial-layer gamma most strongly influenced

spiking in the same layers during feedforward processing, deep-layer beta selectively affected

spiking in the deep layers while controlling feedback processing. This layer-specificity of neu-

ral rhythms was held even when the directionality of influence reversed in the PFC in the late

sample period. Alongside asymmetries in the within-column spike-field causalities, the spe-

cializations were consistent over long-range connections between V4 and PFC (Figures 4, 5).

Lastly, in the context of hierarchy, it is worth noting that the directionality of influence from

spikes→ fields was only observed in the PFC in the late sample period. While further system-

atic studies on PFC connectivity with other intermediate areas are required to comprehend this

observation fully, these results are promising because of the role of PFC as a source for top-

down signals that biases selection in early visual areas in favor of the attended features (69).

Relation with predictive coding models: Predictive coding models suggest a gating mech-

anism, wherein experience generates predictions that attenuate the feeding forward of predicted

stimuli while only projecting the residual errors of prediction forward. These unpredicted errors

act as updations that correct the internal prediction generation model. While theories on model

implementation are varied (65,70–72), our results are most consistent with a neurophysiological
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explanation based on distinct neuronal rhythms (65, 73). These models suggest that superficial

gamma activity is responsible for the feedforward projection of prediction errors, and predic-

tions are fed back to the deep layers via a beta channel. In this framework, predictions prepare

the beta channels that actively inhibit the input-processing gamma pathways in the sensory cor-

tex, eventually reducing the feedforward outputs. Therefore, prediction errors result from a lack

of inhibition of the feedforward pathways by low-frequency top-down signals rather than from

specialized circuits finalizing comparisons between the prediction and inputs.

The unique setup of the current task incorporates modulation of the stimulus predictability

in alternating blocks. Since all stimuli were presented at full contrast, and both block types

required the subjects to attend to all stimuli, prediction errors are less likely to be modulated

by variations in sensory evidence or attentional modulation. The general idea is that unpre-

dictable randomized stimulus presentations would increase prediction errors corresponding to

more mismatched inputs and internal predictions. In contrast, repeated stimuli would require

a memory recall and induce fewer prediction errors. In such a case, block-wise analyses of

spike-field connectivity revealed frequency-specific associations with stimulus predictability,

garnering further evidence for the role of neural oscillations in directing the information flow of

prediction signals (Figure 6). Generally, randomized stimulus presentations induced stronger

feedforward connectivity between spikes and gamma, while repetitive presentations strength-

ened the feedback associations between beta and spiking. Across-layer influences were also

affected by modulations in stimulus predictability across local and global networks. However,

no specific generalization between layers could be drawn.

Deviations from common generalizations: Not all connectivity between LFP frequencies

and spiking strictly adhered to all the above generalizations. Although relatively weak, gamma

→ spiking influences were significant in the V4 columns even in the absence of any visual stim-

ulation (during fixation, Figure 4C). Interestingly, this influence of gamma on spiking activity
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was greater from the deep layers. A similar increase in deep gamma→ superficial spiking was

also observed in the late sample period in V4. Second, contrary to our expectation, we observed

feedforward beta→ spiking influences between V4 and PFC during fixation (Figure 5). These

V4 beta bursts also reported increased influence on local spiking activity during the random-

ized trial blocks (Figure 6). These deviations suggest that LFP frequencies assume dynamically

changing roles involved in network activity that are more complex than simple generalizations.

Improvements over other causal inference methods: In computational neuroscience, the

assessment of multiscale causality presents a challenging computational problem because of the

widely disparate statistics of spiking and field potentials. Recently, Granger causality measures

have been adapted to study spike-field causality (44, 74–77). While these models were some of

the first to achieve causal inference on hybrid neural signals, they are constrained by important

limitations. Firstly, all the proposed models assume that the true data-generating process and the

corresponding causal effects of the variables on each other are linear, whereas neural activity

is a non-linear process. In such a case, the interpretation of the connectivity estimates can

be misleading (S4 F). Our Hilbert space approach for DI estimation extends the linear model

mathematics to non-linear modeling in the input space, where the reproducing kernel Hilbert

space can handle different types of nonlinearities. Second, the timescales of changes in single-

unit activity and LFPs vary vastly. Naturally, the fastest time scale should set the limits on the

diagnostic model, i.e., inferences must operate on signals with millisecond resolution. Studies

that derive support from Fourier analysis methods inevitably fail to capture such high-resolution

representations (78) due to the trade-offs between time and frequency resolutions (44, 74, 75).

Our causal estimation framework operates on a high time-resolution construct of LFPs based

on bursting activity in specific frequency bands, thereby maintaining time resolutions across the

signal modalities.

While the model recognizes critical causal events, the inference is limited in its time resolu-
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tion, wherein the entropy estimator requires enough samples (300 - 500, (40)) to avoid improper

estimations. Third, studies that adopt a modeling approach for causal analyses rely on ‘plug-in’

estimators where the data is first fit to a model distribution and then plugged into the causal-

ity estimation framework (76, 77). Although plug-in estimators are intuitive, estimating the

distribution is a complex problem, both parametrically and non-parametrically. While paramet-

ric estimators struggle to balance tractability and oversimplification, non-parametric techniques

are computationally demanding and susceptible to overfitting. In either case, making an i.i.d

assumption on the data is inappropriate for studying causal analysis. Our causal estimation

framework does not assume prior information on signal distribution or independence in either

modality, making it a data-driven approach. Lastly, most studies on spike-field analysis do

not address the non-causal effects of spike-related transients in the LFPs (20), thereby lead-

ing to spurious causal estimations. In our studies, we incorporate a rigorous characterization

of bursting activity in terms of burst structure, signal-to-noise ratio, transiency, and frequency

specialization, alleviating the impact of spike-related transients in LFPs. Overall, our approach

identifies functional relations between spikes and fields in a neurophysiologically sound and

computationally appropriate manner.

Here, we also emphasize that in the context of brain connectivity patterns, it is generally

impossible to distinguish absolute direct influences from indirect influences if not all nodes of

the functionally connected network are sampled. While the problem is not theoretical, it has

important implications for interpreting neuronal interactions (79,80). Under the circumstances,

care must be taken when making causal inferences. Nevertheless, with increased coverage

of the brain areas, methods such as ours and those by others will be crucial in inferring the

direct and indirect pathways of brain signaling. Lastly, while the current study only focuses on

spike-field interactions in the cortex, it only partially represents all connectivities plausible in

the neural substrate. The current framework can seamlessly translate causal relations between
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single neurons, LFPs, and cross-frequency relations in the LFPs. Future studies will consider

these analyses while incorporating signals from intermediate areas such as frontal eye fields and

posterior parietal areas. These examinations will merit insights into the area-specific properties

of spike-field relations and the activation sequence of an attention-driven brain network.

Methods

Experimental Setup

The data analyzed in this study comprised of multi-laminar recordings from the visual area 4

(V4) and prefrontal cortex (PFC) of macaque monkeys (Macaca mulatta) trained to perform

a delayed match to sample (DMS) task (2). We analyzed ten-session recordings from two

monkeys that performed five sessions each. Subjects were implanted with linear array U and V

probes (from Plexon) using a custom-machined carbon PEEK chamber system with recording

wells placed over the visual/temporal and frontal cortex. The center of each chamber was

overlaid with the primary recording area of interest and optimized for an appropriate angle for

perpendicular recordings relative to the cortical folding. The number of laminar probes varied

between 1 and 3 for each session and brain area. Each probe comprised 16 electrodes with

an intersite spacing of 100 or 200µm, culminating in a total linear sampling of 3.0 to 3.1 mm

on each probe. Channels from the top of the cortex to a depth of 1.2 mm were classified as

superficial layer channels, and deep layer channels were those below 1.2 mm. All surgical and

animal care procedures were approved by the Massachusetts Institute of Technology (MIT)’s

Committee on Animal Care and were conducted per the guidelines of the National Institute of

Health and MIT’s Department of Comparative Medicine.

The experiments were conducted inside a sound-proof behavioral testing booth comprising

a primate chair placed 50cm away from an LCD monitor (ASUS, Taiwan). Subjects remained

seated throughout the session and were trained to perform the DMS task using positive rein-
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forcement. Monkeys that fixated on a point in the center of the LCD screen for a complete

duration of 1s were presented with one of three cue objects. The object remained on the screen

for 1s and disappeared during the following delay period. In experiments with monkey-2, the

delay period lasted for a uniformly picked time interval between 0.5− 1.2s, whereas in experi-

ments with monkey-1, the delay period was a fixed time interval of 1s. At the end of the delay

period, a search array consisting of the cued item and one or two confounding objects appeared

on the LCD screen, each occupying a different visual quadrant. The distractor and its position

were randomly chosen. A successful trial entailed the subject performing a saccade towards

the cued object, for which they received a few drops of diluted juice for positive reinforcement.

The trial was terminated if the subject broke fixation at any time. Finally, the cued object’s pre-

dictability was manipulated with repetitive or randomized cueing. During randomized cueing,

the cue was randomly sampled from 3 objects and presented in each trial. Contrarily, repetitive

cueing consisted of the same cue presented in each trial. Each block lasted for 50 trials, where

the initial cueing type was randomly chosen. The trial schematic is presented in Fig.1C. For

specific details on behavioral performance, please see (2)).

Throughout the session, neural activity was recorded with Blackrock headstages (Blackrock

Cereplex). The signals were sampled at 30 kHz and bandpass filtered between 0.3 Hz and 7.5

kHz using a first-order Butterworth filter. We used a low-pass Butterworth filter with a cut-

off frequency of 250 Hz and sampled at 1 kHz to extract the local field potentials. A Plexon

offline sorter was used to perform spike sorting manually. For analyses, both field potentials

and spiking activity were downsampled to 500Hz.

Generative Model for Oscillatory Events

We used a generative model to detect oscillatory bursts from LFPs. Here, we briefly describe

the method; for further details of the model, refer to (37). Oscillatory bursts are brought about
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by external inputs that synchronize neural activity in the ‘spontaneous’ state of the neural dy-

namics. Spontaneous state activity follows a 1/f power law with amplitudes that approximate a

Gaussian distribution. Oscillatory bursts, on the other hand, deviate from this ‘Normality’ and

appear as a high-amplitude rhythmic activity that wax and wanes (81). The generative model

for oscillatory events builds on this two-state hypothesis. The model simplifies LFP model-

ing by operating on established cortical rhythms of interest in parallel (82). Specifically, the

model defines single-channel, bandpass filtered traces of neural recordings, ỹ(t), as a linear

combination of spontaneous activity, n0(t) and oscillatory bursts, ŷ(t), as shown in equation

(1). Next, each oscillatory burst is modeled as the impulse response of a linear filter as shown

in equation (2) (83). Each filter represents a ‘typical’ temporal response of population-level

synchronization in the frequency range under study. The set of filters define a dictionary of

templates, D = {dω}Kω=1. Specifically, each oscillatory burst is represented as a shifted, scaled

version of a filter, dω, such that {aωi , τωi }nω
i =1 are the amplitude scalings and the timestamps of

the oscillatory events represented by the learned filter (equation (2)).

ỹ(t) = n0(t) + ŷ(t), (1)

ŷ(t) =
K∑

ω=1

nω∑
i=1

aωi dω(t− τωi ). (2)

The features of each burst, namely, its time of occurrence (τi), maximum amplitude (αi),

specific frequency (ω), and duration (δi) then constitute a Marked Point Process (MPP); wherein

lies the model’s advantage to characterize the properties of the oscillatory events in a high –

resolution representation of channel activity.

The generative model realizes this (marked) point process representation in two phases: 1)

a learning phase for estimating the dictionary, D, from the training data; 2) a testing phase for

constructing the point process from the test signals, given the dictionary.
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As a first step in the training phase, we delineate the search space for oscillatory bursts using

a step called ‘denoising”. ‘Denoising’ involves discriminating between the spontaneous activ-

ity, n0, and the oscillatory bursts, ŷ, using a correntropy-based clustering technique (84). The

method locally differentiates between the two using their complete probability density informa-

tion. In the final denoising step, a threshold, κ, is evaluated as the minimum norm among the

putative oscillatory events. After denoising, learning is implemented by alternating optimiza-

tions between sparse coding and (correntropy-based) dictionary learning, paralleling a K–means

clustering algorithm to learn the oscillatory filters in a data-driven fashion. The sparse-coding

stage implements the learned threshold to identify bursts from spontaneous activity. The train-

ing of the K-means clustering model is terminated as a specific number of iterations is reached

or when an upper bound on the Frobenius difference norm between successively determined

dictionaries is met.

Finally, constructing the MPP from the test signals is done in a straightforward and compu-

tationally efficient way. Each filter in the learned dictionary is convolved in parallel with each

channel from the test data. Following this, κ is adapted to the test data, and thresholding isolates

the oscillatory burst events from spontaneous activity in the test data. In this way, the generative

model can characterize the properties of each oscillatory burst and enable an easily interpretable

point process representation of multi-channel neural data. (Figure 1A). Overall, the model de-

rives support from two user-set hyperparameters: 1) the maximum duration of an oscillatory

burst event, M , and 2) the number of filters, K, in the dictionary. We link the MATLAB imple-

mentation of the model here: https://github.com/shailajaAkella/MPP-EEG_

Ver2.
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Burst length

The duration of each oscillatory burst is determined to eliminate the non-oscillatory parts of

the identified burst. First, a smoothed envelope of the detected event is estimated using Hilbert

Transform and a moving average filter. Following this, two points of minima on the envelope

that are separated by at least M/2 samples are identified. Finally, the signal length between the

two minima determines the duration of each burst. These steps are summarized in (3 - 6).

ek[n] = envelope(ŷk[n]) n = 1, 2, ..,M (3)

sk[n] = smooth(ek[n]) (4)

{nj}2j=1 = peaks(−sk[n],M/2) s.t n1 < n2 (5)

δk = length(ŷk[n1 : n2]) (6)

Burst power functions

The burst power (85) is an extension of the classical intensity function of point processes,

wherein the intensity function is weighted by the transient power of the event at its time of

occurrence. Given the timings of each oscillatory event, τk : k = 1, 2, ...N , the construction of

the burst power function is summarized in equations (7–9). First, transient oscillatory power,

Pδk(τk), is estimated as the norm-square of the signal amplitude values in the duration of each

oscillatory burst (equation 7). Next, the event trains are weighted by their local power, Pδk(τk),

to form the marked event density, P̂δ (equation 8). Finally, an estimate of the local burst power

is obtained via Gaussian kernel smoothing (equation 9).
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Pδk(τk) =
1

δk

δk
2
−1∑

n=
−δk
2

ỹ2(τk + n) (7)

P̂δ(t) =
N∑
k=1

Pδ(τk)δ(n− τk) (8)

λα(t) =
∞∑

n=−∞

P̂δ(n)κσ(t− n) (9)

Parameter selection

The generative model is applied to learn the typical templates of burst patterns from (bandpass)

filtered traces of LFP recordings in the broad beta (8 - 30 Hz) and gamma (40 - 80 Hz) fre-

quency ranges. Learning on the model was performed per session, area, and frequency range,

culminating in 4 dictionaries per session (two areas and two frequency ranges). We perform

zero-phase FIR filtering to obtain these signals, while model training is performed on a single

channel (channel at 200 mm depth) which we then exclude from the testing phase. The designed

bandpass FIR filters have the following properties: 1) for the beta band, the center frequency is

set at 20 Hz, and the filter order is 25, 2) for the gamma band, the center frequency is chosen

to be 60 Hz which culminates in a filter of order 11. We deliberately chose low filter orders to

avoid ringing in the filter response. The maximum duration of each event, M , in the beta and

gamma frequency ranges, are correspondingly set equal to 500 and 100 ms, while the number

of basis vectors (dictionary atoms), K, is upper bound to 30 for both. We employ Silverman’s

rule of thumb for bandwidth size to set all kernel bandwidths for the denoising phase (86).

Finally, the burst power and rate functions are estimated from a point process representation

using Gaussian kernels, and the selection of the bandwidth size must be neurophysiologically

informed. For this, we chose a bandwidth size that approximately covers the duration of the

burst event, translating to 50 and 30 ms for beta and gamma bursts, respectively.
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Validation

The generative model has been previously empirically validated; please refer to (37) for details

about the validation. This section tests the model against simulated LFP data and presents a

comparative analysis with the most common burst detection methodology, hard-thresholding

(58). Simulated LFPs were generated by superimposing power law noise (α = 2, (87), Figure

S3A) with oscillatory bursts in the 50 − 70 Hz frequency range. Each trial was about 2s long,

and 100 trials were simulated, with 0-5 bursts in each trial (following a Uniform distribution).

The length of each burst varied between [100−120] ms, and consecutive bursts were introduced

at least 100 ms apart. Lastly, we also varied the signal-to-noise (SNR) of each burst between

0.4 - 0.5, such that the total SNR in each trial came up to ∼ 0.5.

Next, we set up the generative model for burst detection. We filtered the LFP signals using

a broadband gamma filter between 40− 80 Hz for model training. We set the maximum length

of each burst, M = 120 ms, and varied the number of filters, K, between [10 - 100] to test

model performance. For model selection and performance evaluation, we performed a five-

fold cross-validation analysis of the data. Model performance was evaluated using two metrics:

1) the rate of bursts correctly estimated or true-positive rate (TPR), 2) the proportion of time

points cataloged as bursts when they are not, or false-positive rates (FPR). Lastly, we compared

our model’s performance against the time-frequency methods used in (58) for burst detection.

Specifically, in (58), the authors identified oscillatory bursts as periods during which the spectral

power surpassed the threshold, established as two standard deviations (SD) higher than the mean

value for the given frequency range of that specific trial. The duration of each burst was further

constrained to be at least three cycles. Similar to these methods, we used a multi-taper approach

to obtain single-trial spectrograms for the LFPs (88). We further varied the threshold from 0.5

× SD to 3 × SD over the mean power to detect bursts while maintaining a three-cycle limit on

the burst length.
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The performance of the generative model was relatively stable across different dictionary

sizes (Figure S3C-D, SDTPR = 0.6%, SDFPR = 0.04%). Nevertheless, the model reported its

best performance at K = 50, with a TPR of 93.7±2.5% and an FPR of 3.8±0.4% (Figure S3E -

F). In comparison, at a threshold of 2× SD (as implemented in (58)), the performance of the TF

method was much poor: TPR = 24.7% and FPR = 1.1%. The method’s best TPR was observed

at a threshold of 0.5× SD at 85.4%. However, a lower threshold also increased the number of

false positives, and FPR rose to 12.8%. Overall, the generative model demonstrated superior

performance. These results highlight the advantage of a data-driven approach for burst detection

where hard-thresholding mechanisms cannot capture the variability in neuronal oscillations.

These methods impose assumptions of stationarity and ergodicity on an inherently stochastic

neural signal, thereby confounding the boundaries between transient bursts and background

activity. Hard thresholding is generally sensitive to signal SNR, and the disadvantage of poor

time and frequency resolutions makes it difficult to extract this metric and estimate precisely

in time when it exceeds the baseline values. In such a case, the generative model provides

an unsupervised, adaptive framework that does compromise between the temporal and spectral

resolutions of neural data.

Directed Information Estimation

In information theory, the mutual information (MI) between two processes, X , and Y , commu-

nicating over a channel with feedback, can be decomposed into two components: one compo-

nent captures a causal, feedforward or directed information (DI) flow, and another that captures

a non-causal or a feedback information flow (equation 10) (89). Therefore, inferences based on

MI can be detrimental in brain networks wherein the neural substrate implements distributed

recurrent communications.
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I(X;Y )︸ ︷︷ ︸
Mutual Information

= I(Xn → Y n)︸ ︷︷ ︸
Directed Information

+ I(Y n−1 → Xn) (10)

A formal definition of directed information between two stochastic processes, X and Y , is

shown in equation (11), where Xn denotes a segment of the successive samples of the process,

X , i.e., Xn = [X1, X2, ..., Xn]. Unlike MI, the definition of directed information limits the

support of X in the right-side term of equation 11 to the current time i instead of extending the

support over the future time points of X . This term is called the ‘causal conditional entropy’ in

analogy with conditional entropy. Lastly, in the absence of a causal influence of X on Y , the

causal conditional entropy reduces to an entropy estimation, and therefore, I(Xn → Y n) = 0.

I(Xn → Y n) =
n∑

i=1

[
H(Yi|Y i−1)−H(Yi|Y i−1X i)

]
(11)

Causal conditioning might involve more than one process. For instance, in neuronal net-

works, the information flow between two neurons could be mediated by other neurons. There-

fore, the contribution from these other time series is included as ‘side information’ while de-

ciphering direct causal influences between pairs of neurons. Therefore, the causal conditional

directed information for three processes X, Y , and Z is defined as in equation (12). Here, the

number of ‘side variables’ can be greater than one; however, we incorporate only one other time

series for our studies.

I(Xn → Y n||Zn) =
n∑

i=1

[
H(Yi|Y i−1Zi)−H(Yi|Y i−1X iZi)

]
(12)

Computation of directed information requires apriori knowledge about the joint probability

distribution function of the random variables. However, such information is unknown in most
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neuroscience scenarios of ensemble-recorded electrophysiological signals. For our studies on

effective connectivity, we adopt an approach that substitutes any estimation of the probability

distribution function from the data with functionals. Here, we exploit the properties of a Hilbert

space approach of the entropy functional proposed in (40). In (40), the authors show that the

entropy functional fulfills similar axiomatic properties of the Renyi’s α-order entropy (α >

0) (90), which is a generalization over the Shannon entropy. Entropy estimation using the

functional entails three steps: first, the sample variable X = {x1, x2, ..., xT}, is projected onto

a reproducing kernel Hilbert space (RKHS) using a positive definite kernel, κ : X × X 7→

R. Next, we construct a normalized Gram matrix, A, on the projected data where Ajk =

1
T

Kjk√
KjjKkk

, and finally, the estimator defines entropy over the eigenspectrum of the normalized

Gram matrix, A as in equation (13), where λj(A) denotes the jth eigenvalue of A.

Sα(A) =
1

1− α
log2

[
T∑

j=1

λj(A)
α

]
. (13)

In essence, the kernel-induced mapping of the sample data into the RKHS provides a means

for computing the high-order statistics of the data, wherein the eigenspectrum of the estimated

Gram matrix quantifies the variations in these higher-order moments. For evaluations of joint

entropy, an extension of the matrix-based entropy measure uses Hadamard products to convey

the joint representation of two random variables. In this extension, joint entropy between two

random variables, X and Y , is defined as in equation 14, where Ax and Ay are normalized Gram

matrices evaluated on X and Y , respectively using positive definite kernels, κ1 and κ2.

Sα(Ax, Ay) = Sα

(
Ax ◦ Ay

tr(Ax ◦ Ay)

)
(14)

Finally, using the above estimator of entropy, directed information can be rewritten as in

equations (15-16), where the latter is obtained by expanding the conditional entropy terms.
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Iα(X
n → Y n) =

n∑
i=1

[
Sα(Yi|Y i−1)− Sα(Yi|Y i−1X i)

]
(15)

=
n∑

i=1

[
Sα(Y

i)− Sα(Y
i−1)− Sα(Y

iX i) + Sα(Y
i−1X i)

]
(16)

While the above approach provides an elegant yet computationally efficient formulation

of directed information, we are still faced with the challenge of defining a positive-definite

kernel for the point processes of spike trains. Owing to the popularity of neural spike trains,

several methods have been proposed to introduce basic structure to the point process space;

we focus on methods that utilize kernel constructs. Here, we briefly summarize the approach.

Firstly, each point process is brought into the continuous L2 space as intensity functions via

convolutional operators. Next, using an RKHS inducing kernel, κ : X × X 7→ R and evoking

the kernel trick, we evaluate the normalized Gram matrix, A, as the pairwise inner product of the

intensity functions in the Hilbert space.i.e., ⟨x1, x2⟩H = κ(x1, x2). In this way, we obtain A as

a symmetric positive semidefinite matrix. A complete schematic demonstrating the evaluation

of the joint entropy term, Sα(Y
i, X i), is summarized in Figure 1B, where the time-shifted

matrices, Tx and Ty, capture observations from each intensity function for DI estimation.

For projections into the RKHS, we employ the non-linear Schoenberg kernels (κ) (with a

rectangular window for intensity function) as the most appropriate choice. Firstly, Schoenberg

kernels are positive definite kernels - a necessary property for formulating the matrix-based en-

tropy. Second, derived from radial basis functions, these kernels are universal and can provably

approximate arbitrary non-linear functions from the point process to the real space. Third, the

locality of a rectangular intensity function limits the causal measure to events only within the

window reflective of the system’s memory under study. Finally, in a rigorous simulation study

conducted by us (91), these kernels outperformed other positive definite kernels in identifying

the correct causal direction. The complete formulation of the kernel for two intensity functions,
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x and y, is shown in equations (17 - 18). Here, I is the indicator function, w is the width of the

rectangular window, σκ is the kernel size, and {ti}Ni=1 are the event timings.

κr
Sch(x, y) = exp

{∫
T

− 1

σκ

(x1(t)− x2(t))
2dt

}
(17)

x1(t) =
∑
k

I(tk − w ≤ t ≤ tk + w) (18)

Overall, we utilize the Hilbert space as an extended functional representation for point pro-

cess analysis enabling the estimation of directed information for point process systems. Finally,

we note a critical consequence of the estimation of directed information. Although theoretically,

the directed information between independent time series is equal to zero, in practice, empirical

values are small and non-negative. We address this issue via appropriate significance testing

for the signals under analysis. The MATLAB implementation of our DI model can be found at

https://github.com/shailajaAkella/Directed-Information.

Parameter selection:

Our formulation of directed information depends on four hyperparameters: 1) the kernel size

(σκ), 2) the width of the rectangular window (w), 3) the order α, and 4) memory of the DI

measure (n). The kernel size dictates the geometrical extent of the inner product in the RKHS. In

all our analyses, the selection of kernel size follows Scott’s rule of thumb for density estimation

(92). It is important to note that for projections into the same RKHS, the kernel size must be the

same for all entropy evaluations. In our studies, this was chosen as the kernel size of the input

causal variable. Next, for each point process of beta, gamma, and spiking activity, the width

of the rectangular intensity operator was fixed as 250 ms, 120 ms, and 120 ms, respectively,

to approximately cover the duration of the oscillatory burst events. Third, the choice of α

is associated with the task under study. For emphasis on rare events (i.e., in the tails of the

distribution), α must be chosen close to 1 (40), while higher values of α (> 2) characterize
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modal behavior. In our analysis of effective connectivity, we are interested in sparse transient

synchronizations between multiscale activity. Therefore, we set the order α to 1.01. Lastly, to

capture signal transmissions occurring at brief timescales, the DI measure’s memory, n, was

chosen to be 20 ms. Since each row in the time-shifted matrix (Figure 1B) maximally depends

on time delays captured by the rectangular window used for intensity evaluation and the DI

memory, the DI estimations culminate in total time dependency of w+n. Therefore, our metric

evaluates time dependencies of 270 ms for beta and 140 ms for gamma and spiking activities.

Constructing Causal Graphs

Connectivity between brain structures or ‘nodes’ can be best visualized via a graphical repre-

sentation. In our connectivity studies, a ‘node’ corresponds to an individual neuron (spikes)

or neuronal population (fields), the edges between the nodes refer to the connectivity patterns

formed by causal influences, and the directionality of the causal influence is represented as a

directed edge between two nodes. To this end, we have constructed a causal measure that quan-

tifies directed information flow between the cortical nodes whose properties are characterized

via a point process. Since, in practice, all estimated DI measures (between causally and non-

causally connected nodes) are greater than zero, we have quantified a fully connected directed

graph between all observed nodes.

The next step is to identify the edges that significantly influence causation. However, this

is challenging because significance testing requires knowledge of the DI measure’s probability

density function (pdf) under the null hypothesis (non-causality). It is difficult to pin down the

null hypothesis distribution due to the statistical variability of neural activity. Next, we must

account for recurrent connections within single-neuron circuits. At the same time, we also need

to consider that spike-field interactions have a unidirectional causal effect at a particular time

due to the physics of wave propagation in the brain media. To handle these differences and
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difficulties, we designed separate significance testing pipelines for each interaction type.

Spike-Spike interactions

To test the significance of the DI measures for spike-spike interactions, we implemented a ran-

dom permutation procedure to build a baseline null hypothesis distribution. Next, we compared

the evaluated DI measure on the actual data against this baseline distribution to assess the signif-

icance level of the DI measure. Specifically, we create a surrogate system by shuffling the spike

times of the causal variable. Therefore, the shuffled point process maintains the spike counts

in each realization, but any consistent structure in the joint probability distribution between the

two-time series is lost. Performing such random shuffling with many different permutations

results in a DI distribution corresponding to the null hypothesis of non-causality. We reject the

null hypothesis if the DI values estimated on the original time series are significantly greater

than the baseline threshold at a level of αs = 0.05.

However, we have yet to interpret the connectivity patterns meaningfully as neuronal nodes

are recurrently connected, creating copious amounts of indirect influences. Indirect influences

can be teased apart from direct influences by conditioning on ‘side processes’ whose knowl-

edge renders the involved processes statistically independent. Two types of indirect influences

considered in this study are the ‘proxy’ and ‘cascading’ influences (Figure 2A right). In a proxy

influence pattern, process Y1 influences process Y2 which in turn drives the process Y3 (Figure

2A top-right). In such a case, the DI measure will likely identify an indirect influence of process

Y1 on Y3. However, the two processes can be rendered statistically independent given causal

knowledge of Y2 → Y3. Similarly, in a cascading topology where two processes, Y1 and Y3,

are commonly driven by a third process, Y2, the indirect connectivity between the two could be

accounted for by their dependence on Y2 (Figure 2A bottom-right).

Causal conditioning of DI on ‘side processes’ is performed as shown in equation (12) such
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that X directly, causally influences Y , iff I(Xn → Y n||Zn) > 0. Nevertheless, the problem

of significance testing is also critical to this analysis as the null hypothesis distribution of the

conditional DI measure is also changing, and their estimates between independent processes

never typically equate to zero. Therefore, to classify the direct connectivities in the network,

we evaluate the decrease in estimated influence between two nodes after introducing a side

variable. Firstly, potential indirect influence patterns are identified as three nodes that create

cascading and proxy-type dependencies in the directed graph. Across all combinations of exist-

ing dependencies between the three nodes, we evaluate the percentage change in the DI measure

upon conditioning on the third node. Across edges terminating on the same node, any edge that

registers a significantly larger change in the DI measure rejects the null hypothesis that all con-

necting edges to the terminating node directly influence it. The edge with the largest change is

classified as indirect and removed from the network.

Spike-field interactions

Unlike spike-spike interactions, we assume a unidirectional causal influence between spikes

and fields. Under this assumption, it is sufficient to compare the DI estimates of the opposing

influences, i.e., between DI(spikes→ fields) and DI(fields→ spikes), to identify the dominant

connection between the signal modalities. Moreover, we account for the effect of large sample

size on significance testing by using both substantive and statistical significance measures to

identify causal influences (93). First, we test the hypothesis that the DI measures from the op-

posing connections are drawn from populations with different means against the null hypothesis

that the population means are the same. If the test rejects the null hypothesis at the 1% signifi-

cance level, we check for substantive significance by evaluating the effect size (η) between the

DI measures of the two connectivity groups. To estimate the effect size, we use the Cohen’s - d

coefficient (equation 20) where ∆DI is the difference between the group means, and s1 and s2
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are the groups’ standard deviations. Significant causal influences are determined as those that

register effect sizes greater than 0.2, qualifying those connections that report medium to large

differences between the two groups (94).

η =
∆DI

sp
(19)

sp =

√
s21 + s22

2
(20)

Validation:

We compared the performance of our DI model with Granger causality (GC) (95) on a six-

neuron network model comprising indirect influences, explicit driver neurons, single input neu-

rons, different synaptic transmissions, and simple excitatory connections. To test these models,

we used the Izhikevich neuron model to simulate neuronal activity for all neurons. The Izhike-

vich model (96) is a mathematical model that can reproduce the general behavior of the more

biophysically accurate Hodgkin-Huxley-type models using a computationally simpler and more

efficient formulation. The model is defined by a system of two differential equations and sev-

eral parameters that dictate spiking properties. The Izhikevich neuron model is governed by the

following equations (equations 8.5 and 8.6 in (96)),

Cv̇ = k(v − vr)(v − vt)− u+ I (21)

u̇ = a{b(v − vr)− u} (22)

if v ≥ vpeak, then v← c, u← u + d (23)

Here, v is the neuron’s membrane potential, and u is the membrane recovery variable. The

latter is associated with activation and inactivation of K+ and Na+ ionic currents, respectively,
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that provide negative feedback to the membrane potential. Description of the hyperparameters

and their corresponding values for a regular-spiking neuron are listed in Table S1.

Each neuron, {ni}6i=1, could be simulated using three types of input current, Iin: 1) constant

input, 2) uniform input, a uniformly distributed value between (0− 150) pA, or 3) bursty input,

two 150 ms long pulses of 300 pA, each supplied at a random time, interleaved with a uniformly

distributed current between (0−150) pA (Figure S4A, B). The latter input was supplied to create

a system of bursty neurons where only the presynaptic neuron was stimulated in this manner.

The postsynaptic neuron, however, received an input of the former type. Specifically, uniform

input current was supplied to neurons n1, n2, n3 and n6. Whereas n5 received a constant input

current of 150 pA, n4 was simulated to mimic an interneuron such that it received a bursty input

current. The magnitude of excitation current, Ie (or inhibition current Ii) from an excitatory

neuron (or inhibitory neuron) in a connection was kept constant throughout each simulation.

These values were set at Ie = 350 pA and Ii = 180 pA. The total current, I , supplied to

each neuron comprised of Iin and Ii/e. We generated membrane noise as Gaussian noise and

combined it with the neuron’s membrane potential, v, at each time point.

Network connections were made to create a total of 5 direct excitatory driver connections

connections: n1 → n6, n2 → n1, n2 → n3, n5 → n4, and n5 → n6. The network also included

an inhibitory connection between n4 → n2. This network topology, thus, created several first-

order indirect connections deriving from ‘proxy’ (A → B, B → C) and ‘cascading’ (A → B,

A→ C) influences in the network. Indirect connections that derived from a ‘proxy’ topology

included: n2 → n6, n4 → n1, n5 → n2, and n4 → n3. Whereas, indirect connections that

derived from a ‘cascading’ topology included: n1 ↔ n3, n1 ↔ n5, and n6 ↔ n4 (Figure

S4B). In the network, synaptic delay between two connected neurons was maintained at 5 ms.

Accordingly, the memory for all DI evaluations was set at 20 ms, same as the order of the filters

in the GC model. Finally, we simulated 100 trials with a time-resolution of 1 ms such that each
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trial lasted for 1s.

To identify significant connections using the GC model, we followed the methods shown

in (95) for evaluating the likelihood ratio as well significance testing. Specifically, each edge

was placed under a χ2 test as well as a false discovery ratio test to correct for multiple com-

parisons. Both the DI and GC models were able to identify all direct causal patterns where the

adjacency matrix comprising all identified direct connections are presented in Figure S4C, D,

respectively. While the DI model achieved a connectivity detection accuracy of 96.67%, the

detection accuracy of the GC model was 80%. The overall neuronal network includes many

potentially indirect influences. Yet, the DI model only identifies three indirect edges, demon-

strating high robustness to spurious causal influences (Figure S4C, middle). Post-significance

testing for indirect connections, DI correctly identified two of the three as indirect (Figure S4C,

right), a false positive rate of 3% . Inquiries into the remaining edge from n3 to n6 revealed that

this connection was never checked for indirect influences. The model’s current implementation

only checks for indirect causal connections between nodes involved in indirect dependencies

of length 3. In the present example, neither {n1, n3, n6} nor {n5, n3, n6} form an undirected

cycle among themselves in the estimated connectivity map (Figure S4B). Therefore, these in-

teractions were not considered indirect by the model. It is important to note that our current

implementation of the causal graph construction is easily extendable to include verifications on

more dependencies. On the other hand, the GC model detected many more indirect connections,

leading to a false positive rate of 20% (FigureD).
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Figure 1: Methods and behavioral task. A, Mapping of local field potentials from continuous
space to point process space. Using the generative model, a dictionary of typical oscillatory
patterns is learnt from bandpassed LFP traces (training). Construction of the point process space
for LFPs follows from a convolution between LFP traces and the learnt dictionary (testing).B,
Example evaluation of joint entropy term in directed information (equation 16) using matrix
formulation of Renyi’s entropy, α-entropies. At time i, each time-shifted spiking matrix is
projected onto a high–dimensional RKHS defined by the kernel, κ. Eigen-spectrum of the
Hadamard product between the normalized Gram matrices captures the joint entropy between
the two time series. C, (Top) Experimental setup. Following a 1s-fixation period, the subject
is shown a sample stimulus for 1s. At the end of a delay period (fixed/variable), the subject
saccades to the sampled stimulus that reappears at one of four randomized locations along with
distractor images. D, Exemplar spiking activity and LFPs from layer 2/3 of V4 visualized in the
same space of point processes, subject 2. For visualization purposes, every peak of the detected
oscillatory burst has been demarcated. E, Multi-scale average rate plots obtained via kernel
smoothing methods, subject 2. All activity is aligned with the trial intervals in C.
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Figure 2: Spike–spike interactions within cortical columns of V4. A, Schematic to determine
direct connectivity between neurons. Significant connectivities were identified against shuffled
spiking in the causal neuron for α = 0.05. Indirect connections were removed by systematically
conditioning on neurons that formed cyclic connectivities. B, Direct causal influences between
neurons in the V4 cortical column across all sessions (N = 123 units) during fixation (1s) and
early sample (0.5s) intervals. Edges are weighted by the average DI between directly connected
neurons at corresponding cortical depths. C, Connectivity trends between superficial (s, layers
2-3) and deep (d, layers 4-6) layer neurons in the fixation and early sample intervals. Mean ±
SEM across all direct connectivity.
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Figure 3: Visually evoked onset response latencies in V4 spiking and LFP activity. A Zoom-
in on neural activity after stimulus onset indicating the dynamics of raw LFPs (black), gamma
oscillations (white), gamma bursting (orange) and spiking activity. Right column highlights
template that maximally match the gamma burst along with other example templates. B Top:
Trial averaged instantaneous power in the gamma frequency range of 40 - 80 Hz as a function of
cortical depth. The plot also demarcates the time points associated with maximum probability of
gamma burst initiation (gray dotted line) and half-power (red dotted line), respectively. Bottom:
Peri-stimulus time histograms evaluated using rectangular smoothing for single neurons across
the cortical depth. Exemplary plots from subject 2 and session 1.C, Distribution of time to first
spike/burst in response to sample stimulus across all units and layers in V4. D, Signal response
latencies separated into trials of randomized and repetitive stimuli (** p < 0.001). Error bars
represent the 95% confidence interval.

53

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2023. ; https://doi.org/10.1101/2023.01.17.524451doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.17.524451
http://creativecommons.org/licenses/by-nc-nd/4.0/


LAYER RESOLVED SPIKE – FIELD CONNECTIVITY

 2 SREYAL
-3

 4 SREYAL
-6

FIXATION, 1s SAMPLE INTERVAL (0.5s + 0.5s) 

SPIKE – FIELD CONNECTIVITY

C

LAYER RESOLVED SPIKE – FIELD CONNECTIVITY

LA
YE

RS
 2

 -
3

LA
YE

RS
 4

 -
6

FIXATION, 1s SAMPLE INTERVAL (0.5s + 0.5s) Normalized ΔDI

Spiking ac�vity

Gamma bursts

Beta bursts

SPIKE – FIELD CONNECTIVITY

spk. → fld. > fld. → spk. 
fld. → spk. > spk. → fld.

D

Effect: Depth (mm) providing spike rate 

0.4 0.8 1.2 1.6 2 2.4 2.8

2.8

2.4

2

1.6

1.2

0.8

0.4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4  gnidivorp )
m

m( htpeD :esuaC
be

ta
 b

ur
st

 ra
te

beta      spikes *
PFC: FIXATION, 1sA B V4: SAMPLE INTERVAL, 0.5s 

Effect: Depth (mm) providing spike rate 

0.4 0.8 1.2 1.6 2 2.4 2.8
2.8

2.4

2

1.6

1.2

0.8

0.4

-0.2

-0.1

0

0.1

0.2

Ca
us

e:
 D

ep
th

 (m
m

) p
ro

vi
di

ng
  

ga
m

m
a 

bu
rs

t r
at

e

gamma spikes *

(
−

)/
 

(
−

)/
 

Figure 4: Spike–field interactions within cortical columns of V4 and PFC. A, Layer-specific
connectivity plot in PFC from beta to spiking activity during the fixation interval (black asterisk
denotes significant connection, p < 0.001 and Cohen d > 0.2). Color scale indicates the devia-
tion of DI from the global mean DI across all layers. B, Layer-specific connectivity plot in V4
from gamma to spiking activity in the early sample interval (black asterisk denotes significant
connection, p < 0.001 and Cohen d > 0.2). C, Intra – column spike – field connectivity in V4
during fixation and sample intervals. Significant connections identified as the dominant DI in
opposite directions, spikes→ fields and fields→ spikes (p < 0.001 and Cohen d > 0.2). Edges
are weighted by the absolute value of the difference in DI between opposite directions. D, Same
as C, but in PFC.
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Figure 5: Spike–field interactions between cortical columns of V4 and PFC. A, (Top) Wheel
plots summarizing significant feedforward and feedback spike – field connections between V4
and PFC during the fixation and sample intervals. Significant connections identified as the dom-
inant DI in either direction of V4→ PFC and PFC→ V4. (Bottom) Spike–field connectivity
patterns between V4 and PFC layer resolved to deep (4-6) and superficial (2/3) interactions.
B, Layer-specific connectivity plots between V4 and PFC for the most significant connections
during fixation and sample intervals. (Left) Feedback connection from beta bursts in PFC to
spiking activity in V4 during fixation. (Right) Feedforward connection from gamma bursts in
V4 to spiking activity in PFC during the early sample interval. Color scale indicates the devia-
tion of DI from the global mean DI across all layers. All significant connections were tested at
p < 0.001 and Cohen d > 0.2. Edges are weighted by the absolute value of the difference in DI
between opposite directions.
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Figure 6: Spike–field interaction patterns modulations by stimulus type. A, Intra-column
spike–field connectivity as modulated by stimulus predictability (randomized vs. repetitive)
during fixation and sample intervals in V4 (top) and PFC (bottom). B, Spike–field connectiv-
ity between columns of V4 as modulated by stimulus predictability during fixation and sample
intervals. All significant changes in DI between the trial groups of randomized and repetitive
stimuli were tested at p < 0.01. Large white crosses denote an absence of significant modula-
tions. Edges are weighted by the absolute value of the difference in DI between the two trial
groups. C, Same as B, but in PFC. D, (Top) Wheel plots summarizing feedforward spike –
field connections between V4 and PFC significantly modulated by sample predictability dur-
ing the fixation and sample intervals. (Bottom) Same as top panel, but summarizing feedback
connectivity significantly modulated by sample predictability.
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