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Abstract <150 

High throughput gene expression profiling is a powerful approach to generate hypotheses on the 
underlying causes of biological function and disease. Yet this approach is limited by its ability to 
infer underlying biological pathways and burden of testing tens of thousands of individual genes. 
Machine learning models that incorporate prior biological knowledge are necessary to extract 
meaningful pathways and generate rational hypothesis from the vast amount of gene expression 
data generated to date. We adopted an unsupervised machine learning method, Pathway-level 
information extractor (PLIER), to train the first mouse PLIER model on 190,111 mouse brain RNA-
sequencing samples, the greatest amount of training data ever used by PLIER. mousiPLER 
converted gene expression data into a latent variables that align to known pathway or cell maker 
gene sets, substantially reducing data dimensionality and improving interpretability. To determine 
the utility of mousiPLIER, we applied it to a mouse brain aging study of microglia and astrocyte 
transcriptomic profiling. We found a specific set of latent variables that are significantly associated 
with aging, including one latent variable (LV41) corresponding to striatal signal. We next 
performed k-means clustering on the training data to identify studies that respond strongly to 
LV41, finding that the variable is relevant to striatum and aging across the scientific literature. 
Finally, we built a web server (http://mousiplier.greenelab.com/) for users to easily explore the 
learned latent variables. Taken together this study provides proof of concept that mousiPLIER 
can uncover meaningful biological processes in mouse transcriptomic studies. 

 

Significance statement <120 

Analysis of RNA-sequencing data commonly generates differential expression of individual genes 
across conditions. However, genes are regulated in complex networks, not as individual entities. 
Machine learning models that incorporate prior biological information are a powerful tool to 
analyze human gene expression. However, such models are lacking for mouse despite the vast 
number of mouse RNA-seq datasets. We trained a mouse pathway-level information extractor 
model (mousiPLIER). The model reduced the data dimensionality from over 10,000 genes to 196 
latent variables that map to prior pathway and cell marker gene sets. We demonstrated the utility 
of mousiPLIER by applying it to mouse brain aging data and developed a web server to facilitate 
the use of the model by the scientific community.  

 

Introduction 

Over the last decade, scientists have generated an astronomical amount of brain gene expression 
data (Carulli et al., 1998; Anders and Huber, 2010; Costa-Silva et al., 2017; Keil et al., 2018; 
Zhang et al., 2021). Differential gene expression analysis of high throughput RNA-sequencing 
data is commonly applied to interrogate the relative enrichment of a single transcript across 
samples. However, genes are regulated in complex networks, rather than as individual entities. 
Furthermore, gene expression profiling studies are limited in statistical power, as they tend to 
examine relatively few samples compared to the number of expressed transcripts and increasing 
the number of samples can be prohibitively expensive.  

Machine learning models that incorporate prior pathway information have shown great power in 
analyzing human gene expression. To this end we apply an unsupervised learning method that 
(1) reduces the dimensionality and/or (2) incorporates additional published gene expression 
datasets. Unsupervised machine learning is a method that defines the structure of “unlabeled 
data”, for which information on the biological context and experimental conditions is removed. 
Such methods are well-suited for gene expression data, and are often used for tasks such as 
reducing the dimensionality of expression datasets (Hotelling, 1933; der Maaten and Hinton, 
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2008; McInnes et al., 2018), clustering samples (Oyelade et al., 2016; Chen et al., 2020), or 
learning shared expression patterns across experiments (Tan et al., 2016; Handl et al., 2019). 
While unsupervised machine learning models are capable of analyzing large amounts of 
unlabeled expression data, many of them don’t explicitly encode prior biological knowledge to 
encourage the model to learn biologically meaningful patterns of gene expression over technical 
ones. 

A novel approach, the modeling framework pathway-level information extractor (PLIER) (Mao et 
al., 2019), is built explicitly to work on expression data, and uses matrix factorization to incorporate 
prior biological knowledge in the form of sets of genes corresponding to biological pathways or 
cell type markers. This approach converts gene expression data into a series of values called 
“latent variables” (LVs) that correspond to potentially biologically relevant combinations of 
differentially expressed genes. PLIER learns diverse biological pathways from entire compendia 
of expression data and can transfer that knowledge to smaller studies, such as MultiPLIER (Taroni 
et al., 2019). However, PLIER models are largely trained on a single dataset rather than a 
compendium (Rubenstein et al., 2020; Stogsdill et al., 2022; Zhang et al., 2022), and past 
MultiPLIER runs have only trained models with up to tens of thousands of samples (Taroni et al., 
2019; Banerjee et al., 2020). 

To expand the application and utility of PLIER for identifying meaningful biological pathways from 
gene expression data, we trained a PLIER model on a compendium of mouse gene expression 
data. In doing so we trained the first mouse compendium PLIER model (mousiPLIER), on the 
greatest amount of training data (190,111 samples) ever used by this model. We demonstrated 
successful optimization of the model training, which generated hypotheses on regulation of mouse 
brain aging. A further innovation applied k-means clustering in the latent variable space to identify 
the microglia-associated latent variables that corresponded to aging-related changes in the 
training data. Finally, to maximize widespread usability of mousiPLIER, we built a web server that 
allows others to visualize the results and find patterns in the data based on their own latent 
variables of interest. Going forward, this model and its associated web server will be a useful tool 
for better understanding mouse gene expression. 

 

Materials and Methods 

Data 

We began by downloading all the mouse gene expression data in Recount3, along with its 
corresponding metadata (Wilks et al., 2021). We then removed the single-cell RNA-seq data from 
the dataset to ensure our data sources were consistent across samples and studies. Next, we 
filtered the expression data, keeping only genes that overlapped between Recount3 and our prior 
knowledge gene sets. Finally, we RPKM-transformed the expression using gene lengths from the 
Ensembl BioMart database (Howe et al., 2021) and Z-scored the expression data to ensure a 
consistent range for the downstream PLIER model. 

For our prior-knowledge gene sets we used cell type marker genes from CellMarker (Zhang et 
al., 2019), pathway gene sets from Reactome (Gillespie et al., 2022), and manually curated brain 
marker genes from Allen Mouse Brain Atlas (https://mouse.brain-map.org) (Lein et al., 2007). We 
selected cell type marker genes corresponding to all available mouse cell types within the 
CellMarker database. For mouse biological pathways, we downloaded pathway information from 
the Reactome database. More specifically, we processed the files “Ensembl2Reactome_All_ 
Levels.txt”, “ReactomePathways.txt”, and “ReactomePathwaysRelation.txt”, selecting only 
pathways using mouse genes, filtering out all pathways with fewer than 5 genes present, and 
keeping only pathways that were leaf nodes on the pathway hierarchy. Because we were 
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interested in mouse brains in particular, we rounded out our set of prior information by manually 
selecting marker genes for the striatum, midbrain, and cerebellum. In total, we used 1,003 prior 
knowledge pathways when training our model. 

PLIER 

We began the PLIER pipeline by precomputing the initialization for PLIER with incremental PCA 
in scikit-learn (Pedregosa et al., 2011). We then used the expression compendium, prior 
knowledge gene sets, and PCA initializations to train a PLIER model. The resulting task took two 
days to run and yielded 196 latent variables. 

RNA-seq processing 

RNA-seq reads from mouse microglia and astrocytes (Pan et al., 2020) were mapped to mm10 
reference genome using STAR (v2.7.1a)(Dobin et al., 2013) with parameters: --
outFilterMismatchNmax 3 --outFilterMultimapNmax 1 --alignSJoverhangMin 8. Gene level read 
counts were prepared using featureCounts (subread v1.6.1)(Liao et al., 2014). The gene 
annotation file used in featureCounts was download from recount3 
(https://rna.recount.bio/docs/raw-files.html#annotation-files).  

LV significance for mouse aging RNA-seq data 

We first transformed the mouse aging expression data from gene space to latent variable space 
using a custom Python script. To determine which latent variables were associated with 
experimental conditions, we used a linear model by treating development stages (in month) as 
numerical variables. To correct the p-values for multiple testing, we used the Benjamini-Hochberg 
procedure (FDR)(Benjamini and Hochberg, 1995). LVs with FDR < 0.05 were considered to be 
significantly associated. 

Clustering 

We selected the latent variables significantly associated with aging in mouse microglia as a 
biological starting point. We then used these latent variables to query the training data and see 
which studies seemed associated with the same biological signals. To do so, we used k-means 
clustering with a k of 2, to look for experiments where there was some experimental condition that 
affected the latent variable. We then ranked the top ten studies based on their silhouette scores, 
and looked to see which conditions were associated with relevant experimental variables. 

Hardware 

The PLIER model training was performed on the Penn Medicine high performance computing 
cluster. The full pipeline takes around two weeks to run, with the main bottlenecks being the 
Recount3 data download, which takes one week to run, and training the PLIER model, which 
takes two days on a compute node with 250GB of RAM. 

Web Server 

The web server for visualizing the results was built on top of the ADAGE web app framework (Tan 
et al., 2017). The main changes we made were to substitute the latent variables and gene sets 
from our trained PLIER model and to forgo uploading the input expression data as the mouse 
compendium we used was much larger than the input expression for ADAGE. 

Data and code availability 

All data and code used in this study can be found at https://github.com/greenelab/mousiplier. 

 

Results 
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MousiPLIER learned latent variables with ideal pathway-level and gene-level sparsity. 

We trained mousiPLIER using on-disk PCA implementation to initialize PLIER, modified the 
pipeline to work with mouse data, and used a high-memory compute node to manage the size of 
the matrix decomposition (see Materials and Methods). The resulting model had 196 latent 
variables with ideal pathway-level and gene-level sparsity. The per-latent variable distribution had 
an average of 65% sparsity, such that the latent variables tended to use only around 35% of the 
genes in the training data (Fig. 1A). While many of the latent variables corresponded to no 
pathways, indicating signals in the training data not passed in as prior knowledge, those that 
remained corresponded to few pathways (Fig. 1B). This optimal pathway-level and gene-level 
sparsity allowed us to interrogate individual latent variables that corresponded to a small number 
of biological functions. 

MousiPLIER identified LVs associated with aging. 

We next interrogated brain-relevant latent variables that our mousiPLIER learned from the 
compendium. We analyzed an individual study on mouse brain aging (Pan et al., 2020). This 
study measures wild-type and Alzheimer’s disease (APP-PS1) mouse gene expression in 
microglia and astrocytes at five ages across adulthood. We first projected the RNA-seq data from 
gene space to mousiPLIER LV space. Then, we used a linear model to identify the latent variables 
that changed significantly across developmental aging. We found that mousiPLIER identified a 
specific set of LVs in each condition in the study (Fig. 2A). To narrow down the scope of the 
analysis, we next validated the biological relevance of the latent variables associated with wild-
type microglial cells.       

Latent variable 41 demonstrated the biological relevance of mousiPLIER latent variables. 

Having identified microglia-associated latent variables of interest, we next sought to validate the 
relevance of this gene set by finding which studies in the mousiPLIER training data responded 
strongly to them. To do so, we developed a novel method to rank studies based on their latent 
variable weights. More precisely, we performed k-means clustering with a k of two on each study 
in each latent variable space, and ranked studies by their silhouette scores, a metric measuring 
the degree to which clusters are separated from each other. Using this approach, we identified 
studies that contained samples distinguishable by their values for our latent variables of interest.  

We focused this approach on latent variable 41, which decreased throughout aging in wild-type 
microglia and contained genes functionally associated with striatal cell type specificity (Fig. 2B-
D). We found that many of the studies with the highest silhouette scores for latent variable 41 
indicated processes occurring in the brain (Fig. 3A). We dug deeper into which specific samples 
were present in each cluster and found that latent variable 41 was in fact learning something 
brain- (and more specifically striatum-) related (Fig. 3).  

For example, in a study to delineate tissue-specific transcriptional consequences of copy number 
variant within 16p11.2, a common cause of autism spectrum disorder, gene expression data were 
profiled from three genotypes (wild type, deletion, and duplication of the 16p11.2 region) and six 
tissues (brown fat, liver, white fat, cerebellum, cortex, and striatum) 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE76872). The LV experimental values 
in the striatal samples, irrespective of the genotype, clearly stand apart from the other tissues 
(Fig. 3B). Additionally, in a study to investigate transcriptional effects of selected long noncoding 
RNAs (lncRNAs), mRNA expression is generated from embryonic and adult whole brains of wild-
type and lncRNA knockout mouse (Goff et al., 2015). The two groups distinguished by latent 
variable 41 consist of brain samples from embryonic and adult mice (Fig. 3C), supporting the 
association between latent variable 41 and aging found in the study (Pan et al., 2020) we used to 
derive the latent variables. 
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Web Server 

To allow others to independently examine mousiPLIER learned latent variables, we developed a 
web server at http://mousiplier.greenelab.com/. This server allows users to list the genes present 
in, visualize which experiments had high cluster scores for, and see which biological pathways 
participate in each latent variable (Fig. 4). 

Discussion/Conclusion 

In this paper we developed mousiPLIER and established proof of concept for training extremely 
large PLIER models on mouse data. The learned latent variables mapped to various biological 
processes and cell types. Further, we applied a novel approach for surfacing latent-variable 
relevant experiments from an expression compendium. Specifically, we clustered training 
experiments based on latent variable values, allowing us to query a large compendium for 
experiments pertaining to mouse striatal aging. Finally, we created a web server to make the 
model’s results more easily accessible to other scientists. 

While we successfully transformed a study from outside the training data into the latent space 
and identified study-specific latent variables, application of mousiPLIER was not universally 
successful across transcriptomic studies. This may be due to lack of similar samples in training 
compendium, too few samples in the study of interest to generate sufficient statistical power, or 
other factors. In these cases, there isn’t yet a method to select meaningful latent variables to 
guide downstream analyses. 

Finally, as a linear model PLIER can only approximate non-linear relationships between the genes 
used to train the model and the learned biological pathways. While we do not expect this to have 
a large impact (Heil et al., 2022), incorporating prior knowledge into non-linear models such as 
neural networks is an exciting field of research and a potential improvement for the MultiPLIER 
and mousiPLIER frameworks. Going forward, our model and web server will allow scientists to 
explore the latent space of their own experiments and learn about relevant biological pathways 
and cell types. 
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Figure legends 

Figure 1. mousiPLIER learned latent variables with ideal pathway-level and gene-level 
sparsity. (A) The distribution of the percentage of genes from the training set used per latent 
variable. (B) The distribution of the number of prior knowledge gene sets used per latent variable. 

Figure 2. MousiPLIER identified LVs associated with aging. (A) Venn diagram showing the 
number of significant LVs and their overlap across cell types and experimental conditions. (B) 
LV41 is deceased significantly in wild-type microglia during aging. (C) A heatmap showing 
significant LV-associated biological pathways or cell type markers. A linear model is used to test 
the effect of aging on each LV. P-values are adjusted for multiple comparisons using Benjamini-
Hochberg method. A LV is differentially expressed if FDR < 0.05.  LV: latent variable; AD, 
Alzheimer’s disease; WT, wild-type. 

Figure 3. Latent variable 41 demonstrated the biological relevance of mousiPLIER latent 
variables. (A) Studies with the ten highest silhouette scores after clustering according to LV41 
expression values. (B) LV41 expression values are higher for striatal tissue than other tissues in 
SRP070440. (C) Effects of development on LV41 (D) Top 20 genes with highest weight 
associated with LV41. LV: latent variable. 

Figure 4. Snapshot of mousiPLIER web server showing its functions. (A) An example to 
visualize the gene network of LV41 associated genes. (B) An example to explore experiments 
and view samples’ activities in mousiPLIER latent space. (C) An example to explore latent 
variables. Gene weights and the clustering of experiments for each LV is displayed and can be 
easily downloaded. 
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