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Highlights

e Establishment of a single nuclei atlas of human aging in four brain regions

e Each region and cell type exhibits a unique aging-associated transcriptome signature

e Gene expression changes occur in absence of overt cell loss and are categorically
unique across cell types

e Neurological disease-associated genes have age-associated expression patterns in

specific cell types in the context of healthy aging
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Abstract

Age is a major common risk factor underlying neurodegenerative diseases, including
Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Previous studies
reported that chronological age correlates with differential gene expression across different
brain regions. However, prior datasets have not disambiguated whether expression associations
with age are due to changes in cell numbers and/or gene expression per cell. In this study, we
leveraged single nucleus RNA-sequencing (snRNAseq) to examine changes in cell proportions
and transcriptomes in four different brain regions, each from 12 donors aged 20-30 years
(young) or 60-85 years (old). We sampled 155,192 nuclei from two cortical regions (entorhinal
cortex and middle temporal gyrus) and two subcortical regions (putamen and subventricular
zone) relevant to neurodegenerative diseases or the proliferative niche. We found no changes in
cellular composition of different brain regions with healthy aging. Surprisingly, we did find that
each brain region has a distinct aging signature, with only minor overlap in differentially
associated genes across regions. Moreover, each cell type shows distinct age-associated
expression changes, including loss of protein synthesis genes in cortical inhibitory neurons,
axonogenesis genes in excitatory neurons and oligodendrocyte precursor cells, enhanced
gliosis markers in astrocytes and disease-associated markers in microglia, and genes critical for
neuron-glia communication. Importantly, we find cell type-specific enrichments of age
associations with genes nominated by Alzheimer’s disease and Parkinson’s disease
genome-wide association studies (GWAS), such as apolipoprotein E (APOE), and leucine-rich
repeat kinase 2 (LRRK2) in microglia that are independent of overall expression levels across
cell types. We present this data as a new resource which highlights, first, region- and cell
type-specific transcriptomic changes in healthy aging that may contribute to selective
vulnerability and, second, provide context for testing GWAS-nominated disease risk genes in

relevant subtypes and developing more targeted therapeutic strategies. The data is readily
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accessible without requirement for extensive computational support in a public website,

https://brainexp-hykyffa56a-uc.a.run.app/
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Introduction

Age is a common primary risk factor for multiple neurodegenerative diseases (NDDs),
including Alzheimer’s disease and related dementias (ADRD), Parkinson’s (PD), and
amyotrophic lateral sclerosis (ALS)'. For example, the incidence of AD approximately doubles in
five-year increments between 60 and 90 years of age, and the prevalence of ADRD is expected
to triple by 2050%*. In this context, identifying the molecular events associated with healthy
human brain aging becomes imperative in understanding predisposing conditions for
neurodegeneration.

Prior studies used bulk transcriptomic and epigenomic analyses to understand the
effects of aging on the human brain. The major themes emerging from these investigations
include loss of synaptic gene expression and acquisition of inflammatory signaling networks®.
Our previous RNA-sequencing (RNA-seq) analysis of the human dorsolateral prefrontal cortex
identified networks of gene expression changes with age, including loss of neuronal genes®. For
example, there was a strong decrease in SST, encoding the peptide neurotransmitter
somatostatin, in a subset of GABAergic interneurons in the cortex.

Although this literature suggests robust changes in gene expression correlating with age,
several aspects of the data remain difficult to interpret. For example, loss of neuronal markers
could reflect a loss of neurons and/or changes in gene expression per neuron. Recent
development of single-cell methods allows for the identification of cell types and the
interrogation of gene expression in each cell type. Here, we applied snRNA-seq to disambiguate
cell proportions and gene expression per cell in the context of healthy human brain aging across
multiple brain regions. We compared the entorhinal cortex (EC), susceptible to AD pathology’?,
with another cortical region, the middle temporal gyrus (MTG)*'°. We also included the putamen
(PUT), affected in Huntington’s disease (HD)''2 and PD"'°, and the subventricular zone (SVZ)

region permissive for neurogenesis during development, although whether this remains true in
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the adult human brain is still contested'®. We find substantial numbers of brain region- and cell
type-specific aging associations in gene expression during healthy aging. However, we also
identify novel cell type- and brain region-specific differences in age-associated gene expression

relevant to neurodegenerative diseases.

Results

Cell type composition of four brain regions

Our final dataset contained 155,192 nuclei from post-mortem EC (47,566 nuclei), MTG
(25,394 nuclei), PUT (46,489 nuclei), and SVZ (35,753 nuclei) from six younger (20-30 years
old) and six older (60-85 years old) adults following QC and preprocessing (see Methods; Fig.
1a-c; Supplemental Table 1). We projected nuclei from all donors and regions into a single
UMAP and confirmed each cluster contained nuclei from all donors and both sexes
(Supplemental Fig. 1a-e).First, we assigned Leiden clusters to general cellular categories
(referred to as broad type) based on the expression of markers for neurons (RBFOX3, SYP,
GRIN1, GRIA2; 51.32% of all nuclei), microglia (CSF1R, AlIF1, P2RY12; 2.1%), astrocytes
(AQP4; 7.27%), oligodendrocyte precursors (PDGFRa; 4.31%), ependymal cells (FOXJT,
1.83%), and oligodendrocytes (MBP; Fig. 1d-f; Supplemental Fig. 1f-h). Following broad type
classification, we examined the diversity of neuronal subtypes using a combination of canonical
markers, differential expression, brain region origin, and previously published snRNAseq
datasets' 8. We assigned each cell subtype according to its 1) broad type marker, 2) subtype
marker, and 3) secondary cluster-specific marker (Fig. 1d).

Inhibitory neurons (InN) were broadly identified by expression of genes encoding
glutamate decarboxylase 1 and 2 (GAD1, GAD2) and represented ~31.2% of recovered nuclei

(Fig. 1d-f; Supplemental Fig. 1h). Cortical InNs were split by expression of either ADARB2 or
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LIM Homeobox 6 (LHX6). ADARBZ2" InNs were subdivided by expression of either LAMP5
(2.07%) or vasoactive intestinal peptide (VIP, 4.92%). LHX6" InN subtypes were further
determined by expression of either somatostatin (SST, 1.89%) or parvalbumin (PVALB, 2.94%).
Subcortical GAD1* and GADZ2" InN (21.59%) consisted of putaminal spiny projection neurons
(SPN), which were further divided by expression of dopamine receptor D1 (DRD1, 9.91%) or D2
(DRD2, 9.85%). We also identified subsets of each SPN subtype. SPN D1-2 neurons (1.54%)
coexpressed ADARB2, while SPN D2-2 neurons (0.3%) coexpressed adenosine A2a receptor
(ADORAZ2A; Fig. 1d).

Excitatory neurons (ExN), identified by expression of genes encoding vesicular
glutamate transporters 1 and 2 (SLC17A6 and SLC17A7; Fig. 1d, Supplemental Fig. 1h),
represented 18.4% of recovered nuclei. lterative clustering subdivided these into seven distinct
clusters, which were primarily restricted to the EC and MTG (Supplemental Fig. 1¢,h). ExN
clusters were distinguished by differential expression of marker genes related to cortical layers
as previously published' (Fig. 1d-f).

Non-neuronal cells represented nearly half of all recovered nuclei (48.6%) and were
found across all brain regions (Fig. 1f; Supplemental Fig. 1¢-d). Oligodendrocytes separated
into 3 clusters, all expressing myelin basic protein (MBP) and proteolipid protein 1 (PLP17).
Although Oligodendrocyte-1 (23.51%) and Oligodendrocyte-2 (8.28%) clusters are directly
adjacent in the UMAP space, Oligodendrocyte-1 nuclei displayed higher expression of
oligodendrocytic myelin paranodal and inner loop protein (OPALIN), which is involved in
oligodendrocyte differentiation. Therefore, Oligodendrocyte-1 may represent a less mature
subtype than Oligodendrocyte-2. Oligodendrocyte-3 (0.5%) expressed canonical
oligodendrocyte markers MBP and PLP1 but were also positive for GFAP and AQP4 and likely

represent O2A progenitors (Fig. 1d-f).
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Diverging patterns of gene expression by brain region in absence
of cell type proportion shifts

Due to limitations imposed by bulk RNAseq on interpreting if age-related expression
patterns are due to cell type or gene expression changes, we examined whether cell
proportions, particularly neuronal and oligodendrocyte subtypes, differed with age. The total
number of nuclei recovered from young (78,690) and old (76,502) individuals was similar (Fig.
2a). There were no significant differences in cell type proportions with age for most cell types
(Fig. 2b-d). The one exception was LAMP5" ExN, which were poorly recovered in the older age
group and represented the most superficial layer of excitatory neurons'. However, even this
difference was not statistically significant and is likely due to variability across individual donors
(Fig. 2d). Additionally, the proportion of young versus old nuclei recovered by brain region did
not significantly differ with age (Supplemental Fig. 2a-b). These results suggest that most
aging-associated gene expression differences are not due to cellular proportions changes
during aging

We next examined gene-aging associations at the level of brain region. For this analysis,
we considered all nuclei within each of the four regions, irrespective of cell type. Using a
two-step approach (see Methods), we found 2,071 genes exhibiting a significant differential
association with age across the SVZ (767), EC (508), PUT (433), and MTG (363; Supplemental
Fig. 2c; Supplemental Table 2). Most aging differentially associated genes (aDAGs) were
unique to each brain region, with a single gene negatively associated with age (AC240274.1)
intersecting all four regions. The SVZ and EC harbored more aDAGs with negative age
associations than the PUT and MTG (641, 435, 157, 17 negative aDAGs, respectively), where
>50% of significant genes were positively associated with aging. Of note, many aDAGs in each

brain region were pseudogenes or long noncoding RNAs (IncRNAs). Of the top protein-coding
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genes most strongly associated with age at the brain region level, HLA-DQA2, LILRA6, CDZ209,
TNFSF14, TNFRSF10C, CCL3L1, and MUCLS3 were notable in that they have established roles
in the immune response (Supplemental Fig. 2d).

We next documented all gene-age associations at the level of broad types
(Supplemental Table 2). Of 2,071 brain region aDAGs, 923 were also significant at the broad
cell type level (Supplemental Table 3). At this resolution, cortical INN exhibited the most
significant number of aDAGs, totaling 2,684 genes (Supplemental Table 2; Supplemental Fig.
2e). Many of the top aDAGs are INcRNAs or pseudogenes (Supplemental Fig. 2f). For
example, the IncRNAs FAM66E and LERFS were decreased with age in all cell types except
endothelial, ependymal, and mural cells. While a small subset of aDAGs was shared between 2

2 broad types, more than half of aDAGs were unique to each broad cell type.

Negative association of protein translation and mitochondrial

genes in cortical inhibitory neurons with age

We next examined all gene-age associations by cluster-specific cell types beginning with
cortical InN and subcortical SPN broad classes, each composed of 4 cluster-specific cell types
(Fig. 3a). We observed diverging directions of gene-aging associations between cortical InNs
and subcortical inhibitory SPNs (Fig. 3b). Surprisingly, only 33 aDAGs were shared between the
four cortical InN subtypes (Fig. 3b).

We next examined the top five aDAGs in each direction for cortical and subcortical InNN
subtypes. Similar to observations at the brain region and broad cell type levels, we noted an
abundance of differentially associated INcCRNAs, including FAM66E in all cortical InN subtypes
and SPN D1-2 and D2 subtypes (Supplemental Fig. 3a). We next performed gene set
enrichment analysis (GSEA) on both broad type and cluster-specific significant aDAG sets

(Supplementary Information). Using the broad type cortical InN list of 2,864 aDAGs, we
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identified a large number of ontogeny enrichments clustered in themes of protein targeting and
translation, gene expression, ncRNA processing, and mitochondrial electron transport (Fig. 3c¢;
Supplementary Information). We then examined which genes within these GO term sets were
differentially associated with age by plotting the coefficient estimate of enriched genes in
different cell types (Fig. 3d, h, k). In cortical InNs, there was a striking negative association for
ribosomal protein-coding genes in the GO term ‘protein targeting to ER (G0O:0045047),
particularly in the LHX6"PVALB" InN cluster, but not in subcortical inhibitory SPNs (Fig. 3d).
Several genes in this category were similarly negatively associated with age across multiple
cortical InN subtypes, such as ribosomal protein S7 (RPS7) and SEC61 translocon subunit
gamma (SEC61G; Fig. 3d,f). In contrast, many other genes in this category were negatively
associated with age in a specific cell subtype, such as ubiquitin A-52 residue ribosomal protein
fusion product 1 (UBA52) in LHX6'PVALB® InNs only (Fig. 3d-e,g).

Given the strong negative association of these genes with age in cortical InNs, we next
asked if these cells exhibited differential expression of these genes compared to other neuronal
cell types in younger individuals. Surprisingly, young cortical InNs have lower expression of
ribosomal protein-coding genes than excitatory neurons and subcortical inhibitory SPNs (Fig.
3e), showing that the decrease in protein synthesis genes with age in cortical InNs is not due to
higher expression than other cell types.

In contrast to the abundance of ontology enrichments observed in cortical InNs at the
level of broad cell type, only cluster-specific SPN D1-2 neurons exhibited enrichments
(Supplementary Information). Notably, enrichment categories differed, and the enrichments'
strength was substantially lower than those observed in cortical InNs. Specifically, aDAGs in
SPN D1-2 neurons fell under molecular function enrichment categories of voltage-gated sodium
channel activity, calcium channel genes, and TAP1 binding activity (Fig. 3k—m). Notably, all SPN
D1-2 aDAGs falling under enrichment categories were negatively associated with age, except

for HLA-F (Fig. 31-m).
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Additionally, we examined the broad type- and cell-subtype gene enrichments for terms
in the “Aging” and “Disease Perturbations” from GEO gene sets, subset by genes increased or
decreased in expression with age or disease. Both cortical and subcortical InN-specific negative
aDAGs significantly overlapped with genes previously shown in animals and humans to have
decreased expression in aged cortical and hippocampal tissue. InN-specific negative aDAGs
additionally overlapped with “Disease Perturbations (Down)” from both animal and human
datasets including senescence, dystonia, ALS, and HD (Supplemental Fig. 3b-c;

Supplementary Information).

Excitatory neurons have categorically different and fewer aDAGs
compared to inhibitory neurons

We next examined ExNs, which had substantially fewer aDAGs (1,060) compared to
InNs at the broad type level (Supplemental Table 2). ExN were clustered into seven subtypes
(Fig. 4a). We observe the most aDAGs in FEZF2* ExN representing layers 4-6 of the cortex
(1250 total, 806 unique; Supplemental Table 2; Fig. 4b)"". Many top aDAGs were shared
between ExN subtypes, including Rhomboid Like 3 which was previously documented to
increase with aging in human frontal cortex®'® (RHBDL3; Supplemental Fig. 4a-b).
Interestingly, in the case of some related genes like calcium channel regulators STAC and
STAC2, we observed association in opposing directions, sometimes within the same cell type
cluster (Supplemental Fig. 4a, c-d).

Two striking differences between broad cortical ExNs and InNs were apparent. First,
ExNs had many more positive aDAGs with age (Fig. 4b). Second, we did not observe any
significant ExN broad type enrichments (Supplementary Information). Thus, we next
examined each of the seven subtypes of ExN and found significant enrichments in LAMP5*

(layers 1-2), THEMIS® (layer 5-6) and RORB* ExNs (layers 3-6; Fig. 4c; Supplementary
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Information)"’. Surprisingly, although FEZF2+ ExN had the highest abundance of aDAGs, we
did not observe any gene set enrichments, suggesting broad, non-specific effects of aging on
ExN. Notably, ExN and InN enrichment categories differed (Fig. 3¢, 4c). ExN subtype
enrichment pathways included ‘axonogenesis (GO:0007409)" and ‘neuron projection
(G0O:0043005) as well as cell-cell adhesion pathways (Fig. 4c-e). Specifically, we observe
differential association of semaphorins, SLIT guidance ligands and SLIT and NTRK-like family
members, cadherins, and ephrins (Fig. 4d-e; Supplemental Table 4). Interestingly, while some
enrichment pathways are shared between ExN subtypes, many aDAGs within these pathways
differ between ExN subtypes (Fig. 4d). In contrast to the negative aDAGs observed in cortical
InN, the directionality of age-related aDAGs in ExN subtypes was mixed, which may be due to
less robust and more heterogeneous expression of marker genes than InN. Given the general
decrease in protein translation-related genes observed in cortical InNs, we wanted to see if
cortical ExNs also displayed any decrease in those same genes, despite the absence of
enrichment for this category. With the exception of RPS5 in FEZF2" ExN, we did not observe
any ‘protein targeting to ER (G0:0045047) genes differentially associated with age in ExN (Fig.
4f).

ExN subtype aDAGs significantly overlapped with “Aging and Disease Perturbations”
from GEO gene sets. Of particular relevance: young vs. aged human frontal cortex, AD, HD,
and Lewy Body Dementia (Supplemental Fig. 4e, Supplemental Fig 7f; Supplementary
Information). Collectively, these results suggest that aging differentially affects ExN and InN in
the number and strength of aDAGs and in the functional categories to which those aDAGs

belong.
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OPC-specific negative association of myelination transcription
factors with aging in absence of changes in oligodendrocyte

lineage cell proportions

Many studies have documented aging-associated decreases in white matter volume and
myelin integrity with age?*2'. Therefore, we investigated cell-type proportions and aDAGs in
oligodendrocyte lineage cell types (Fig. 5a). Unexpectedly, we did not observe a significant shift
in oligodendrocyte lineage cell proportions with age overall or within brain regions (Fig. 5b,
Supplemental Table 5). Therefore, we next examined the top aDAGs and associated
enrichments across these cell types. Similar to previous observations, >50% of top aDAGs in
either direction are noncoding (Supplemental Fig. 5a). Only five aDAGs shared between
mature oligodendrocytes and three aDAGs shared across all four cell types (Fig. 5¢).

We next examined the effect of age on CNS myelination genes derived from the GO
term “central nervous system myelination (G0O:0022010)” and several of the most abundantly
expressed myelination genes (MBP, PLP1, MOBP and 2',3'-cyclic nucleotide 3'
phosphodiesterase CNP). In OPCs, we observed a strong negative association of Hes family
bHLH transcription factor 5 (HES5), a transcription factor regulating myelination, and weaker
negative associations of SRY-box transcription factor 10 (SOX70) and teneurin transmembrane
protein 4 (TENM4, Supplemental Fig. 5b). Surprisingly, we observed very weak negative
associations of MBP in oligodendrocytes as a broad type (coefficient est.= -0.04, FDR-BH
p=9.26x10*, SE= 0.009) and in cluster-specific Oligodendrocyte-1 coefficient est.= -0.04,
FDR-BH p=4.03x10"*, SE=0.009) and Oligodendrocyte-2 (coefficient est. = -0.02, FDR-BH
p=7.61x10", SE=0.005). PLP1 also had a weak association with age in only Oligodendrocyte-2
(coefficient est = -0.06, FDR-BH p= 2.02x10-, SE=0.01; Supplemental Fig. 5b). MOBP and

CNP did not have a significant association with age in any cell subtype (Supplemental Table
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4). We next investigated gene set enrichment for oligodendrocytes as a broad type followed by
each oligodendrocyte subtype. Mature oligodendrocyte aDAGs were only enriched for the “GO
cellular component: cell-cell junction (GO:0005911)” category (Supplementary Information).
However, when we analyzed oligodendrocyte subtype-specific aDAGs, we observed
enrichments for all subtypes (Supplementary Information; Fig. 5d). We examined aDAGs
falling under the GO cellular component category “cell-cell junction (GO:0005911)” since this
gene set was significant for both OPCs and Oligodendrocyte-1 (Fig. 5d). Among significant
aDAGs in this category are cadherins and catenins (Fig. 5e,i). Interestingly, most aDAGs in this
shared enrichment category differ between the two cell types, with more OPC aDAGs showing a
negative association with age (Fig. 5e).

OPC aDAGs were also enriched for genes in GO: biological process “axonogenesis
(G0:0007499)” and “KEGG: Glutamatergic synapse,” the majority of which had negative
associations with age (Fig. 5f-g). We observed a negative association of axonogenesis gene
families, including semaphorins, contactins, and ephrins (Fig. 5f-j). Notably, these gene families
were also differentially associated with age in subsets of ExNs (Fig. 4d). Under “KEGG:
Glutamatergic synapse”, we observed negative associations with guanine nucleotide-binding
protein subunit genes, G protein-activated inward rectifier potassium channel 1, and glutamate
receptors (Fig. 5g,k). Oligodendrocyte-2 enrichments consisted of one-carbon metabolism
genes with mixed directionality (Fig. 5h,l). Additionally, we observed aDAGs in OPCs and
oligodendrocyte subtypes populated numerous enrichments associated with Aging and Disease
Perturbations from GEO gene sets. The majority of these enrichments overlapped with human
cancer gene sets, such as astrocytoma, glioblastoma, and oligodendroglioma. We additionally
observed overlap with gene sets from aging mouse and human brain, and human-specific AD,

MS, PD, and bipolar disorder (Supplemental Fig. 5¢).
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Inflammation-associated genes and disrupted fractalkine genes in
microglia and astrocytes

Converging evidence from human genetics and animal models has demonstrated that
inflammation can act as a risk factor for aging-related neurodegenerative diseases*%.
Therefore, we next investigated top aging aDAGs and GO enrichments in microglia and
astrocytes. Of the 797 total microglial aDAGs and 902 astrocyte aDAGs (Supplemental Table
2), <10% are similarly differentially associated with age between the two cell types
(Supplemental Fig. 6a-b). However, we noted aDAGs in both cell types share similar ontogeny
enrichments for aging gene sets from human frontal cortex and disease gene sets from related
human neurodegenerative disorders, including AD, dystonia, multiple sclerosis (MS), Lewy body
dementia (LBD) and HD (Fig. 6a,f).

Several complement pathway genes were positively associated with age in astrocytes;
specifically C1S, C1RL, C1R, CFI, and C3% (Fig. 6a-e). C3 is particularly interesting given that it
is most abundantly expressed in microglia but only has a differential association with age in
astrocytes. Other notable reactive astrocyte genes with significant, age-related positive
associations include CIITA, GFAP, HLA-E, and IL1R1?" (Fig 6b). While we failed to observe
enrichments for biological process categories related to immune response in microglia, we did
note significant overlap with gene sets from aged human frontal cortex, dendritic cells, and
CD4+ T lymphocytes (Fig. 6f). Imnmune response genes previously documented as increased in
aging and/or neurodegeneration were also positively associated with age in microglia in this
dataset, notably IL-15%2°, HLA-DMB?®, IL-1p*%3031 ‘and TLR2?¢3%-** (Fig. 6g,k-I).

We also observed positive associations for several disease-associated microglia (DAM)
genes®, specifically CD74, SPP1, and APOE (Fig. 6h-j). Finally, we observed a negative

association of fractalkine receptor gene CX3CR1 in microglia and its ligand (CX3CL7) in
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excitatory, inhibitory, and SPN-D1 neurons (Fig. 6g, Supplemental Table 4). This
ligand-receptor interaction has been studied extensively in animal models of neurodegeneration
and suggested to suppress the production of proinflammatory cytokines®. Our results also
suggest that neuron-glia signaling may be disrupted with age, which may contribute to immune

dysregulation.

Senescence

Accumulation of senescent cells has been suggested to contribute to age-related
neurological decline, which is particularly problematic for the CNS given the long-lived,
post-mitotic state of neurons and limited regenerative capacity of the adult brain. We next asked
whether there is an increase in the proportions of senescent cells in healthy aged donors. As
there is no consensus on a CNS-specific senescence signature, we assessed how multiple
senescence-associated gene sets***"~*° change with age across brain regions and broad cell
types. We also included the DAM gene set, given it is tuned to a specific brain cell type and that
we have demonstrated that several of these genes have positive associations with age in
microglia (Fig. 6h).

At the level of brain region, 11-14% of 3 senescence gene sets exhibit significantly
changed expression with age in the PUT, followed by the MTG (1-14% across 3/6 gene sets;
Fig 7a-c). Of the broad cell types examined, OPCs exhibited expression changes in 5-15% of
genes across all 6 senescence gene sets, followed by oligodendrocytes (3-29% across 5/6
gene sets), inhibitory neurons (9-17% across 5/6 gene sets), and microglia (10-43% across 4/6
gene sets; Fig. 7a-b,d). Senescence-associated genes, which were also significantly
differentially associated with age, were then examined, with the number of significant aging
aDAGs increasing in parallel with level of cell type resolution (Fig 7c-e).

Additionally, we examined aDAGs from cell types which exhibited significant enrichment
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from previous human aging datasets. Interestingly, microglia and astrocytes were significantly
enriched for positive aDAGs previously shown to be increased in the aged frontal cortex,
including SERPINA3, IFITM2, CD163, and CD14 (Supplemental Fig. 7a-e). In contrast, cell
types enriched for genes decreased in aged human frontal cortex, including KCNF1, LY6H, and

PFN1, were limited to neurons (Supplemental Fig. 7f-i).

Cell type-specific differential associations of genes nearest to
GWAS-identified risk loci: Alzheimer’s disease and Parkinson’s
disease

Given that aging is a risk factor for many NDDs, we next examined genes nearest to
genome-wide association study (GWAS) risk loci for Alzheimer’s disease (AD) and Parkinson’s
disease (PD). We first examined the baseline mean expression of AD- and PD-associated
genes across brain regions and cell types (Supplemental Fig. 8a-d). While many genes are
broadly expressed across multiple cell types, several exhibit cell type-specificity*®. Therefore we
next examined if these genes exhibited significant associations with age in a brain region-
and/or cell type-specific manner.

We detected expression of 110/112 AD GWAS-nominated genes*' in this dataset
(Supplemental Fig. 8a-b), of which 52 were significantly differentially associated with age (Fig.
8a-b). Of particular interest is apolipoprotein E (APOE), variants of which can increase risk for
developing late-onset AD (LOAD) and Lewy body dementia. We noted a microglia-specific
increase in the percentage of cells expressing APOE and concomitant increase in level of
expression, as well as a significant positive association with age (coefficient est.=0.41, BH-FDR
p=3.45x103, SE=0.10; Fig. 8a-c). Interestingly, we did not observe a significant age association

of APOE in astrocytes, where it is abundantly expressed (Fig. 8b-c; Supplemental Fig. 8b).
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We additionally observed a strong positive association of membrane spanning 4-domains AGA
(MS4A6A) with age in all brain regions except the putamen (Fig. 8a). We note that the positive
association of MS4A6A at the brain region level is driven by an increase in the number of
microglia expressing MS4A6A, the strength of its expression in microglia, and a strong positive
association with age exclusively in microglia (coefficient est.= 0.96, FDR-BH p=1.36x10?,
SE=0.13; Figure 8a-b, d).

Other notable aDAGs include negative age associations of endoplasmic reticulum
protein translocation complex gene SEC61G and mitochondrial electron transport chain enzyme
component cytochrome ¢ oxidase subunit 7C (COX7C) in multiple cortical inhibitory neuron
subtypes, fatty acid biosynthesis gene ECHDC3 in oligodendrocytes, and a positive association
of complement C3b/C4b receptor 1 (CR7) in oligodendrocyte-1 and oligodendrocyte-2 (Fig. 8b).

Next, we examined aging associations of 82/87 detected genes nearest to PD
GWAS-identified risk loci*> and observed that 56/82 genes had a significant association with
age, most strikingly in OPCs and microglia (Supplemental Fig. 8c-d; Fig. 8e-f). Notable genes
which exhibited microglia-specific differential associations include cathepsin B (CTSB;
coefficient est.= 0.20, FDR-BH p=3.14x1073, SE=0.05) glycoprotein Nmb (GPNMB; coefficient
est.= 1.40, FDR-BH p=5.57x10"*, SE=0.30), and leucine-rich repeat kinase 2 (LRRK2;
coefficient estimate: 0.33, FDR-BH p=5.78x10°, SE=0.06; Fig. 8f-i). Of microglia-specific
aDAGs, GPNMB had a strong positive association with age, despite being more highly
expressed in OPCs and mural cells (Fig. 8e,h). Similarly, LRRK2 exhibited a significant positive
association in microglia, despite being most highly expressed in OPCs (Fig. 8e,i). Other notable
aDAGs shared across multiple cell types include signal induced proliferation associated 1 like 2
(SIPA1L2), potassium voltage-gated channel interacting protein 3 (KCNIP3), and
peptidyl-glycine alpha-amidating monooxygenase (PAM, Fig. 8f).

These results collectively suggest that a large subset of genes nominated by AD (52/112

genes) and PD (56/87 genes) GWAS are differentially expressed with aging, independently of
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disease. Many of these differential associations occur in microglia and OPCs. Additionally, we
demonstrate the utility of sSnRNAseq in detecting moderate, cell type-specific associations with

age that otherwise would be masked using bulk strategies.

Discussion

Here, we performed snRNAseq on nuclei from 12 individuals without a clinical or
pathological history of neurodegenerative disease to examine changes in cell type populations
and transcriptomes during healthy aging across multiple brain regions. We isolated nuclei from
the entorhinal cortex, middle temporal gyrus, putamen, and subventricular zone, which are each
differentially affected in neurodegenerative diseases. In total, we annotated 155,192 nuclei
comprising all expected neuronal and non-neuronal cell types and subtypes (Fig. 1).

While we failed to observe any significant changes in cell type proportions (Fig. 2), we
noted striking diverging transcriptome patterns across brain regions and cell types
(Supplemental Fig. 2). We observed that >50% of aging differentially associated genes
(aDAGSs) in each brain region, broad cell type, and cell subtype are unique with very few aDAGs
shared across brain regions or cell types. At the level of brain regions, we observed
predominantly more positive aDAGs in the MTG and PUT, and more negative aDAGs in the
SVZ and EC, with only one aDAG shared across all regions. At the level of broad cell types, we
observed predominantly negative aDAGs in InNs and OPCs, with all other broad type aDAGs
exhibiting mixed directionality.

While these results suggest the absence of a global, shared aging gene signature, we
noted that over 50% of the top aDAGS were annotated as IncRNAs or pseudogenes. Two of the
most commonly differentially associated INRNAs across cell types in the present dataset are
FAM66E and LERFS, whose downregulation has been documented in human lung

adenocarcinoma* and rheumatoid arthritis*, respectively. However, their function in the brain is
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unknown. Studies have suggested a regulatory role for IncRNAs in the contexts of alternative

splicing, telomere stability, cell proliferation, intercellular communication, proteostasis, and
epigenetic regulation; processes which are known to be altered during the course of aging and
in neurodegeneration*>~*%. Given the abundance and diversity of INcRNAs in the CNS, further
investigation into their role in aging and disease is warranted.

We next investigated aDAGs in InN and ExN subtypes and similarly observed that >50%
of aDAGs for a given cell subtype were unique. We found striking differences between cortical
and subcortical InNs, with cortical InNs exhibiting decreased associations of genes involved in
protein synthesis and targeting, gene expression, and IncRNA processing, with LHX6*PVALB*
being most strongly affected (Fig. 3). aDAGs in ExNs, in contrast, were far fewer in number with
more mixed directionality and categorically different GO enrichments, including axonogenesis,
cell adhesion, and cell communication by electrical coupling (Fig. 4). The difference in strength
and number of aDAGs in InNs vs. ExNs is consistent with previous studies demonstrating
selective vulnerability of LHX6"PVALB" and LHX6*SST" cortical neurons in the EC and MTG,
respectively, in AD. Given that disrupted proteostasis is a major feature of AD, our data suggest
decreases of protein synthesis and targeting genes in these cell types en masse during normal,
healthy aging may set the stage for selective vulnerability of these InNs and subsequent
imbalance of inhibitory-excitatory signaling observed in AD***°,

Changes in white matter integrity?>?' and expression of myelination genes®' have been
documented in previous studies of aging and neurodegeneration in animal models and humans.
Surprisingly, we did not observe a change in OPC or oligodendrocyte numbers between young
and old individuals in any brain region (Supplemental Table 5). However, we demonstrate
OPC-specific negative associations of development and myelin gene-associated transcription
factors HES5, SOX10, and NKX2-2°%** as well as teneurin transmembrane protein 4 (TENM4),

with only negligible negative associations of MBP and PLP1 in oligodendrocyte-1 and
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oligodendrocyte-2, respectively (Supplemental Fig. 5; Supplemental Table 4). While our data
suggest that terminal differentiation of OPCs to oligodendrocytes, upstream transcription factors
regulating myelination, and support of axonogenesis may be disrupted with age in absence of
cell loss, we are unable to rule out post-transcriptional and post-translational contributions to
white matter integrity disruption.

Previous studies examining brain aging using bulk RNAseq have consistently
demonstrated altered inflammatory signaling with age. While we failed to observe GO
enrichments related to inflammation in any brain region, broad type, or cell subtype, we did
observe that the majority of the top protein-coding aDAGs across brain regions were associated
with inflammation (Supplemental Fig. 2c). In astrocytes, we observed positive associations of
reactive gliosis genes and multiple complement pathway genes, the latter of which is particularly
interesting given the complement system’s role in synaptic pruning during development and its
potential involvement in elimination of aberrant synapses in neurodegenerative diseases**%. In
microglia, we observed positive associations of proinflammatory cytokine, major
histocompatibility complex, and disease-associated microglia genes. Moreover, we noted a
decreased association of fractalkine ligand and receptor (CX3CL1-CX3CR1) genes in neurons
and microglia, respectively (Fig. 6; Supplemental Table 4). Our results suggest that
inflammatory genes are increased with age and that homeostatic neuron-glia signaling may be
disrupted, thus contributing to chronic immune dysregulation and synapse elimination seen in
both aging and neurodegenerative diseases.

Importantly, we found significant overlap with previous mouse, non-human primate, and
human brain aging and neurodegeneration datasets. Examples include a strong positive
association of protease RHBDL3 in ExN subtypes, previously shown to be strongly increased
with age in the human frontal cortex®'®, and negative associations of NPY and its receptor
NPYR1 in the MTG, SVZ, subsets of ExN, and OPCs. We additionally replicated an

aging-associated decrease in neuropeptide SST'° in both the EC and MTG, and in
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ADARBZ2'LAMPS" cortical InNs, noting negative associations of related receptors SSTR1 and
SSTR2 across cortical InNs, ExNs, and mural cells. When comparing aDAGs from this study to
human aging datasets, we note that cell types with significant enrichments for genes increased
with age included astrocytes and microglia, while cell types with significant enrichments for
genes decreased with age were restricted to neuron subtypes (Supplemental Fig. 7).

Notably, these differential associations occur in absence of any widespread overt loss or
gain of cell types with age (Fig. 2, Supplemental Fig. 2). These findings demonstrate the utility
and robustness of snRNAseq in 1) replicating previous findings from bulk RNAseq; 2) providing
increased resolution to disambiguate changes in gene expression from cell loss; and 3)
determining which particular cell types significant transcriptional changes are occurring.

Our analysis of senescence gene sets is consistent with previous senescence studies in
postmortem brain tissue. The percentage of senescent cells is dependent on which gene set is
used. While OPCs appear to have differential expression of senescence markers across all
gene sets, consistent with results from mouse models of amyloid-beta accumulation and
post-mortem human AD brain®’, further investigation is needed to define cell type-specific
senescence signatures in the CNS, particularly in post-mitotic neurons (Fig. 7).

Finally, we examined the relationship between aging and the expression of genes
nearest to GWAS-identified risk loci for AD and PD. Many of these disease-associated genes
had a significant age-association specific to a single cell type, despite being more abundantly
expressed in other cell types at baseline. For example, AD-associated APOE and
PD-associated LRRK2°%2¢3 and GPNMB®** are positively associated with age in microglia,
despite being more highly expressed in astrocytes and OPCs, respectively (Fig. 8). Our data
provide context for and highlight the necessity of testing GWAS-nominated disease risk genes in
relevant subtypes for preclinical mechanistic studies in vitro and in vivo, and subsequently, for

developing more cell type-specific, targeted therapeutic strategies.
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We note several limitations of our study. First, we examined aging as a categorical rather
than continuous variable, in part due to the multiregion/donor design of the study. Given that the
prodromal period for age-related neurodegenerative diseases is estimated to be >10 years,
examining individuals aged 40-60 could be particularly insightful. While we cannot rule out the
possibility that donors would eventually go on to develop dementia or other NDDs given a long
prodrome, tissue was selected based on lack of clinical and postmortem neuropathological
criteria consistent with NDDs. Second, while we balanced each age group by sex, we were not
sufficiently powered to examine a gene expression*sex*age interaction. This analysis could be
particularly informative in the context of neurodegenerative diseases like PD and AD, which
differentially affect males and females, respectively.

In summary, the current dataset provides a novel resolution of the effects of
chronological aging across brain regions and cell types. Surprisingly, using unbiased
approaches, we show that multiple aDAGS are also genes that modulate risk of NDDs. These
data support that future studies should be directed to larger sample series and incorporate

additional single cell measures of the effects of aging in the healthy brain.

Data and Code Availability

Code: https://github.com/neurogenetics/ADRD Brain Aging

Summary level results: https://zenodo.org/record/7847472

Individual level data: https://nda.nih.gov/edit_collection.html?id=3151

Streamlit App: hitps://brainexp-hykyffa56a-uc.a.run.app/



https://github.com/neurogenetics/ADRD_Brain_Aging
https://zenodo.org/record/7847472
https://nda.nih.gov/edit_collection.html?id=3151
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fbrainexp-hykyffa56a-uc.a.run.app%2F&data=05%7C01%7Cmegan.duffy%40nih.gov%7Cbcbbcaecb808460c325608db8d441617%7C14b77578977342d58507251ca2dc2b06%7C0%7C0%7C638259095795072005%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=1E7Z4%2BHDvqHEAcrIKN3WpxvuXkoWBS%2BGJcYPt4qpDAA%3D&reserved=0
https://doi.org/10.1101/2023.07.31.551097

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.31.551097; this version posted August 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC
105 and is also made available for use under a CCO license.

Acknowledgements

We would like to thank members of the National Institute of Mental Health’s Human Brain
Collection Core, particularly Drs. Stephano Marenco and Pavan Auluck for their time and efforts
in providing post-mortem brain dissections for this study as well as the NIH Intramural
Sequencing Core (NISC). This research was supported by the Intramural Research Program of
the National Institutes of Health, National Institute on Aging project 1ZIAAG000539-01 (to
M.R.C), and in part by project ZO1 AG000535 (to M.A.N.); as well as the National Institute of
Neurological Disorders and Stroke (1ZIANS003154, S.W.S.). This work utilized the

computational resources of the NIH HPC Biowulf cluster (http://hpc.nih.gov).

Author contributions

Conceptualization: M.D., R.L., SW.S., J.R.G., M.R.C.

Supervision: M.R.C.

Investigation: M.D., J.R.G., J.D., M.R.C.

Formal Analysis: M.D., J.R.G., J.D., M.R.C.

Funding Acquisition: M.R.C., M.A.N.

Writing: Original Draft: M.D., J.R.G., M.R.C.

Writing: Review & Editing: M.D., R.L., J.D., SW.S,, S.J.S.,, MAANN,, S\M.,, PA, D.TW., JR.G,,
M.R.C.

Visualization: M.D., J.R.G., M.R.C.

Streamlit App: S.W.S., M.A.N.


http://hpc.nih.gov
https://doi.org/10.1101/2023.07.31.551097

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.31.551097; this version posted August 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC
105 and is also made available for use under a CCO license.

Declaration of interests

M.A.N. and S.W.S.’s participation in this project was part of a competitive contract awarded to
Data Tecnica International LLC by the National Institutes of Health to support open science
research. M.A.N. also currently serves on the scientific advisory board for Character Bio Inc.
and Neuron23 Inc. S.W.S. serves on the scientific advisory board of the Lewy Body Dementia
Association and the Multiple System Atrophy Coalition. S.W.S. is an editorial board member for
the Journal of Parkinson’s Disease and JAMA Neurology. S.W.S. receives research support

from Cerevel Therapeutics.


https://doi.org/10.1101/2023.07.31.551097

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.31.551097; this version posted August 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC
105 and is also made available for use under a CCO license.

Methods

Isolation of nuclei from human brain

Nuclei were isolated using the Nuclei PURE Prep Nuclei Isolation Kit (Sigma #NUC201)
per the manufacturer’s instructions with slight modifications. To streamline workflow and
decrease potential batch effects, we used a pooling approach prior to library preparation
followed by post-sequencing demultiplexing, resulting in 6 pools of 8 samples each. Each pool
was balanced for age group and sex. Of note, no single pool contained tissue from 2 regions
from the same donor.

A 100mg piece of tissue was placed on a fresh, pre-chilled petri dish, trimmed, and
weighed. Approximately 25 mg tissue/sample for a total of 8 samples per pool was combined
and homogenized in a single cold douncer containing 2 ml ice-cold lysis buffer (Nuclei PURE
Lysis Buffer (Sigma #L9286), 0.1M DTT from freshly thawed aliquot (Sigma #GE17-1318-01),
and 0.1% Triton X-100 (Thermofisher Scientific #T1565) Tissue was homogenized with 25
strokes of a loose pestle, and 25 strokes of a tight pestle before being transferred to a tube
containing 8ml cold lysis buffer, vortexed 2-3s, and left on ice for 10 minutes. Following lysis,
cold 1.8M sucrose cushion solution (Nuclei PURE 2M Sucrose Cushion Solution (Sigma
#S9308), Nuclei PURE Sucrose Cushion Buffer (Sigma #S9058) and 0.1M DTT) was added to
the bottom of an ultracentrifuge tube (Beckman Coulter #344058) on ice. To each lysate, cold
1.8M sucrose cushion solution was added and mixed using a serological pipette. The lysate
solution was slowly layered on top of the sucrose cushion, placed in a precooled ultracentrifuge,
and centrifuged for 45 min. at 30,000 x g at 4°C.

Sample tubes were removed from the ultracentrifuge and placed on ice. The supernatant

was aspirated completely, and the nuclei pellet was resuspended in Nuclei Suspension Buffer
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on ice (NSB; 1ml cold PBS (Thermofisher Scientific #10010-023), 0.01% BSA (New England
Biolabs #B9000S), 0.1% SUPERase RNase inhibitor (Thermofisher Scientific #AM2696),
transferred to a 15ml tube containing an additional 4ml NSB buffer, mixed, and washed by
centrifugation at 500 x g for 5 min. at 4°C. The pellet was resuspended in 1 ml NSB, filtered
through a 70uM Cell Strainer (STEMCELL Technologies #27216) to remove debris, and washed
again by centrifugation. The supernatant was aspirated, and nuclei were resuspended in a final
volume of 110ul.

To determine nuclei concentration, Acridine Orange/Propidium lodide (Logos Biosystems
#F23001) was added to nuclei suspension in a separate tube and counted using a LUNA-FL
Dual Fluorescence Cell Counter (Logos Biosystems). An appropriate volume of nuclei was
diluted with NSB to achieve a final single suspension of 80,000 nuclei to achieve maximum
nuclei recovery while minimizing the multiplet rate. Approximately 10,000 nuclei from this single
suspension were loaded into each of 8 lanes of a 10x Genomics NextGEM Chip G (10x
Genomics #1000127) and inserted into a 10xGenomics Chromium Controller (10xGenomics
#1000204) according to the manufacturer’s instructions. We loaded 10k nuclei per lane,
targeting ~6k nuclei recovered per lane with a multiplet rate of <5%. The remainder of library
preparation was conducted according to the Chromium Single Cell 3' Reagent Kits User Guide
(v3.1 Chemistry; Rev.D). Final libraries were sequenced at the NIH Intramural Sequencing
Center (NISC) at a read depth of 25,000 paired-end reads per nucleus on an lllumina NovaSeq
6000. Data was processed with CellRanger count v5.0.1 with refdata-gex-GRCh38-2020-A as

the reference, with introns included.

Genotype preparation

Genotypes were assayed from three array-based genotyping platforms: Human1M-Duov3_B,

HumanHap650Yv3.0, and HumanOmni5-Quad. Genotypes were merged and filtered to variants
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common to all three platforms and called in 95% of the samples, and that are single-nucleotide
variants (SNVs). Genotype files were lifted over from hg19 to hg38. The Plink2°%¢, bcftools®’, and

Picard (https://broadinstitute.github.io/picard/) tool sets were used to filter, format, and liftover

the genotype files.

Demultiplexing of Pooled Samples

Pooled samples were demultiplexed using the demuxlet tool®. The prepared subject genotypes
and the aligned single-nuclei bam files were used to deconvolute the cells’ sample identities.
Data were processed on the Google Cloud Platform (GCP) using the Cumulus/Demuxlet
workflow (WDL, https://cumulus-doc.readthedocs.io/en/0.12.0/demuxlet.html), which executes
the demuxlet tool contained in the Statgen Popcle suite (https://github.com/statgen/popscle).
Job submission to GCP for execution was done via the Broad WDL runner
(https://github.com/broadinstitute/wdl-runner) and GCP Life Sciences interface
(https://cloud.google.com/life-sciences/docs). SCANPY*®® was used to read in the 10X filtered
matrix files into an AnnData object and integrate sample identity for the deconvoluted cells,
along with sample information into the ‘obs’ information and then combine all data into a single

AnnData object.

Clustering and cell-type identification

The single-cell analysis tool Pegaus™ (https:/pegasus.readthedocs.io/en/stable/index.html) was

used to combine, filter, normalize, cluster, and perform the initial cell-type identities of the
demultiplexed single-nuclei count data. Basic filtering was done with Pegasus excluding cells
that did not include at least 200 genes, genes that were not present in at least three cells, and
cells that had more than 10% mitochondrial content’’. Counts were transformed to a total-count

normalization of 10,000 reads per cell and log transformation. Highly variable features were
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used for clustering, 2000 genes. Principal components analysis was used to reduce the
dimensionality of the data from 2000 high variable genes to 50 principal components (PC).
Batch effects were corrected with Harmony’? applied to the 50 PCs. The k-nearest neighbors
were computed from the Harmony corrected components based on 100 nearest neighbors for
each cell the L2 distance and the hnswlib search algorithm’. The Leiden™ algorithm was used
to identify clusters on the neighborhood graph; multiple resolutions were used after inspection.
Differential expression for each cluster against all others along with known marker genes for
broad central nervous system cell-types was used to make the initial inferences for each
cluster’s putative cell-type. For the differential expression analysis performed with Pegasus the
default Mann-Whitney U test was used. Uniform Manifold Approximation and Projection
(UMAP)™ was used to visualize, inspect, and evaluate the clustering and initial cell-type
assignments. Inspection and evaluation of the clusters and their cell-type assignments were
performed using dendrograms, dot plots, violin plots, volcano plots, and UMAP scatter plots
over combinations of gene makers and sample information entities. After evaluation, a final
Leiden resolution of 0.85 was used. During inspection more refined cell-type markers were
included and where needed cell-type assignments were corrected. As part of the evaluation and
inspection a sub-clustering approach was also used where subsets of cells based on specific
clusters were subset and re-clustered. Cell trajectory and diffusion was evaluated using the
Force-directed Layout’ algorithm available in the Pegasus tool. Three clusters (12,753 nuclei),
where a determination of the cell-type assignment could not be made via algorithm or manual

inspection and evaluation were excluded for further analysis.

Age-related differential expression and association

Three sets of differential expression analysis were performed with age group as the

independent variable. The three sets were brain region, cell-type, cluster specific. Where the
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difference between cell-type and cluster specific is in instances where multiple clusters had the
same cell-type assignment each of these clusters were analyzed separately as well as together
as a cell-type. For example, multiple clusters of oligodendrocytes were identified, and each of
these were analyzed separately as well as a single cell-type oligodendrocyte. Age was treated
as a binary variable representing young or old, where young subjects were 20 to 30 years of
age at death while old subjects were 60 to 85 years of age at death. Only genes with non-zero
values in at least 3 cells within the individual analysis set and with non-zero cells from at least
50% of the subjects were included in differential expression analysis between the age groups.
For computational efficiency, the differential expression analysis was performed in two steps.
First, a simple t-test between age groups was performed using the diffxpy package
(https://diffxpy.readthedocs.io/en/latest/index.html). Any result where a nominally significant
difference was detected was considered for follow-up in a second step. For the second step of
the differential expression analysis, in order to address pseudoreplication and zero-inflation that
impact analyses in single-cell experiments, we utilized a generalized linear mixed model
(GLMM) with a Tweedie distribution’’. To account for pseudoreplication a fixed-effect term is
included to account for the sample, while a Tweedie distribution was specified to account for
zero-inflation. Additionally, the pool number was included as a term to account for residual batch
effects from pooling that were not corrected by the Harmony batch effects correction step. The
glmmTMB"® R package was used to run this model; gene ~ age_group + pool + (1|sample_id).
To correct for multiple testing within each analysis set the resulting p-values were adjusted using

Benjamini and Hochberg false discovery rate (fdr_bh), as implemented in the statsmodel

multitest Python package (https://www.statsmodels.org).
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Gene Set Enrichment

To determine biological pathways with significant age associations, we used the GSEApy
package’ with Enrichr (gseapy.enrichr) to perform overrepresentation analysis on aDAGs
determined by gimmTMB (FDR BH p< 0.05) for each brain region, broad type, and cell subtype.
We queried significant aDAGs against libraries within the ‘Human’ enrichr database:
‘GO_Biological_Process_2021’, ‘GO_Cellular_Component_2021’,
‘GO_Molecular_Function_2021’, ‘KEGG_2021_Human’, ‘WIKIPATHWAYS_2021_Human’. We
additionally queried ‘Aging_Perturbations_from_GEO _up,
‘Disease_Perturbations_from_GEO_up,’ ‘Aging_Perturbations_from_GEO_down,’ and
‘Disease_Perturbations_from_GEO_down’ gene sets using positive or negative aDAGs only,
respectively. A cutoff of FDR < 0.05 was used to display significant terms. All gseapy.enrichr

results are available in the supplementary information.

Senescence Scoring

The score_genes function from SCANPY®® was used to score sets of marker genes for both
senescence and DAM. The score_genes function generates a score based on the average
expression of the provided gene markers against the average expression of a reference set;
here all genes were used as the reference set. In these analyses any cell with a score of more
than two standard deviations from the mean of a broad cell-type’s scored cells was considered
positive. The senescence marker genes included six separate sets and the DAM signature was
based on a single set of marker genes. These marker sets are from previously published
studies. The DAM signature consisted of six genes®. The senescence sets include: custom
senescence signature (CSS) comprised of 7 genes*®, Canonical Senescence Pathway (CSP)

using 11 genes, Senescence Response Pathway (SRP) using 18 genes, Senescence Initiating
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Pathway (SIP) using 30 genes®, Cell Age using 73 genes®. Cells for each broad cell-type were

scored for each senescence marker set and the DAM set was only scored for microglia.
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Figure legends

Figure 1: Experimental design and cell type composition of human
entorhinal cortex, middle temporal gyrus, putamen, and

subventricular zone

(a) Schematic depicting experimental workflow for 10x Genomics snRNAseq library preparation
and subsequent analysis of 4 brain regions from 12 individuals aged 20-30 (n=5-6) and 60-85
(n=7) balanced for sex (red, female; blue, male). See also: Methods. Created with
BioRender.com.

(b) Proportion of total accepted nuclei (155,192) split by sex and age

(c) Proportion of total accepted nuclei (155,192) split by brain region

(d) Dot plot of mean expression of multiple marker genes used to define each cell subtype. Size
of circle denotes percentage of cells in a cluster expressing a gene and color represents
strength of expression (purple, high expression; light blue, low expression).

(e) UMAP of 155,192 annotated nuclei from all brain regions

(f) Cell type proportions expressed as a percentage of total recovered nuclei

Abbreviations: aDAG, aging-differentially associated gene; EC, entorhinal cortex; ExN,
excitatory neuron; InN, inhibitory neuron; MTG, middle temporal gyrus; OPC, oligodendrocyte
precursor cell; PUT, putamen; SPN, spiny projection neuron; SVZ, subventricular zone; UMAP,

uniform manifold approximation and projection.
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Figure 2: Cell type proportions are similar between young and old

individuals

(a) Total number of nuclei recovered by age group

(b) UMAP of 24 cell type clusters colored by age group (young, light blue; old,dark blue)

(c) Percentage of nuclei recovered for each cell type, split by age group (young, light blue; old,
dark blue); proportion of recovered nuclei by cell type and age group raw numbers displayed as
“young | old”

(d) Cell type proportions split by age group, with each data point representing a single donor.
Data expressed as percentage of total nuclei (young + old) recovered per cell type; n.s. = not
significant; p>0.05, Welch's t-test.

Abbreviations: ExN, excitatory neuron; InN, inhibitory neuron; OPC, oligodendrocyte precursor

cell; SPN, spiny projection neuron; UMAP, uniform manifold approximation and projection.

Figure 3: Diverging aging-associated changes in gene expression
in cortical and subcortical spiny projection inhibitory neurons

(a) UMAP of cortical and subcortical InN subtypes (left) and marker genes (right).

(b) UpSet plot showing number of unique vs. shared aDAGs across cortical and subcortical InN
subtypes, where rows on the x-axis correspond to [cell type] aDAG sets, columns correspond to
intersection size between sets, and bar color corresponds to direction of association (dark blue,
negative association with age; magenta, positive association with age). Lines between sets
indicate shared aDAGs. Only intersection sizes of 250 are displayed. Cell type sets ordered by
cardinality.

(c) Significant GSE of cortical neuron aDAGs as a broad type.
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(d) Clustermap of significant aDAGs in “GO BP: protein targeting to ER (G0O:0045047)” with
strength of association enumerated as coefficient estimate (blue, negative association;
magenta, positive association; grey, no significant association). Cell types ordered
alphabetically.

(d) Dot plot showing percentage of cells expressing (indicated by dot size) and mean
expression (indicated by color) of a subset of “GO BP: protein targeting to ER (G0O:0045047)"
aDAGs, split by age group. Red asterisk indicates genes chosen to display in feature scatter
plots.

(f) Feature scatter showing expression RPS7 and (g) UBA52 across all clusters (left) and
cluster[s] where the gene is significantly differentially associated with age (demarcated by red
box and magnified on right).

(h) Clustermap of significant aDAGs in “GO MF: oxidoreduction-driven active transmembrane
transporter activity (GO:0015453).” Cell types ordered alphabetically.

(i) Feature scatter showing expression of NDUFB2 and (j) COX8A.

(k) GSEA of significant aDAGs in SPN D1-2 neurons.

(1) Clustermap of significant aDAGs in: “GO MF: voltage-gated sodium channel activity
(G0:0005248)" and “TAP1 binding (GO:0046978).” Cell types ordered alphabetically.

(m) Feature scatter showing expression of HLA-F and (n) SCN5A.

Abbreviations: aDAG, aging-differentially associated gene; BP, biological process; CC, cellular
component; COX8A, cytochrome C oxidase subunit 8A; GO, gene ontology; GSE, gene set
enrichment; HLA-F, major histocompatibility complex, Class I, F; InN, inhibitory neuron; KEGG,
Kyoto Encyclopedia of Genes and Genomes; MF, molecular function; NDUFB2,
NADH:ubiquinone oxidoreductase subunit B2; RPS7, ribosomal protein S7; SCN5A, sodium
voltage-gated channel alpha subunit 5; SPN, spiny projection neuron; TAP1, transporter 1, ATP

binding cassette subfamily B member; UMAP, uniform manifold approximation and projection.
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Figure 4: Aging-associated changes in gene expression between
excitatory neuron subtypes differ in strength and GO categories
from cortical inhibitory neurons

(a) UMAP of cell type annotations (left) and feature plots depicting marker genes used to
classify ExN subtypes (right).

(b) UpSet plot depicting unique vs. shared aDAGs across ExN subtypes Only intersection sizes
of 250 are displayed. Cell type sets ordered by cardinality.

(c) Significant GSE in 3/7 ExN subtypes.

(d) Clustermap of significant aDAGs in ExN under the term “GO BP: axonogenesis
(G0O:0007409).” Strength of association enumerated as coefficient estimate. Cell types ordered
alphabetically.

(e) Clustermap of significant aDAGs in ExN under the term “GO BP: cell-cell adhesion via
plasma-membrane adhesion molecules (G0O:0098742).” Cell types ordered alphabetically.

(f) Clustermap comparing significant aDAGs under the category of “GO BP: protein targeting to
ER (G0O:0045047)" between cortical InN, cortical ExN, and subcortical InN. Cell types ordered
alphabetically.

Abbreviations: aDAG, aging-differentially associated gene; BP, biological process; CC, cellular
component; ExN, excitatory neuron; GO, gene ontology; InN, inhibitory neuron; KEGG, Kyoto
Encyclopedia of Genes and Genomes; MF, molecular function; SPN, spiny projection neuron;

UMAP, uniform manifold approximation and projection.
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Figure 5: Aging-associated changes in gene expression in
oligodendrocyte precursors and oligodendrocytes suggest

dysregulation of axon guidance

(a) UMAP of cell type annotations (left) and feature plots depicting marker genes used to
classify OPCs and oligodendrocyte subtypes (right).

(b) Cell type proportions of OPCs and oligodendrocytes between age groups (see
Supplemental Table 5). Oligodendrocyte lineage cells comprise ~35% of total recovered nuclei
from both young and old individuals.

(c) UpSet plot depicting unique vs. shared aDAGs across OPCs and oligodendrocyte subtypes.
Cell type sets ordered by cardinality.

(d) Aging-associated GSE in OPCs and oligodendrocyte subtypes, colored by GO term sets.

(e) Clustermap of significant aDAGs in OPCs and Oligodendrocytes under the term “GO CC:
cell-cell junction (GO:0005911).”

(f) Clustermap comparing significant aDAGs in OPCs and Oligodendrocytes under the category
of “GO BP: axonogenesis (GO:0007409).”

(g) Clustermap comparing significant aDAGs in OPCs and Oligodendrocytes under the category
of “KEGG: Glutamatergic synapse.”

(h) Clustermap comparing significant aDAGs in OPCs and Oligodendrocytes under the category
of “KEGG: one carbon pool by folate.”

(i) Feature scatters demonstrating decreased expression and association of FAT2, (j) SEMA6D,
(k) KCNJ3 in aged OPCs.

(I) Feature scatter demonstrating increased expression and association of FTCD in

Oligodendrocyte-2.
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Abbreviations: aDAG, aging-differentially associated gene; BP, biological process; CC, cellular
component; FAT2, FAT atypical cadherin 2; FTCD, formimidoyltransferase cyclodeaminase; GO,
gene ontology; KCNJ3, potassium inwardly rectifying channel subfamily J member 3; KEGG,
Kyoto Encyclopedia of Genes and Genomes; MF, molecular function; OPC, oligodendrocyte
precursor cell; SEMA6D, semaphorin 6D, UMAP, uniform manifold approximation and

projection.

Figure 6: Differentially associated genes with age in astrocytes
and microglia overlap with immune response, aging and disease

gene sets

(a) GSE of aDAGs in astrocytes for Aging and Disease Perturbations from GEO gene sets. Top
10 most significant GO terms are shown. For a full list, see Supplementary Information.

(b) Dotplot of increased expression and/or percentage of astrocytes expressing complement,
immune, and gliosis genes.

(c) Feature scatter showing increased expression and association of complement pathway
genes C1S, (d) C3, and (e) CFlin aged astrocytes.

(f) GSE of aDAGs in microglia for “GO: Biological Process” and “Aging and Disease
Perturbations from GEO” gene sets. Top 10 most significant GO terms are shown. For a full list,
see Supplementary Information.

(g) Dotplot showing significant changes in expression and/or percentage of microglia expressing
immune response or (h) DAM genes

(i) Feature plots showing significant increases and associations of CD74, (j) SPP1, (k) IL15, and

(I) HLA-DMB in aged microglia.
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Abbreviations: aDAG, aging-differentially associated gene; BP, biological process; C1S,
complement component 1, S subcomponent; C3, complement C3; CD74, CD74 Antigen
(invariant polypeptide of major histocompatibility complex, class Il antigen-associated); CF/,
complement factor I; GEO, Gene Expression Omnibus; GSE, gene set enrichment; HLA-DMB,
major histocompatibility complex, class Il, DM beta; IL15, interleukin 15; SPP1, secreted

phosphoprotein 1

Figure 7: Scoring of senescence-associated gene sets at the level

of brain region and broad cell types

(a) Fraction of senescence associated gene sets changed with age across brain region and
broad cell types

(b) Genes comprising senescence-associated gene sets used for scoring in (a). Genes in bold
italics denote significant aDAGs

(c) Clustermap of significant aDAGs at the level of brain region with strength of association
enumerated as coefficient estimate (magenta, significant positive association with age; blue,
significant negative association with age). Brain regions ordered by hierarchical clustering.

(d) Clustermap of significant senescence-related aDAGs at the level of broad type. Broad types
ordered by hierarchical clustering.

(e) Clustermap of significant senescence-related aDAGs at the level of cell subtypes. Cell types
ordered by hierarchical clustering.

Abbreviations: CSP, canonical senescence pathway; CSS, custom senescence signature;
DAM, disease-associated microglia; SIP, senescence initiating pathway; SRP, senescence

response pathway
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Figure 8: Aging-associated changes in genes nearest to
GWAS-identified risk loci for Alzheimer’s disease and Parkinson’s
disease

(a) Clustermap of significant aDAGs which overlap with genes nearest to AD GWAS-nominated
risk loci at the level of brain region. Strength of association enumerated as coefficient estimate
(magenta, significant positive association with age; blue, significant negative association with
age). Brain regions ordered by hierarchical clustering.

(b) Clustermap of significant aDAGs which overlap with genes nearest to AD GWAS-nominated
risk loci across cell types. Cell types ordered by hierarchical clustering.

(c) Feature scatter and dot plot showing increased expression and association of APOE and (d)
MS4A6A with age in microglia

(e) Clustermap of significant aDAGs which overlap with genes nearest to PD GWAS-nominated
risk loci across brain regions. Brain regions ordered by hierarchical clustering.

(f) Clustermap of significant aDAGs which overlap with genes nearest to PD GWAS-nominated
risk loci across cell types. Cell types ordered by hierarchical clustering.

(g) Feature scatter and dot plot showing increased expression and association of CTSB, (h)
GPNMB, and (i) LRRK2 with age in microglia

Abbreviations: aDAG, aging-differentially associated gene; AD, Alzheimer’s disease; APOE,
apolipoprotein E; CTSB, cathepsin B; GPNMB, glycoprotein nmb; GWAS, genome-wide
association study; LRRK2, leucine-rich repeat kinase 2; MS4A6A, membrane spanning

4-domains A6A; PD, Parkinson’s disease


https://doi.org/10.1101/2023.07.31.551097

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.31.551097; this version posted August 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC
105 and is also made available for use under a CCO license.

Supplemental Figure 1: Cell type composition by sex, brain
region, donor and classification by broad cell type markers

(a) UMAP of 155,192 nuclei by sex (female, pink; dark blue, male)

(b) Proportion of cell types recovered by sex

(c¢) UMAP of 155,192 nuclei colored by brain region (EC, dark blue; MTG, light blue; PUT,
magenta; SVZ, gold) demonstrating the region-specific origin of some cell types.

(d) Proportion of cell types recovered by region.

(e) UMAP projection of nuclei split by brain region and sample ID demonstrating no single
cluster is derived from a single donor.

(f) Leiden clustering at resolution 0.85 identified 23 distinct clusters after removal of low quality
or poorly distinguished clusters.

(g) Dot plot of genes used to assign broad cell type categories to Leiden clusters, where dot
size indicates percentage of cells expressing a gene and color indicates level of mean
expression within that cluster.

(h) Feature plots of broad cell type markers to identify clusters as broadly as neurons, excitatory
neurons, cortical inhibitory neurons, spiny projection neurons, astrocytes, endothelial cells,
mural cells, ependymal cells, microglia, oligodendrocyte precursor cells, and oligodendrocytes.
(i) Force-directed graph of developmental relationships between cell types.

Abbreviations: ANPEP, alanyl aminopeptidase, membrane; AQP4, aquaporin 4; CSF1R,
colony stimulating factor 1 receptor; DRD1, dopamine receptor D1; DRD2, dopamine receptor
D2; EC, entorhinal cortex; ExN, excitatory neuron; FLE, force-directed; FLT1, fms related
receptor tyrosine kinase 1; FOXJ1, forkhead box J1; GADZ2, glutamate decarboxylase 2; InN,
inhibitory neuron; MBP, myelin basic protein; MTG, middle temporal gyrus; OPALIN,

oligodendrocytic myelin paranodal and inner loop protein; OPC, oligodendrocyte precursor cell;
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PDGFRA, platelet derived growth factor receptor alpha; PLP1, proteolipid protein 1; PUT,
putamen; RBFOX3, RNA binding fox-1 homolog 3; SLC17A6, solute carrier family 17 member 6;

SLC17A7, solute carrier family 17 member 7

Supplemental Figure 2: Unique and diverging patterns of aging
across brain regions and broad cell types in absence of cell loss

(a) Percentage of nuclei recovered per brain region by age group (light blue, young; dark blue,
old) with raw numbers expressed as ‘young | old’.

(b) Proportion of nuclei recovered by age group and donor showed no significant differences
between age groups. n.s. = not significant; p>0.05, Welch's t-test.

(c) UpSet plot of unique vs. shared aDAGs across brain regions where rows on the x-axis
correspond to [brain region] aDAG sets, columns correspond to intersection size between sets,
and bar color corresponds to direction of association (blue, negative association with age;
magenta, positive association with age). Lines between sets indicate shared aDAGs. Cell type
sets ordered by cardinality.

(d) Clustermap of the top 5 aDAGs across brain regions (blue, negative association; magenta,
positive association). Non-coding and pseudogenes distinguished by gray italics. Cell types
ordered by hierarchical clustering.

(e) UpSet plot of unique and shared aDAGs across broad cell types. Only intersection sizes of
250 are displayed. Cell type sets ordered by cardinality.

(f) Clustermap of the top 5 positive and negative aDAGs across broad cell types. Cell types

ordered by hierarchical clustering.
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Abbreviations: aDAG, aging-differentially associated gene; EC, entorhinal cortex; ExN,
excitatory neuron; InN, inhibitory neuron; MTG, middle temporal gyrus; OPC, oligodendrocyte

precursor cell; PUT, putamen; SPN, spiny projection neuron; SVZ, subventricular zone

Supplemental Figure 3: Top aDAGs across cortical and
subcortical InN subtypes and overlap with aging and disease

gene sets

(a) Clustermap of the top 5 positive and negative aDAGs across cortical and subcortical INN
subtypes (blue, negative association with age; magenta, positive association with age).
Non-coding and pseudogenes distinguished by gray italics. Cell types ordered by hierarchical
clustering.

(b) Enrichment of cortical and (c) subcortical INN subtype aDAGS from previous aging and
disease perturbation gene sets from GEO.

Abbreviations: aDAG, aging-differentially associated gene; GEO, Gene Expression Omnibus;

InN, inhibitory neuron; SPN, spiny projection neuron

Supplemental Figure 4: Top aDAGs across ExN subtypes and
overlap with aging and disease gene sets

(a) Clustermap of the top 5 positive and negative aDAGs across ExN subtypes (blue, negative
association with age; magenta, positive association with age). Non-coding and pseudogenes

are distinguished by gray italics. Cell types ordered by hierarchical clustering.


https://doi.org/10.1101/2023.07.31.551097

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.31.551097; this version posted August 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC
105 and is also made available for use under a CCO license.

(b) Feature scatter increased expression and association of RHBDL3; (¢) decreased expression
and association of STAC; and (d) increased expression and association of STAC2 with age in
ExN.

(e) Enrichment of ExN subtype aDAGS from previous aging and disease perturbation gene sets
from GEO.

Abbreviations: aDAG, aging-differentially associated gene; ExN, excitatory neuron; GEO,
Gene Expression Omnibus; RHBDL 3, rhomboid like 3; STAC, SH3 and cysteine rich domain;

STAC2, SH3 and cysteine rich domain 2

Supplemental Figure 5: Top aDAGs across oligodendrocyte
subtypes, myelination-related genes, and overlap with aging and

disease gene sets

(a) Clustermap of the top 5 positive and negative aDAGs across OPCs and oligodendrocyte
subtypes (blue, negative association with age; magenta, positive association with age).
Non-coding and pseudogenes are distinguished by gray italics. Cell types ordered by
hierarchical clustering.

(b) Clustermap of aDAGs related to CNS myelination across cell types (blue, negative
association with age; magenta, positive association with age). OPCs and oligodendrocytes are
demarcated by black boxes.

(c) Enrichment of OPC and oligodendrocyte subtype aDAGS from previous aging and disease
perturbation gene sets from GEO.

Abbreviations: CNS, central nervous system; ExN, excitatory neuron; GEO, Gene Expression

Omnibus; OPC, oligodendrocyte precursor cell.
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Supplemental Figure 6: Top aDAGs across non-neuronal,
non-oligodendrocyte cells and overlap with aging and disease
gene sets

(a) Clustermap of the top 5 positive and negative aDAGs across astrocytes, endothelial cells,
mural cells, ependymal cells, and microglia (blue, negative association with age; magenta,
positive association with age). Non-coding and pseudogenes are distinguished by gray italics.
Cell types ordered by hierarchical clustering.

(b) UpSet plot of unique vs. shared aDAGs across astrocytes, endothelial cells, mural cells,
ependymal cells, and microglia, where rows on the x-axis correspond to [cell type] aDAG sets,
columns correspond to intersection size between sets, and bar color corresponds to the
direction of association (blue, negative association with age; magenta, positive association with
age)

(c) GSE of aDAGs in endothelial, ependymal, and mural cells.

Abbreviations: aDAG, aging-differentially associated gene; GSE, gene set enrichment

Supplemental Figure 7: Overlap of aDAGs across cell types with
genes differentially expressed in aging human frontal cortex from

GEO

(a) Astrocytes, microglia, and oligodendrocyte-3 aDAGs were significantly enriched for genes
previously demonstrated to be increased in aged (28 years vs. 100 years) human frontal cortex
(magenta, positive association; dark blue, negative association). Non-coding and pseudogenes
are demarcated by gray italics. Cell types ordered by hierarchical clustering.

Asterisks mark cell types with significant enrichment.
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(b) Feature scatter showing increased expression and association of SERPINA3 and (¢) IFITM2
in with age in astrocytes

(d) Feature scatter showing increased expression and association of CD7163 and (e) CD74 in
with age in microglia

(f) Only neuronal subtypes were significantly enriched for genes previously demonstrated to be
decreased in aged (28 years vs. 100 years) human frontal cortex (magenta, positive
association; dark blue, negative association). Non-coding and pseudogenes are demarcated by
gray italics. Asterisks mark cell types with significant enrichment. Cell types ordered by
hierarchical clustering.

(g) Feature scatter showing decreased expression and association with age of KCNF1 in
LHX*PVALB?" cortical InN, (h) LY6H in cortical InN and RORB* ExN, and (i) PFN1 in
LHX6*PVALB® cortical InN

Abbreviations: aDAG, aging-differentially associated gene; EC, entorhinal cortex; ExN,
excitatory neuron; IFITM2, interferon-induced transmembrane protein 2; InN, inhibitory neuron;
KCNF1, potassium voltage-gated channel modifier subfamily F member 1; LY6H, lymphocyte
antigen 6 family member H; MTG, middle temporal gyrus; OPC, oligodendrocyte precursor cell;
PFN1, profilin 1; PUT, putamen; SERPINA3, serpin family A member 3; SPN, spiny projection

neuron; SVZ, subventricular zone; UMAP, uniform manifold approximation and projection.
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Supplemental Figure 8: Mean expression of genes nearest to AD
and PD GWAS-identified risk loci across brain regions and cell
types

(a) Dot plot of mean expression of genes nearest to AD GWAS-nominated risk loci across brain
regions. Size of circle denotes percentage of cells in a brain region expressing a gene and color
represents strength of expression (purple, high expression; light blue, low expression)

(b) Dot plot of mean expression of genes nearest to AD GWAS-nominated risk loci across cell
types

(c) Dot plot of mean expression of genes nearest to PD GWAS-nominated risk loci across brain

regions and (d) cell types
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Supplemental Table 1: Donor Demographics

Supplemental Table 2: Number of Significant Differentially Associated Genes with Age by
Brain Region, Broad Type, and Cell Subtype

Supplemental Table 3: Coefficient estimates for significant brain region aDAGs that are also
significant at the broad type level

Supplemental Table 4: gimmTMB All Significant aDAGs (FDR BH < 0.05)

Supplemental Table 5: Oligodendrocyte Proportions by Brain Region and Age
Supplemental Information: Age-Associated Gene Set Enrichment Outputs for Brain Region,

Broad Type, and Cell Type
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OPC and Oligodendrocyte
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a

. Aging Perturbations from GEO: UP

(only genes increased with age analyzed for enrichment)

Aging-Associated Gene Set Enrichment

. Aging Perturbations from GEO: DOWN

(only genes decreased with age analyzed for enrichment)
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a Fraction of Gene Set with Changed Expression b
by Age
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a Gene Expression-Aging Relationships of b

Alzheimer’s-Associated Genes by Brain Region
(FDR BH < 0.05)

Gene Expression-Aging Relationships of
Alzheimer’s-Associated Genes by Cell Type

(FDR BH < 0.05)
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Top 5 +/- Differentially Associated Genes with Age:

Cortical and Subcortical Inhibitory Neuron Subtypes
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Top 5 +/- Differentially Associated Genes with Age:
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