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 38 

Abstract 39 

The expanding number of rare immunodeficiency syndromes offers an opportunity to 40 

understand key genes that support immune defence against infectious diseases. However, 41 

patients with these diseases are by definition rare. In addition, any analysis is complicated 42 

by treatments and co-morbid infections requiring the use of mouse models for detailed 43 

investigations. Here we develop a mouse model of DOCK2 immunodeficiency and 44 

demonstrate that these mice have delayed clearance of herpes simplex virus type 1 (HSV-1) 45 

infections. Further, we  found that they have a critical, cell intrinsic role of DOCK2 in the 46 

clonal expansion of anti-viral CD8+ T cells despite normal early activation of these cells. 47 

Finally, while the major deficiency is in clonal expansion, the ability of primed and expanded 48 

DOCK2-deficient CD8+ T cells to protect against HSV-1-infection is also compromised. 49 

These results provide a contributing cause for the frequent and devastating viral infections 50 

seen in DOCK2-deficient patients and improve our understanding of anti-viral CD8+ T cell 51 

immunity.  52 
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Introduction 56 

The management of infectious diseases in patients with primary immunodeficiency is a 57 

significant clinical problem. At the same time, the expanding catalogue of primary 58 

immunodeficiencies is revealing not only new roles for mammalian genes in immunity, but 59 

also an appreciation that many gene defects lead to unique susceptibility to infectious 60 

diseases [1]. DOCK2 immunodeficiency is a disease that leads to severe 61 

immunocompromise, being fatal in two of the original five cases described, and requiring 62 

bone marrow transplantation in the other cases [2]. Patients with mutations in DOCK2 63 

present with combined immunodeficiency with early onset invasive bacterial and viral 64 

infections [2]. Typical infections found in the published DOCK2 patients include invasive viral 65 

infections including varicella, mumps, cytomegalovirus and adenovirus, as well as bacterial 66 

infections and a likely case of Pneumocystic jirovicii [2-4]  67 

 68 

DOCK2 is a member of the DOCK family of guanine nucleotide exchange factors (GEFs) 69 

and has been previously shown in mice to be a GEF for RAC1 [5, 6]. DOCK2 is 70 

predominantly expressed in hematopoietic cells, particularly the cells of the immune system 71 

[7]. Previous studies using a DOCK2 knockout mouse have shown that loss of DOCK2 is 72 

associated with severe peripheral lymphopenia and lymphoid follicle hypoplasia [7]. DOCK2 73 

has been shown to be important for proper T cell synapse formation after activation by 74 

antigen and aids in the translocation of the T cell receptor (TCR) and lipid rafts into the 75 

synapse [5]. DOCK2 had also been shown to be important for integrin activation in response 76 

to chemokine signaling in B cells [8].  77 

 78 

In the more severe syndromic immunodeficiencies, it can be especially difficult to dissect the 79 

ways in which a particular gene defect compromises control of a given pathogen. Multiple 80 

concurrent infections and medications can mask or exacerbate immune consequences of 81 
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the defects in these patients. Therefore for a gene like DOCK2, with roles in multiple cell 82 

types, reductionist models are required. In this regard, mouse models are particularly useful. 83 

Indeed one study has shown that DOCK2 is important for protection against enteric infection 84 

with Citrobacter rodentium, with a role for this protein in preventing or reducing bacterial 85 

attachment to enterocytes being identified [9], as well as effects on macrophage migration 86 

[10]. However, such an innate mechanism seems unlikely to underlie a susceptibility to viral 87 

infections, nor does it articulate well with the known requirement for DOCK2 in lymphocytes. 88 

 89 

Here we take advantage of a well described model of viral skin infection with herpes simplex 90 

virus (HSV) in mice with DOCK2 deficiency to examine this defect in the context of a viral 91 

infection. We show that DOCK2 deficient mice have a more severe disease after HSV 92 

infection, including greater lesion size and increased viral titres. This model was then 93 

extended to explore anti-viral CD8+ T cell function. This found a major cell-intrinsic defect in 94 

expansion of virus-specific CD8+ T cells and a lesser, but still significant deficiency in 95 

protective capacity. Consistent with these findings, the numbers of endogenous virus-96 

specific CD8+ T cells were reduced in mice acutely infected with HSV. These data provide 97 

insight into the impact of DOCK2 deficiency on anti-viral CD8+ T cells. 98 

 99 

  100 
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Methods 101 

Viruses and cell lines 102 

HSV-1 strain KOS was kindly provided by F. Carbone (The University of Melbourne, 103 

Parkville, Victoria, Australia) and is referred to as HSV throughout. HSV.OVA is a 104 

recombinant of HSV-1 strain KOS expressing a fusion of enhanced green fluorescent protein 105 

and the epitopes SIINFEKL, TSYKFESV, SSIEFARL and has been described previously 106 

[11]. Viruses were grown and titrated by standard methods using BHK-21 for growth and BS-107 

C-1 for titration, respectively. Immortalized cell lines BHK-21 and BS-C-1 were maintained in 108 

Dulbecco’s Modified Eagle medium (DMEM, Invitrogen) with 2 mM L-glutamine and 10% 109 

fetal bovine serum (FBS) (D10). Vero cells were grown in Minimal Essential Medium 110 

supplemented with 10% FBS, 2 mM L-glutamine, 5x10-5 M 2-mercaptoethanol (2-ME) and 5 111 

mM HEPES (all Invitrogen).  112 

 113 

Mice 114 

Specific pathogen-free female C57BL/6, C57BL/6.SJL (CD45.1) and C57BL/6 OT-I mice 115 

greater than 8 weeks of age were obtained from the Animal Resource Centre (Perth, 116 

Australia) and from the Australian Phenomics Facility (APF, Canberra, Australia). 117 

DOCK2E775X/E775X (ENSMUST00000093193) mice were generated by chemical mutagenesis 118 

using N-ethyl-N-nitrosourea (ENU) as previously published [12, 13]. ENU was given 119 

intraperitoneally (i.p.) to male C57Bl/6 mice three times at an interval of 1 week. All mice 120 

were housed, and experiments were done according to the relevant ethical requirements 121 

and under approvals from the ANU animal ethics and experimentation committee (A2011/01, 122 

A2013/37, A2014/62, A2016/45, A2017/54, A2020/01 and A2020/45) at the APF. 123 

 124 

HSV infections 125 
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Female mice >8 weeks of age were anesthetized by i.p. injection of Avertin (20 µl/g of body 126 

weight). The left flank of each mouse was shaved and depilated with Veet. HSV was diluted 127 

in PBS to 108 PFU/ml and tattooed into a 0.5x0.5 cm area of skin above the tip of the spleen. 128 

Body weight and lesion progression were measured daily until the lesions had resolved. 129 

Lesion size was determined with the aid of a caliper to determine overall area and then the 130 

proportion of the area affected by the lesion was estimated and used to calculate a final size. 131 

In some experiments spleens were taken after seven days and cells analyzed for HSV-gB498-132 

specific CD8+ T cells, or CD8+ T cells that make IFNγ after stimulation with gB498 peptide, by 133 

flow cytometry (see below).  134 

 135 

Viral titer determination 136 

Dorsal root ganglia (DRG) innervating the infected dermatome were removed at day 7 post 137 

infection. All DRG from one mouse were pooled into 1 ml of DMEM supplemented with 2% 138 

FBS and 4 mM L-glutamine (D2). Samples were homogenized, freeze-thawed three times 139 

and viral titers were determined using standard plaque assays on monolayers of confluent 140 

Vero cells and expressed as plaque forming units (pfu) per mouse [14]. 141 

 142 

Activation of OT-I T cells in vitro for analysis and HSV protection 143 

Splenocytes were prepared from D2EX and WT littermate OT-I mice. For in vitro analysis 144 

experiments, 2×106 splenocytes were cultured with OVA257 peptide (SIINFEKL, 145 

concentrations as shown) in D10 supplemented with 5x10-5 M β-mercaptoethanol and 5 mM 146 

HEPES (T cell medium) for up to 40 hours before harvesting and flow cytometric staining for 147 

either CD69 or intracellular IRF4. For preparation of bulk cultures of OT-I T cells for transfer 148 

into mice, splenocytes were prepared as above, but cultures were started with 1×108 149 

splenocytes. One third of these were pulsed with 1×10-7 M OVA257 peptide in serum-free 150 

medium for 1 hour at 37°C on a rocking platform before washing and recombining with the 151 
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other cells. Cultures proceeded in T cell medium, further supplemented with recombinant IL-152 

2. Cultures of D2EX OT-I failed unless supplemented with higher amounts of IL-2 and we 153 

determined empirically that using 6 ng/ml for D2EX OT-I produced cultures of cells similar to 154 

WT OT-I in 3 ng/ml, so these differing amounts of cytokine were used. After 4 days cultures 155 

were enriched for CD8+ T cells using a MACS CD8a+ T Cell (untouched) Isolation Kit (# 130-156 

095-236) according to manufacturer’s instructions. 5×106 purified cells (typical purity <90% 157 

CD8+) were transferred into female WT mice (>8 weeks old) via i.v. injection in a total 158 

volume of 200 µl PBS. Control mice received 200 µl PBS. Twenty-four hours later, mice 159 

were tattoo-infected with HSV.OVA (as above). 160 

 161 

Activation and expansion of naïve OT-I CD8+ T cells by HSV infection in vivo  162 

Splenocytes were prepared from D2EX and WT littermate CD45.1+ OT-I mice and enriched 163 

for CD8+ T cells using a MACS CD8a+ T Cell (untouched) Isolation Kit (# 130-095-236) 164 

according to manufacturers instructions. After purification cells were typically ~90% CD8+, 165 

Vα2+. 1×104 of these cells were injected i.v. into female CD45.2+ recipient mice (>8 weeks 166 

old) that were then infected on the flank with HSV.OVA 24 hours later (as above). Seven 167 

days after infection, mice were culled and numbers of OT-I cells in the spleen and/or DRG 168 

identified as CD8+, CD45.1+, Vα2+ events by flow cytometry. 169 

 170 

Flow cytometry 171 

Blood was collected from the retroorbital veins using EDTA as anti-coagulant. Single-cell 172 

suspensions from organs were prepared by mashing organs through a 70µm cell strainer 173 

(BD) followed by antibody staining as described previously [15]. Erythrocytes in blood and 174 

spleen samples were lysed using ammonium chloride lysis buffer before antibody staining.  175 

1) Peripheral blood screen: AlexaFluor700 (AF700)-conjugated anti-CD4 (BD, RM4-5), 176 

peridin-chlorophyll-protein complex (PerCP)- Cyanine (Cy) 5.5 conjugated anti-B220 , Pacific 177 
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Blue (PB)-conjugated anti-CD44, allophycocyanin (APC)-Cy7-conjugated anti-CD3, APC- 178 

conjugated anti-NK1.1 (PK136, BD), fluorescein isothiocyanate (FITC)-conjugated anti-IgM (, 179 

phycoerythin (PE)-Cy7 conjugated anti-KLRG1, and PE-conjugated anti-IgD.  180 

2) Thymic and splenic surface stains (eBioscience unless otherwise stated): AF700 181 

conjugated anti-CD4 (BD, RM4-5), Brilliant Ultraviolet (BUV) 395-conjugated anti-CD8 (BD, 182 

53-6.7), APC-conjugated anti-CD5 (53-7.3), PE conjugated anti-CD25 (PC61.5), PerCP Cy 183 

5.5-conjugated anti-CD3 (BioLegend, 17A2), PE-conjugated anti-CD3 (BD, 145-2C11), 184 

Brilliant Violet (BV) 605 conjugated anti-CD62L (Biolegend, MEL-14), PB-conjugated anti-185 

CD44 (BioLegend, IM7), APC-Cy7-conjugated live/dead stain, FITC conjugated anti- TCR-β 186 

(H57-597, eBioscience), efluoro conjugated live/dead stain, biotin-conjugated anti-CD93 187 

(AA4.1), PE-Cy7- conjugated IgM (II/41), FITC conjugated anti-IgD (11-2c (22-26)), PB-188 

conjugated anti-CD23 (B3B4), BUV737-conjugated anti-CD21/35 (BD, 7G6), AF700-189 

conjugated anti-B220 (RA3-6B2) and BUV395-conjugated anti-CD19 (BD, 1D3). 190 

All B cell stains included Fc block (BD, 2.4G2), either as a 30 minutes pre-incubation or 191 

together with biotinylated or fluorescently labelled antibodies. Biotin staining was followed by 192 

addition of BV605-conjugated streptavidin (BioLegend). For intracellular staining of FOXP3, 193 

the eBioscience Foxp3 / Transcription Factor Staining buffer set (00-5523-00) was used 194 

according to the manufacturer’s instruction using FITC-conjugated anti-FoxP3 antibodies 195 

(FJK-16S). Detection of NKT cells using CD1d monomers loaded with α-GalCer (produced 196 

by the NIH tetramer facility) was as previously described [16]. 197 

 198 

3) For CD8+ cells and HSV-specific CD8+ T cells in infected mice, Surface stain panel H-199 

2Kb/SSIEFARL dextramer (Immudex), anti-CD8 (clone 53-6.7; BioLegend) and in some 200 

cases anti-CD62L (MEL-14, BioLegend) and intracellular staining with anti-GzmB (GB11, 201 

BioLegend). 4) After stimulation with gB498 peptide (SSIEFARL) for 4 hours in the presence 202 

of brefeldin A, anti-CD8 (as above) and anti-IFNγ (XMG1.2, BioLegend), stained 203 

intracellularly[17]. 5) For OT-I cells tested prior to transfer or from mice after transfer and 204 
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infection, anti-CD8 (as above), anti-CD45.1 (A20, Biolegend) and anti-TCRVα2 (B20.1, 205 

BioLegend). 6) For OT-I cells stimulated in vitro, anti-CD8 (as above) and anti-CD69 206 

(HI.2F3, BD Bioscience) or anti-IRF4 (3e4, eBioscience) stained intracellularly using a Foxp3 207 

/ Transcription Factor Staining Buffer Set (cat# 00-5523-00, eBioscience). Samples were 208 

acquired on a LSR II flow cytometer and analysis was done using Flowjo software (Tree Star 209 

Inc.). Statistical analysis was done using GraphPad Prism. 210 

 211 

Results 212 

Novel DOCK2 mutant mouse strains generated by ENU mutagenesis. 213 

As part of an ENU-mutagenesis project to provide mouse models for human disease [12], 3 214 

different mouse strains with premature stop codons in DOCK2 were discovered due to T cell 215 

lymphopenia in the blood as shown in Figure 1A. The position of the mutations in the 216 

DOCK2 protein are shown in Supplementary Figure 1A. 217 

Characterization of the DOCK2 E775X strain 218 

One of the strains strain carrying the E775X mutation due to a G to T point mutation at 219 

position 2392 in cDNA (ENSMUST00000093193) was selected for further analysis. 220 

Homozygous mice carrying this mutation (i.e. DOCK2E775X/E775X) are referred to hereafter as 221 

D2EX for brevity. This mouse strain recapitulates the already published features of DOCK2 222 

mutation in mice, with marked T cell lymphopenia [7], in the blood of mice homozygous for 223 

the E775X mutation despite overall normal numbers of leucocytes (Figure 1A and 224 

Supplementary Figure 1B), absent marginal zone B cells [7] and decreased NKT cells in the 225 

thymus  [18](Supplementary Fig 1C)  with some increase of monocytes and eosinophils,  226 

and normal number of lymphocytes.  We also detected elevated levels of IgE with aging in 227 

these mice (data not shown). 228 
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Closer analysis of T cell subsets in the spleen of these mice shows that the majority of the T 229 

cells (both CD4 and CD8) have an activated CD44 high phenotype (Figure 1B). This 230 

activation phenotype was partially ameliorated in mice with a transgenic T cell receptor (OT-I 231 

mice) with the mean fluorescence intensity of the whole population for CD44 decreasing on 232 

CD8+ transgenic cells but it is not completely normalized (Figure 1C). Interestingly, we found 233 

that the average expression of CD3 and TCRβ were decreased on mutant T cells. 234 

Furthermore, expression of the CD8 co-receptor on CD8+ T cells was decreased but 235 

expression of CD4 was increased on mutant CD4+ T cells. In line with a dysregulated TCR 236 

signaling in mutant T cells, we find that CD5 expression is increased on both CD4 and CD8 237 

T cells in the spleen (Figure 1D).  238 

We also enumerated FoxP3+ Tregs in the spleen and found that both their percentage and 239 

numbers were increased (Figure 2A). Despite the peripheral T cell lymphopenia, thymic T 240 

cell subsets in DOCK2 mutant mice were comparable to WT littermates (Figure 2 B), 241 

however thymic NKT cells were reduced (Supplementary Figure 1D). 242 

 243 

D2EX-mutant mice loose significantly more weight and develop bigger lesions after 244 

skin infection with HSV-1 245 

Cohorts of D2EX and wild-type C57BL/6 mice were inoculated with HSV.KOS in the flank. In 246 

this model, productive infections begin in the skin, but the virus then rapidly invades the 247 

peripheral nervous system, where further infection ensues in primary sensory neurons. 248 

Following spread in the nervous system, virus then emerges to other cutaneous sites 249 

throughout the infected dermatome producing a rash that is reminiscent of herpes zoster [19, 250 

20]. Infection with this strain of HSV is very rarely lethal in mice and lesion size and weight 251 

loss can be assessed daily as clinical signs that indicate the severity of infection[14]  252 

After infection of WT and D2EX mice, weight and lesion progression were measured daily 253 

until the lesions had resolved and weight had reached the starting point of 100%. In both 254 
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groups of mice, weight dropped sharply on days 1 and 2 after infection, but thereafter WT 255 

mice gained significantly more weight than D2EX mutant mice from day 10 to 20 post 256 

infection (Figure 3A). Further, D2EX mice developed significantly larger lesions from day 7 to 257 

10 and while lesions were resolved by day 10 in wild-type mice, in D2EX mice lesions did 258 

not resolve for a further three days (Figure 3B). 259 

Viral titers in DRG are higher in D2EX mice at day 7 post skin infection 260 

The difference in pathogenesis suggested that the main impact of the defect in D2EX mice 261 

was to delay the clearance of infection that typically occurs with the effective deployment of 262 

activated T cells between days 5 and 8 after infection [19]. To test this, groups of D2EX and 263 

WT mice were infected and levels of HSV in DRG were quantified seven days later. In WT 264 

mice, two of five mice had already cleared virus to below the limit of detection and the 265 

average titre for the group was 10 pfu per mouse. By contrast only one of nine D2EX mice 266 

had undetectable virus and the average was 100-fold higher than seen in the WT mice 267 

(Figure 3C). 268 

DOCK2 has a cell-intrinsic role in mounting anti-viral CD8+ T cell responses 269 

HSV infection of mice has provided an excellent model for interrogating CD8+ T cell priming, 270 

expansion and function [21-25] and is relevant to human infection [26, 27]. Therefore we 271 

bred D2EX mice to the OT-I T cell receptor (TCR)-transgenic mouse line to examine the 272 

activation and expansion of CD8+ T cells in response to infection with HSV.OVA, which 273 

expresses the SIINFEKL epitope recognised by the OT-I TCR. We used this extension of our 274 

model to determine if there is a defect in CD8+ T cell responses associated with the D2EX 275 

mutation and if so, whether this is intrinsic to the T cells, or is a function of other cells, for 276 

example the dendritic cells required for priming. To do this, CD8+ T cells were purified from 277 

the spleens of WT and D2EX OT-I mice also bearing the CD45.1 allelic marker and 278 

transferred into groups of WT or D2EX mice (which carry the CD45.2 allele). These mice 279 

were infected with HSV.OVA on the next day and after seven days spleens and DRG 280 
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analysed for the number of OT-I T cells. Irrespective of the recipient genotype, WT OT-I cells 281 

expanded in response to infection such that an average of ~1×106 were found in the spleen. 282 

By contrast D2EX OT-I cells failed to expand well with around 10-fold fewer being found 283 

(Figure 4A). Likewise, in DRG a significant difference was seen between the numbers of 284 

D2EX and WT OT-I at seven days after infection (Figure 4B). In this experiment we also 285 

looked at granzyme B (GzmB) expression as a marker of whether the D2EX OT-I might also 286 

differ in function, but found that of the OT-I that were recruited to DRG, a similar fraction 287 

were Gzm+, suggesting adequate differentiation into effectors (Figure 4C). These data 288 

suggest that DOCK2 has a significant cell-intrinsic role in ensuring expansion of anti-viral 289 

CD8+ T cells. 290 

 291 

DOCK2 is required for the full protective effect of anti-viral CD8+ T cells 292 

Having found poor expansion of virus-specific D2EX CD8+ T cells by HSV infection, but 293 

some evidence that differentiation might be unaffected, we wondered next whether any cells 294 

that were primed would have anti-viral function. We planned to test this in vivo by first 295 

priming and expanding D2EX and WT OT-I T cells in vitro, then transferring these into mice 296 

to see how well they might protect against HSV disease. However, first it was necessary to 297 

determine whether priming and expansion of D2EX OT-I in vitro was feasible. To do this, WT 298 

and D2EX OT-I cells were cultured for 24 hours in the presence of SIINFEKL peptide and 299 

examined for initial priming as indicated by upregulation of CD69 as an early activation 300 

marker. Surprisingly, there was no difference in CD69 upregulation between WT and D2EX 301 

OT-I cells in this experiment, even under limiting peptide stimulation (Fig 5A left). Next we 302 

examined IRF4 expression as a marker that indicates the adequacy of priming and predicts 303 

clonal expansion [11]. In this case, where almost all WT OT-I strongly upregulated IRF4 by 304 

16 hours and largely maintained this out to 40 hours, this was not the case for D2EX OT-I 305 

(Fig 5A right). This provides a likely explanation for the failure of expansion of D2EX OT-I 306 

seen in virus infection. We then tried a variety of culture conditions to support enough 307 
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activation and expansion of D2EX cells to allow transfer into mice and determined 308 

empirically that cultures of D2EX OT-I cells supported with 6 ng/ml IL-2, which is twice our 309 

usual concentration, grew to similar levels as WT OT-I under standard conditions (3 ng/ml 310 

IL-2). Cultures of activated WT and D2EX cells were then transferred into WT mice and a 311 

day later they were infected with HSV.OVA on the flank. Activated OT-I cells provided 312 

significant protection from lesions caused by HSV.OVA infection irrespective of genotype, 313 

suggesting that DOCK2 is not essential for the effector function of anti-viral CD8+ T cells (Fig 314 

5B and C and Supplementary Figure 2). However, there was a statistically significant 315 

difference in the protection provided by WT and D2EX OT-I cells as determined by peak 316 

lesion area, with WT cells being superior. Qualitatively, this meant that those mice that 317 

received WT OT-I cells almost all only had small lesions at the inoculation site, without 318 

secondary spread to other sites in the dermatome. By contrast mice in the D2EX OT-I group 319 

nearly all had some amount of secondary spread. Taken together we conclude that when 320 

D2EX CD8+ T cells are able to be primed, their anti-viral effector function has a modest 321 

defect. 322 

Reduced endogenous virus-specific CD8+ T cells in D2EX mice 323 

The experiments to date utilised TCR transgenic T cells of a single specificity. To test 324 

whether natural CD8+ T cell responses to HSV might be affected similarly in D2EX mice, we 325 

examined these in the spleen seven days after infection. Just as in unifected mice, the 326 

percent and total number of CD8+ T cells were lower in D2EX mice than in WT controls 327 

(Figure 6A). CD8+ T cells with a TCR specific for the dominant epitope of HSV (gB498; 328 

SSIEFARL) were also lower in D2EX than WT mice in both analyses and fewer of these 329 

cells were expressing GzmB (Figure 6B,C). Finally, the percent and total number of CD8+ T 330 

cells able to make IFNγ in response to stimulation with SSIEFARL peptide was also reduced 331 

in D2EX, compared with WT mice. Taken together, findings from an analysis of the 332 

endognous CD8+ T cell response are largely consistent with those gained with transferred 333 

OT-I T cells. However, the difference in the size of the response was smaller in the 334 
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endogenous response and the functional defect, as reflected by Gzm expression and IFNγ 335 

production appeared to be more substantial than in the OT-I T cells.  336 
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Discussion 337 

The effect of DOCK2 mutation on mice was first described in 2001 [7]. DOCK2 knock out 338 

mice were found to have severe lymphopenia and a chemotactic defect in lymphocytes. Our 339 

novel DOCK2 mouse strains recapitulate the previously published phenotypes with absent 340 

marginal zone B cells [7], low numbers of NK T cells [18] and T cell lymphopenia [7]. Our 341 

characterization studies have also confirmed the previously described apparent “activation” 342 

of DOCK2 defective T cells with increased CD44 expression [28], likely due to a peripheral 343 

expansion to fill a niche, but in addition, we have shown that this effect can be partially 344 

overcome by limiting the T cell repertoire using the transgenic OT-I system. We also show 345 

that DOCK2 mice have eosinophilia and elevated levels of IgE on a C57BL6 background, 346 

whereas previously this was only shown in TH2 prone Balb/c mice [29]. 347 

DOCK2 deficient patients have an increased susceptibility to herpes viruses (particularly 348 

CMV and VZV) and this has been ascribed to defects in either T cells or NK cells without a 349 

further elucidation which cell type was predominantly responsible for the phenotype [30] as 350 

the effect was studied in ex-vivo peripheral blood mononuclear cells (PBMC) from these 351 

patients. Using our novel DOCK2 mouse model, we have investigated the role of DOCK2 in 352 

the control of herpes virus infections, as these infections are common in DOCK2 deficient 353 

patients. Using the HSV mouse model of herpes infection, we show that DOCK2 is important 354 

in T cells for control of HSV1 with greater weight loss and higher viral titres in mice lacking 355 

DOCK2. We also found that there is a T cell intrinsic defect in priming and expansion of 356 

virus-specific CD8+ T cells, confirming the importance of DOCK2 in T cells for the control of 357 

viral infections. Interestingly, initial in vitro activation of the mutant T cells was normal despite 358 

the previously found defect in synapse assembly [5], but the magnitude of expansion of the 359 

virus specific CD8+ T cells was reduced. We also show that while the cells have anti-viral 360 

activity this is also less than in wild type cells including reduced production of interferon-γ by 361 

antigen-specific CD8+ T cells. This is in agreement with previously published results from 362 
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patients showing decreased production of interferons by PBMC after 24 hours exposure to 363 

HSV1 and vesicular stomatitis virus (VSV) [2]. This work highlights the importance of an 364 

infection-based mouse model to investigate the effects of primary immunodeficiencies.  365 

DOCK2 mice have been exposed to Citrobacter rodentium previously in an experimental 366 

model and show clear defects in innate immunity with increased susceptibility to colitis, more 367 

bacterial adhesion and decreased macrophage migration due to the effect of DOCK2 368 

mutations on expression of cytokine receptors [9, 10]. While the HSV model can also 369 

highlight defects in innate immunity, the clear defect which we saw was in CD8+ T cell 370 

antiviral immunity. 371 

We also show here that DOCK2 deficiency results in dysregulation of surface expression of 372 

important markers in T cell activation and receptor signaling, with an increased expression of 373 

CD5 on both CD4+ and CD8+ T cells in the absence of infection, indicating an increased 374 

TCR signal. As a corollary, we are also the first to describe the “sparing” of FoxP3+ cells 375 

within the CD4+ T cell compartment as these are present at a higher proportion than other T 376 

cells subsets in the presence of the severe lymphopenia, with increased TCR signal strength 377 

thought to favor the production of Tregs [31]. The only previous literature about regulatory T 378 

cells in DOCK2 deficiency showed that co-culture of WT T cells with so called “graft 379 

facilitating” cells (defined as CD8+ and TCR- cells) isolated from the bone marrow of Dock2-/- 380 

mice failed to induce the formation of FoxP3+ or IL10+ regulatory T cells [32]. By contrast, 381 

here we show that FoxP3+ T cells are present in relatively higher numbers in vivo, 382 

suggesting that the previous report might have been a result of the used in vitro culture 383 

system. 384 

In summary, we show here using a herpesvirus infection model in mice that DOCK2 385 

deficiency leads to defects in T cell immunity, primarily in expansion of cells after priming, 386 

but with effector function also compromised. This defect is associated with delayed 387 
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clearance of infectious virus and prolonged disease and suggests a mechanism for poor 388 

control of this family of viruses in people with this immunodeficiency .  389 
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Figure legends 474 

Figure 1: CD4+ T cell lymphopenia in the absence of DOCK2. A)Representative flow 475 

cytometry plots (pre-gated on lymphocytes) from mice carrying two copies (hom), one copy 476 

(het) or no copies (+/+) of the listed amino acid change in DOCK2. B) Representative flow 477 

cytometry plots (pre-gated on CD3+ lymphocytes) from wild type and mutant mice (top 478 

panel) and quantitation of proportion of CD44hi CD4+ and CD8+ T cells from the two groups 479 

(right panel). Representative histograms showing the CD44 staining of CD4+ and CD8+ T 480 

cells from wild type (grey) and mutant mice (black line). Representative of at least 3 separate 481 

experiments. C) Effect of limiting TCR repertoire on the expansion of CD44+ lymphocytes. 482 

Representative histogram of CD44 expression for wild-type mice with OT-I (grey), D2EX 483 

mice with OT-I expression (dotted) and D2X mice without OT-I (black line), and quantitation 484 

of MFI for these groups of mice - wild-type mice with OT-I (white bar), D2EX mice with OT-I 485 

expression (black bar) and D2X mice without OT-I (black bar) with absence/presence of OT-I 486 

noted on x axis. D) Relative expression of the listed markers on wild type and mutant CD4+ 487 

(upper panel) and CD8+ (lower panel) T cells. Unpaired t-test. * p<0.05, ** p<0.005, **** p < 488 

0.0001.  489 

 490 

Figure 2: Increased formation of Foxp3+ Tregs in the absence of DOCK2. A) Naïve mice 491 

were analyzed by flow cytometry for the % and number of splenic Foxp3+ Tregs. B) Thymic 492 

T cell development was analyzed in naïve mice C) Thymic Foxp3+ cells were increased as a 493 

percentage of CD4SP T cells. Unpaired t-test. * p<0.05, ** p<0.005, **** p < 0.0001. Data 494 

representative of 3 independent experiments. 495 

 496 

Figure 3: Delayed clearance of HSV in the absence of DOCK2. Mice were infected with 497 

HSV on the flank and pathogenesis (A and B) and viral loads (C) measured. A) Weights and 498 

B) lesion sizes of groups of 6 WT and 7 D2EX mice were monitored for 14 days. Differences 499 
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between the strains were determined by two-way ANOVA, with significant p-values noted in 500 

the top right of graphs. C) Loads of infectious virus in the DRG of mice were measured by 501 

plaque assay 7 days after infection and the difference in means was tested using a t-test 502 

(**p<0.01). The experiment in A and B is representative of 3 independent repeats. C shows 503 

data combined from two independent experiments. 504 

 505 

Figure 4: DOCK2 plays a cell-intrinsic role in clonal expansion of anti-viral CD8+ T 506 

cells. CD8+ T cells purified from OT-I mice of the genotypes shown were transferred into WT 507 

and D2EX (A) or WT (B, C) mice that were then infected with HSV.OVA 24 hours later. A) 508 

Numbers of OT-I T cells in the spleens of mice 7 days after infection, data combined from 3 509 

independent experiments. B) Numbers of OT-I T cells in the DRG, 7 days after infection and 510 

C) the percent of these cells expressing GzmB. Statistical significance was determined using 511 

a 2-way ANOVA followed by Sidak’s post-test for pair-wise comparisons (A) or t-tests (B, C); 512 

*p<0.05, **p<0.01, ns not significant. 513 

 514 

Figure 5: DOCK2 deficent CD8+ T cells have slightly reduced protective capacity 515 

against HSV infection. CD8+ T cells purified from OT-I mice of the genotypes shown were 516 

activated with peptide in vitro. A) CD69 and IRF4 were measured at 24, and 16 and 40 hours 517 

respectively. B,C) OT-I CD8+ T cells were primed and expanded for 4 days and then 518 

transferred into WT mice that were infected with HSV.OVA 24 hours later. Images of lesions 519 

on mice (B) and peak lesion areas (C) are shown compared with mice that received no cells 520 

(nil). Data were combined from two independent experiments; points represent individual 521 

mice with bars showing mean and SEM. Statistical significance was determined by 1-way 522 

ANOVA with Sidak’s post-test for pair-wise comparisons; ****p<0.0001,*p<0.05, ns not 523 

significant. 524 
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Figure 6: CD8+ T cell responses to HSV are deficient in the absence of DOCK2. Mice 525 

were infected with HSV and various attributes of CD8+ T cells were measured in spleens 7 526 

days later. Graphs on the left and right of each panel show the percents and total numbers 527 

of the populations shown, respectively. A) All CD8+ T cells, B) HSV-gB498-specific CD8+ T 528 

cells, C) GzmB+, gB498-specific CD8+ T cells and D) CD8+ T cells able to make IFNγ after 529 

stimulation with gB498 peptide. Data shown were combined from 5 (A, B), 3 (D) and 2 (C) 530 

independent experiments. Statistical significance was determined by t-tests; *p<0.05, 531 

**p<0.01, ***p<0.001, ****p<0.0001. 532 

 533 
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