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Key Points 

• We have developed a novel graph-based domain adaption model named SpaRx, to reveal the heterogeneity 

of spatial cellular response to different types of drugs, which bridges the gap between pharmacogenomics 

knowledgebase and single-cell spatial transcriptomics data. 

 

• SpaRx is developed tailored for single-cell spatial transcriptomics data and is provided available as a 

ready-to-use open-source software, which demonstrates high accuracy and robust performance. 

 

• SpaRx uncovers that tumor cells located in different areas within tumor lesion exhibit varying levels of 

sensitivity or resistance to drugs. Moreover, SpaRx reveals that tumor cells interact with themselves and 

the surrounding microenvironment to form an ecosystem capable of drug resistance. 
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ABSTRACT 

Spatial cellular heterogeneity contributes to differential drug responses in a tumor lesion and potential therapeutic 

resistance. Recent emerging spatial technologies such as CosMx SMI, MERSCOPE, and Xenium delineate the 

spatial gene expression patterns at the single cell resolution. This provides unprecedented opportunities to identify 

spatially localized cellular resistance and to optimize the treatment for individual patients. In this work, we present 

a graph-based domain adaptation model, SpaRx, to reveal the heterogeneity of spatial cellular response to drugs. 

SpaRx transfers the knowledge from pharmacogenomics profiles to single-cell spatial transcriptomics data, 

through hybrid learning with dynamic adversarial adaption. Comprehensive benchmarking demonstrates the 

superior and robust performance of SpaRx at different dropout rates, noise levels, and transcriptomics coverage. 

Further application of SpaRx to the state-of-art single-cell spatial transcriptomics data reveals that tumor cells in 

different locations of a tumor lesion present heterogenous sensitivity or resistance to drugs. Moreover, resistant 

tumor cells interact with themselves or the surrounding constituents to form an ecosystem for drug resistance. 

Collectively, SpaRx characterizes the spatial therapeutic variability, unveils the molecular mechanisms 

underpinning drug resistance, and identifies personalized drug targets and effective drug combinations. 

Keywords: Graph transformer, adversarial learning, spatial cellular drug response, single-cell spatial 

transcriptomics 

 

INTRODUCTION 

Understanding how different cells spatially localize and communicate in their microenvironment are critical to 

personalized treatment1,2. For instance, tumor cells of one patient are spatially heterogenous that present 

differential responses to treatment. For those tumor cells, their protective microenvironment and intercellular 

communications contribute to therapeutic failure and disease relapse3,4. Therefore, in order to precisely treat a 

patient, it is crucial to identify that, inside its tumor lesion, which tumor cells are resistant to a candidate drug and 

what cell-cell communications are responsible for such tumor cell resistance. Unfortunately, these issues are not 

satisfactorily addressed, largely due to the lack of biotechnologies to accurately delineate the spatial heterogeneity 

of cells within tissues. 

Recently, the emerging single-cell spatial transcriptomics (SCST) technologies, such as NanoString’s CosMxTM 

SMI5 and Vizgen’s MERSCOPE6, hold the promise to unravel the spatial tissue architectures at subcellular level 

and to further our understanding of the underlying functional mechanisms of tumor metastasis7 and drug 

resistance8. The SCST technologies provide the spatial locations of cells as well as their gene expression patterns, 

which offers a unique opportunity to investigate the therapeutic heterogeneity in the tumor microenvironment. 

Moreover, the existing pharmacogenomics databases, including the Cancer Cell Line Encyclopedia (CCLE)9 and 

the Genomics of Drugs Sensitivity in Cancer (GDSC)10,11, provide valuable references relating gene expression 

patterns to drug response and treatment efficacy. The integration of these existing resources, along with SCST 

data, presents unprecedented opportunities to elucidate how individual cells within complex tissues will 

differentially respond to drugs, thus meeting the needs of personalized treatment. 

Given the available data from drug screening cell lines, several studies have explored the connection between cell 

line profiles and single-cell RNA sequencing (scRNA-seq) data to investigate drug response at the single-cell 

level. For instance, Gambardella et.al.12 proposed a method called DREEP, which utilizes scRNA-seq data to 

predict the drug sensitivity of individual cells. They discovered that cells exhibiting transcriptional heterogeneity 

displayed varying degrees of drug sensitivity. Chen et.al.13 developed a deep transfer learning framework, 

scDEAL, which integrates large-scale bulk cell-line data with scRNA-seq data to predict the response of single 

cells to cancer drugs. Similarly, Zheng et.al.14 introduced SCAD, an adversarial discriminative domain adaptation 

framework that leverages scRNA-seq data from the GDSC database to identify drug sensitivities. However, these 

methods are not directly applicable to SCST data, as they do not take into account the spatial cell locations. To 

address this limitation, graph-based domain adaptation models have emerged as promising solutions for 

uncovering the spatial cellular response to drugs. Such graph-based model aggregates information not only from 

individual cells but also from their spatial neighbors, enabling a more comprehensive understanding of drug 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2023. ; https://doi.org/10.1101/2023.08.03.551911doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.03.551911
http://creativecommons.org/licenses/by-nd/4.0/


 

 

response within a spatial context. 

Herein, we present SpaRx, a graph-based domain adaptation model, to reveal spatial therapeutic complexity with 

distinct drug responses, through leveraging the high-throughput pharmacological profiles and the SCST datasets. 

SpaRx is able to identify the cellular drug responses within a complex tissue, the spatial surrounding 

microenvironment of resistant cells, and the cell-cell communications involved in drug resistance. SpaRx can 

accurately transfer drug response predictors trained on a source domain (e.g., cell lines) to a target domain (e.g., 

spatial tumor cells). Our model explicitly considers the fundamental differences between source and target domain 

rather than modeling these differences as technical batch effects only. SpaRx will facilitate mechanistic studies 

for overcoming drug resistance and advance therapeutic research for precision medicine. It also holds promises 

to prioritize candidate drugs for individual patients, provide therapeutic guides for synergistic drug combinations, 

and repurpose anti-cancer drugs for other diseases such as Alzheimer’s Disease. 

 

RESULTS 

Overview of SpaRx 

SpaRx employs a novel domain adaption strategy to transfer the knowledge of drug responses from large-scale 

drug screening databases (source domain) to predict the drug-sensitivity of cells in SCST data (target domain). 

We hypothesize that there are domain-invariant relations between molecular profiles and drug responses. SpaRx 

is built to learn such transferable knowledge of drug responses across the source and the target domain through 

end-to-end adversarial training (Fig. 1a). As shown in (Fig. 1b), SpaRx consists of a feature extractor to project 

molecular profiles to a latent space, a drug response predictor to predict cellular sensitivity to a drug according to 

the latent representation of gene expression patterns, and three domain discriminators to distinguish the source 

domain from the target domain. A hybrid learning strategy is used, with an adversarial learning procedure (𝐿𝑡) 

involving the feature extractor and the domain discriminators to learn domain-invariant molecular features, and a 

supervised procedure (𝐿𝑦) involving the feature extractor and the predictor to learn molecular features that are 

responsible for drug responses. With this hybrid learning strategy, SpaRx can transfer the domain-invariant 

information from the source knowledgebase to predict the drug responses of individual cells in SCST data. 

In the adversarial learning procedure, SpaRx includes dynamic adversarial adaption learning to balance the 

learning of global and drug-specific domain-invariant gene expression patterns. To achieve this, three 

discriminators are used: a global discriminator that distinguishes the source domain from the target domain for 

all cells or cell lines, and two drug-specific discriminators to distinguish the source domain from the target domain 

under each category, drug-sensitive and drug-resistant. A dynamic learnable factor (𝜔) is used to balance the 

contribution of these discriminators. Trained through the predictor-based loss that captures the knowledge of drug 

response, as well as the domain adaptation loss regarding global and drug-specific distributions, SpaRx is able to 

predict cellular sensitivity to drugs in SCST data. In this way, SpaRx successfully translates preclinical knowledge 

into cell-level drug response in SCST data, which facilitates deep insights into the underlying mechanisms of 

drug resistance and advances therapeutic effectiveness. 

SpaRx demonstrates accurate predictions of drug response 

As SpaRx is the first method to predict drug response in SCST data, here we benchmark it against four deep 

learning (DL) models including SpaRx-GAT, SpaRx-GCN, scDEAL13, and SCAD14, as well as four machine 

learning (ML) methods including SVM, RF, LightGBM, and XGBoost (see Materials and Methods). Among 

them, SpaRx, SpaRx-GAT, and SpaRx-GCN share similar model architecture but use graph transformer15, 

GAT16, and GCN17 as the feature extractor. For benchmarking datasets, we randomly select a proportion (p) of 

cell lines from pharmacological database as the source domain. The remaining cell lines (1-p) are used to 

synthesize the single-cell gene expression data in target domain, with cellular complexity and drug response 

generated (see Materials and Methods). Benchmarking performance is evaluated by the accuracy of predicted 

drug response in target domain. 

First, we randomly select 30% of cell lines (p = 30%) for the source domain data, and the other 70% for 
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synthesizing the target domain data. The performance of SpaRx and other methods for predicting drug responses 

in the target domain are measured using the F1 score. SpaRx consistently demonstrates better performance across 

80 drugs than the other methods including SpaRx-GAT (Fig. 2a), SpaRx-GCN (Fig. 2b), RF (Fig. 2c), and SVM 

(Fig. 2d), as well as SCAD, scDEAL, LightGBM, and XGBoost (Supplementary Fig. 1a). SpaRx achieves the 

highest accuracy (median F1 = 0.938, Fig. 2e), which is significantly higher than other DL models (median F1 of 

SpaRx-GAT: 0.787; SpaRx-GCN: 0.751; SCAD: 0.856, scDEAL: 0.669) and ML methods (RF: 0.628; SVM: 

0.564; LightGBM, 0.576; XGBoost: 0.588). Meanwhile, SpaRx demonstrates particularly higher accuracy 

relative to SpaRx-GAT and SpaRx-GCN for certain drugs. For example, SpaRx shows noticeably higher F1 

scores than SpaRx-GAT (F-1 scores, 0.923 vs 0.683) based on a hormone therapy drug tamoxifen, and higher 

than SpaRx-GCN (F-1 scores, 0.921 vs 0.445) for the other kinase inhibitor drug alisertib. 

Moreover, we evaluate the performance of SpaRx in the settings of different p (50%, 30%, 10%) based on the F1 

score. Across these different settings, SpaRx (median F1 = 0.934, Fig. 2b, Supplementary Fig. 1b) is 

consistently superior to other DL models (median F1; SpaRx-GAT: 0.784; SpaRx-GCN: 0.765; SCAD: 0.873; 

scDEAL: 0.669), and ML methods (median F1; RF: 0.638; SVM: 0.581; LightGBM: 0.585, XGBoost: 0.604). 

For example, for a commonly used liver cancer drug mitoxantrone, SpaRx shows superior performance (median 

F1 = 0.957) than other DL models (SpaRx-GAT: 0.844; SpaRx-GCN: 0.657; SCAD: 0.678; scDEAL: 0.662). In 

addition to F1 score, metrics including AUROC, AUPR, precision, and recall (Supplementary Figs 2-5, 

Supplementary File 1), further demonstrate that SpaRx not only presents superior performance with different 

sizes of source data, but also achieves accurate response predictions for different types of drugs. 

SpaRx accurately predicts drug response in different scenarios 

We further evaluate the performance of SpaRx in the scenarios of different noise levels, dropout rates, and 

numbers of genes in the source and the target data (see Materials and Methods). Benchmarking methods 

including four DL models (SpaRx-GAT, SpaRx-GCN, SCAD, scDEAL) and four ML models (RF, SVM, 

LightGBM, XGBoost). 

Fig. 3a shows the F1 scores achieved by different methods for each drug at the noise level of 1. SpaRx achieves 

higher F1 scores than SpaRx-GAT and SpaRx-GCN (median F1; 0.938, 0.787, 0.751), and also performs 

significantly better than SCAD and scDEAL (median F1: 0.856, 0.669, Supplementary Fig. 1b). Moreover, 

when the noise level increases (noise level = 1, 1.5, 2), SpaRx maintains accurate predictions with median F1 as 

0.938, 0.921, and 0.893, respectively (Fig. 3b). In contrast, the other methods, such as SpaRx-GAT and SpaRx-

GCN, are affected by the increased noise in source and target data, indicating these methods are more likely to be 

undermined by data noise. The other metrics including AUROC, AUPR, precision, and recall (Supplementary 

Figs 2-5, Supplementary File 1) supports that SpaRx is robust to data noise in real applications. 

In addition, we evaluate the performance of SpaRx with different dropout rates. When the dropout rate is 70%, 

SpaRx remains more accurate than SpaRx-GAT and SpaRx-GCN (median F1: 0.916, 0.738, 0.751; Fig. 3c), as 

well as SCAD and scDEAL (median F1: 0.846, 0.650; Supplementary Fig. 1b). When the dropout rate increases 

(Fig. 3d, Supplementary Fig. 1b), SpaRx is still superior to the other DL methods (median F1; SpaRx: 0.882; 

SpaRx-GAT: 0.709; SpaRx-GCN: 0.707; SCAD: 0.833; scDEAL: 0.620) and ML models (median F1; RF: 0.675, 

SVM: 0.709, LighGBM: 0.641, XGBoost: 0.615). Other metrics including AUROC, AUPR, precision, and recall 

(Supplementary Figs 2-5, Supplementary File 1) demonstrate that SpaRx provides accurate predictions at 

different dropout levels. 

Finally, we evaluate the performance of SpaRx with reduced number of genes in source and target data. Based on 

only 2,000 genes, SpaRx remains superior to SpaRx-GAT and SpaRx-GCN (median F1; 0.960, 0.823, 0.883; Fig. 

3e) as well as SCAD and scDEAL (median F1: 0.853, 0.669; Supplementary Fig. 1b). With the number of genes 

decreasing to around 1k genes and 500 genes captured by NanoString CosMx and Vizgen MERSCOPE 

respectively, SpaRx maintains much more reliable performance than the other methods (median F1; SpaRx: 0.930; 

SpaRx-GAT: 0.753; SpaRx-GCN: 0.866; SCAD: 0.754; scDEAL: 0.595; Fig. 3f and Supplementary Fig. 1b). 

The other metrics including AUROC, AUPR, precision, and recall (Supplementary Figs 2-5, Supplementary 

File 1) shows that SpaRx outperforms benchmarking methods. 
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Collectively, these results demonstrate that SpaRx achieves superior predictions in different scenarios, even when 

the target data has extra noises, high dropout rates, and limited number of genes. These evaluations demonstrate 

the effectiveness of SpaRx in transferring drug-related intrinsic information across different biological domains, 

which enable to predict cellular drug response in single-cell spatial transcriptomics data. 

SpaRx reveals the spatial cellular heterogeneity of drug response in lung cancer 

To reveal spatial cell variability in drug response, we first apply SpaRx to the NanoString CosMx lung cancer 

SCST data with different cell types on eight Filed Of View (FOV)5 (Fig. 4a). The zoomed-in image on the right 

shows that tumor cells (colored in light blue) are infiltrated with immune cells such as macrophage (colored in 

orange) and B cells (colored in green). Based on this tissue slice, we apply SpaRx to predict the tumor cells’ 

response to a typical lung cancer drug, cisplatin, for which the mechanism of action is to cause DNA damage in 

cancer cells, blocking cell division and leading to apoptotic cell death. As in Fig. 4b, SpaRx uncovers tumor cells’ 

response to cisplatin, which exhibits strong heterogeneity of sensitivity and resistance. Interestingly, in contrast 

to the agminated resistant cells, the zoom-in FOV presents a scattered pattern of sensitive cells. 

Given that those tumor cells respond differentially to cisplatin, we further interrogate if the surrounding 

microenvironment of resistant tumor cells is different from that of sensitive ones. As shown in Fig. 4c, for each 

FOV, the spatial distributions (i.e., proportions) of cell types adjacent to resistant and sensitive cells are different. 

Such differences also appear to be distinct across different FOVs. Noteworthy, across FOV 1-3 (Fig. 4c), CD8 

memory T cells, B cells, and natural killer (NK) cells are consistently reduced in the surroundings of resistant 

cells. Heatmap in Fig. 4d further quantitatively delineates the distinctive microenvironment between sensitive 

and resistant cells, where CD4 and CD8 memory T cells are less infiltrated in the surrounding of resistant cells. 

Moreover, fewer B cells, dendritic cells (DC), and NK cells are present in the microenvironment of resistant cells. 

Further averaging of the surrounding cell type proportions across the eight FOVs (Fig. 4e) shows that most cell 

types except macrophages are more abundant in the microenvironment of sensitive cells. Similar patterns are also 

observed in the TCGA lung cancer patients receiving cisplatin treatment (Fig. 4f). Specifically, after bulk RNA-

seq decomposition by CIBERSORT18, CD4 and CD8 memory T cells, B cells, and NK cells are shown to be more 

prevalent in responders than non-responders to cisplatin. These results indicate that the surrounding 

microenvironment may be relevant to or modulate the tumor cells’ responses to cisplatin. 

Spatial cellular crosstalk mediates drug resistance 

Given the distinctive microenvironment surrounding sensitive and resistant tumor cells, further characterization 

of cell-cell communications can explain how neighboring cells modulate the differential responses of tumor cells 

to cisplatin. Using spaCI19, a cell-cell communication tool specifically designed for SCST data, we infer the 

ligand-receptor (L–R) interactions involving tumor cells in the zoom-in FOV (Fig. 4a). The aggerated L–R 

interactions that occur between tumor cells and adjacent cells are shown in the chord diagram (Fig. 5a), with the 

chord width indicating the interaction strength. Of note, we observe that macrophage, fibroblast, and CD4 and 

CD8 memory T cells interact strongly with both sensitive cells and resistant tumor cells. NK cells uniquely 

crosstalk with sensitive but not resistant tumor cells. 

The involved L–R pairs that contribute to the cellular crosstalk with tumor cells are further presented in Fig. 5b. 

The gradient colors represent the interaction strength of each L–R pair. Specifically, CD4 and CD8 memory T 

cells are involved in more L–R interactions with resistant than sensitive cells. MMP9–CD44 is uniquely involved 

in the interactions between NK and sensitive cells, which is supported by previous study20,21. Moreover, fibroblast 

expressed DCN (ligand) shows stronger interactions with resistant tumor cells' MET (receptor). DCN has been 

reported to interact antagonistically with the MET factor (c-Met)22,23, and play roles in cancer development and 

metastasis24. Other L–R interactions including HGF25–MET26, VCAN27–ITGB128, and VCAN27–CD4429 also play 

a crucial role in cancer cells forming resistant state against drugs. 

SpaRx can be used to explore optimal drug combinations. For example, in addition to cisplatin, SpaRx also 

identifies the spatially differential cellular response to the other lung cancer drug, docetaxel. As in Fig. 5c, some 

tumor cells that are resistant to one drug appear sensitive to the other drug. Tumor cells sensitive to each of the 

two drugs are complementary, with Jaccard similarity as 0.381. This result suggests that the combined therapy of 
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cisplatin and docetaxel may overcome resistance and improve therapeutics, which has also been confirmed in 

clinical trials for patients with unresectable NSCLC30-32. 

SpaRx uncovers an orderly pattern of resistant tumor cells 

Next we apply SpaRx to the Vizgen MERSCOPE liver cancer SCST data (Fig. 6a). In this case, most tumor cells 

(green colored cells) are confined in three regions with clear boundaries, with some infiltrating tumor cells within 

the hepatocytes. Specifically, the tumor region on the left (region-1) is surrounded by Kupffer cells, and the other 

two tumor cell regions (region-2 and region-3) at the right are surrounded by hepatoblasts. SpaRx is applied to 

predict the tumor cells’ response to a typical liver cancer drug, mitoxantrone. As shown in Fig. 6b, SpaRx 

uncovers tumor cells’ response to mitoxantrone, with both sensitive and resistant cells revealed. Interestingly, 

sensitive cells mostly present at the outer area, whereas resistant cells majorly locate in the inner area of each 

tumor region. Such orderly patterns of resistant cells shared by three tumor regions indicate that those resistant 

cells may share similar molecular characteristics. 

To investigate the underlying differences between the resistant and sensitive cells, differentially expressed gene 

(DEG) analysis is performed for each tumor region. For example, the DEGs of resistant cells at region-1 are 

shown in Fig. 6c, among them VTN33 and VEGFA34 are overexpressed. Vitronectin (encoded by VTN) has been 

reported to protect cancer cells from drug-induced apoptosis33. VEGFA decreases the sensitivity of cancer cells 

to chemotherapy by suppressing VEGFA-mediated autophagy34. These over-expressed genes identified in 

resistant cells may serve as resistance biomarkers and potential therapeutic targets. More importantly, the DEGs 

of both resistant and sensitive cells across three tumor regions are largely in common (Fig. 6d), further confirming 

that these regions share similar molecular mechanisms for mitoxantrone resistance. Enrichment analysis of these 

shared DEGs (Fig. 6e) among resistant cells (R1, R2, and R3) reveals signaling pathways that are potentially 

responsible for mitoxantrone resistance, including the focal adhesion-induced PI3K-AKT signaling. In contrast, 

interleukin signaling and cytokine signaling pathways are enriched in sensitive cells. 

 

 

DISCUSSION 

The spatial heterogeneity in cells and their microenvironment play critical roles in the treatment of complex 

diseases such as cancers35 and Alzheimer’s diseases (AD)36. For example, tumor microenvironment is crucial for 

tumor cell metastasis37 and drug resistance38. Recent emerging single-cell spatial technologies utilizing molecular 

imaging for targeted gene profiling, provide deep insights into the spatial cellular ecosystems39-41. These state-of-

art technologies help resolve the cellular heterogenous response to drugs, the intercellular communications that 

contribute to drug resistance, and how tumor ecosystem acquires drug resistance. 

In this work, we have developed a novel SpaRx model that leverages the pharmacogenomics knowledgebase with 

SCST data to systematically reveal spatial complexity of therapeutic response. As to our knowledge, SpaRx is 

the first method to incorporate the large-scale pharmacogenomics profiles with SCST data, to accurately predict 

the heterogeneous cellular response to drugs. SpaRx is able to reveal the spatial cell variability in drug response 

and uncover the underlying biological mechanisms for drug resistance. For example, based on the lung cancer 

SCST data, we observe the multitude interactions related to tumor cell resistance and identify the spatially 

adjacent cell interactions that may alter tumor cells’ sensitivity to cisplatin. In addition to cancers, SpaRx also 

holds the promises for repurposing anti-cancer drugs for complex diseases such as AD, which is also known for  

its complexity and heterogeneity. Collectively, SpaRx is anticipated to reveal the mechanisms of drug resistance, 

prioritize tailored drugs for complex diseases, and provide clues for drug repositioning. 

Given the advantages of SpaRx, there are several aspects that SpaRx can be improved. First, current single-cell 

spatial technologies are still not able to detect sufficient number of genes, which may limit the potentials of SpaRx 

in some degree. Future advances in spatial technologies that captures more genes and less dropouts will help 

enhance the SpaRx model. Second, with the rapid development of single-cell spatial omics technologies42, SpaRx 

can also be improved through incorporating spatial multi-omics. Though the current version of SpaRx that enables 
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the predictions of drug responses based on SCST data, SpaRx can be improved by utilizing new data types, e.g., 

single-cell spatial ATAC-seq profiles43, thus to further unveil the underlying mechanisms such as the upstream 

cis-regulatory elements and associated transcription factors involved in drug resistance. 

 

MATERIALS AND METHODS 

Data sources and preparation 

1) The GDSC10 and CCLE9 cell-line-based drug screening database. The gene expressions of cell lines and the 

sensitivity profile (IC50) of drugs are downloaded from the GDSC and CCLE database. The binary drug responses 

for each cell line are obtained from previous studies11,13. Here for GDSC and CCLE database, cell lines and drug 

information without missing values are retained and integrated based on overlapped drug compounds. 

Collectively, we obtained 1,280 cell lines with drug response information across 80 shared drug compounds.  

2) The NanoString CosMx lung-13 SCST data5 and the Vizgen MERSCOPE liver cancer-1 SCST data6.  

Benchmarking data 

The benchmarking datasets are generated from the collected 1,280 cell lines. Here we randomly select a 

proportion of cell lines (p) as the source domain, whereas the remaining cell lines (1-p) are used to synthesize the 

target domain. For the target domain, the gene expression profiles of the remaining cell lines (1-p) are further 

mixed randomly to mimic tumor cell complexity. These mixed data is then downsampled to assure the total counts 

are comparable to the single-cell level, which allows the synthesized gene expression data in the target domain 

mimic that of single tumor cells in SCST data. Specifically, to mimic the complexity of tumor cells, we select 

two to ten cell lines from the remaining cell lines (1-p), then combine their transcriptomic profiles as one tumor 

cell profile. In order to better mimic real tumor cell, if the total counts of the resulting tumor data exceed 2,000, 

we downsample it accordingly. In this way, the synthesized gene expression data serving as the target domain is 

more likely to resemble the real heterogenous tumor cells in SCST data. 

Moreover, four benchmarking scenarios are included. 1) Different numbers of cell lines in the source data. We 

choose different proportions of cell lines as the source domain, i.e., p = 10%, 30%, 50%, respectively. The 

remaining cell lines (1 − 𝑝) are used to generate the target domain. 2) Different levels of noises. For both source 

and target domain based on the setting of p = 30%, we add extra noises randomly sampled from normal 

distributions 𝑁(0, 𝜎2), with standard deviation 𝜎 as 1, 1.5, and 2, respectively. 3) Different levels of dropouts. 

For both source and target domain based on the setting of p = 30%, dropouts are simulated by replacing the gene 

expression values with zeros, to ensure the proportions of zeros among all gene expression values are 70%, 80%, 

and 90%, respectively. 4) Different numbers of genes. Based on the setting of p = 30%, the number of genes in 

the cell line profiles is reduced to 2k, 853, and 500 genes. The 2k genes are randomly selected, while the 853 and 

500 genes are selected based on the RNA panels used in the NanoString CosMx and the Vizgen MERSCOPE 

data, respectively. 

SpaRx model 

Source domain. The GDSC and the CCLE data are used as the source domain, denoted as 𝐷𝑠 = {(𝑥𝑖
𝑠, 𝑦𝑖

𝑠)}𝑖=1
𝑛𝑠 . 

Here 𝑠 represents the source domain (the cell-line based drug response profiles), 𝑥𝑖
𝑠 ∈ 𝑅𝑑𝑠×𝑛𝑠  represents the gene 

expression, with 𝑖 representing a cell line, 𝑑𝑠 representing the number of genes, and 𝑛𝑠 denoting the number of 

cell lines. The cell-line similarity graph 𝐴𝑠  is constructed using mutual nearest neighbors (MNN)44, with the 

number of mutual nearest neighbor as 𝑘. In the graph 𝐴𝑠, each node 𝑣𝑖 represents a cell line 𝑖, and if two nodes 

𝑣𝑖 and 𝑣𝑗 are connected, it means that the corresponding gene expression profiles 𝑥𝑖
𝑠 and 𝑥𝑗

𝑠 are similar.  

Target domain. The SCST data is used as the target domain. Each of the SCST data is represented by 𝐷𝑡 =
{(𝑥𝑖

𝑡)}𝑖=1
𝑛𝑡 ,  𝑥𝑖 ∈ 𝑅𝑑𝑡×𝑛𝑡 , where 𝑡 denotes the target domain (the SCST data), 𝑑𝑡 denotes the number of genes, 𝑛𝑡 

represents the number of cells, and 𝑖 represents a cell in the SCST data. A spatial cell graph 𝐴𝑡 is constructed 

according to cell locations using 𝑘 -nearest neighbors. If two cells 𝑖  and 𝑗  are spatially adjacent, then the 

corresponding nodes 𝑣𝑖 and 𝑣𝑗 are connected in 𝐴𝑡.  
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The SpaRx model uses cell lines in the source domain and cells in the target domain as samples, gene expressions 

as features, and drug responses as outcomes. SpaRx is composed of three components: 1) feature extractor to 

extract gene expression features from the source and the target domain, 2) drug response predictor for both cell 

lines and single cells, and 3) global and drug-specific discriminators. The final output of the SpaRx is the predicted 

drug responses of each cell in the target SCST domain. 

1) Feature Extractor: The shared feature extractor 𝑇𝑟 is composed of multi-head graph transformer15 layers to 

project the graph representation of the cellular transcriptomics data to a latent space in which cells that 

demonstrate similar responses to treatments are close to each other. Briefly, for a cell line 𝑖 from the GDSC or 

the CCLE data or a cell 𝑖 from the SCST data, the propagation of the graph transformer from the 𝑙 layer to the 

𝑙 + 1 layer is defined as:  

𝒉𝑖
(𝑙+1)

= ReLU (𝑊1
(𝑙)

𝒉𝑖
(𝑙)

+ ∑ 𝛼𝑖,𝑗𝑽𝑗
(𝑙)

𝑣𝑗∈𝒩(𝑣𝑖) )         [1] 

, where 𝑖 represents either a cell line (𝑥𝑖
𝑠) in the source domain or a cell (𝑥𝑖

𝑡) in the target domain, 𝑗 represents a 

neighbor cell line or cell in their corresponding graph (i.e., 𝑣𝑗 ∈ 𝒩(𝑣𝑖)), the rectified linear unit (ReLU)45 is used 

as the nonlinear gated activation function. When 𝑙 = 0, 𝒉𝑖
(𝑙)

= 𝑥𝑖
𝑠 for the cell line data and 𝒉𝑖

(𝑙)
= 𝑥𝑖

𝑡 for the SCST 

data. The attention module is defined as: 𝛼𝑖,𝑗 = softmax (
〈𝑄𝑖

(𝑙)
,𝐾𝑗

(𝑙)
〉

∑ 〈𝑄𝑖
(𝑙)

,𝐾𝑗
(𝑙)

〉
𝑣𝑗∈𝒩(𝑣𝑖)

), where: 

query: 𝑄𝑖
(𝑙)

= 𝑊𝑄
(𝑙)

𝒉𝑖
(𝑙)

+ 𝑏𝑄
(𝑙)

 

key: 𝐾𝑗
(𝑙)

= 𝑊𝐾
(𝑙)

𝒉𝑗
(𝑙)

+ 𝑏𝐾
(𝑙)

 

value: 𝑉𝑗
(𝑙)

= 𝑊𝑉
(𝑙)

𝒉𝑗
(𝑙)

+ 𝑏𝑉
(𝑙)

 

and 〈𝑄, 𝐾〉 ≡ exp (𝑄𝑇𝐾 √dim(𝒉𝑖
(𝑙)

)⁄ ). The multi-head attentions are concatenated. In this way, we obtain the 

latent representation, 𝑧𝑠 = {𝒉𝑖
𝐿}𝑖=1

𝑛𝑠 = 𝑇𝑟(𝑥𝑖
𝑠 , 𝐴𝑠), as the extracted features for source domain, and 𝑧𝑡 = {𝒉𝑖

𝐿}𝑖=1
𝑛𝑡 =

𝑇𝑟(𝑥𝑖
𝑡 , 𝐴𝑡) as the extract features for target domain, respectively. The feature extractor 𝑇𝑟 is shared by both source 

and target domain. 

2) Drug response predictor: The predictor (𝐹𝑦), a fully connected classifier, is designed to classify the drug 

response results using latent features from the feature extractor 𝑇𝑟. It is trained by minimizing the differences 

between the predicted source labels and the source domain labels of drug response (ground truth labels) by the 

cross-entropy loss, which is formulated as:  

𝐿𝑦 = −
1

𝑛𝑠
∑ (𝑃𝑥𝑖∈𝑆𝑙𝑜𝑔𝐹𝑦(𝑇𝑟(𝑥𝑖 , 𝐴)) + 𝑃𝑥𝑖∈𝑅𝑙𝑜𝑔𝐹𝑦(𝑇𝑟(𝑥𝑖 , 𝐴)))𝑥𝑖∈𝐷𝑠

         [2] 

, where 𝑃𝑥𝑖∈𝑆 is the probability of 𝑥𝑖 belonging to drug sensitive, 𝑃𝑥𝑖∈𝑅 is the probability of 𝑥𝑖 belonging to drug 

resistance. 𝐹𝑦 is the response predictor and 𝑇𝑟 is the feature extractor. 𝐴 represents the graph 𝐴𝑠 in source domain. 

Here the drug response predictor is shared by both source and target domain. 

3) Discriminators. A global discriminator 𝐺𝑑 is trained to align the latent representations of source and target 

domain. Here the loss of the global discriminator is formulated as: 

𝐿𝑔 =
1

𝑛𝑠+𝑛𝑡
∑ 𝐿𝑔

𝑥𝑖
𝑥𝑖∈𝐷𝑠∪𝐷𝑡

 =  
1

𝑛𝑠+𝑛𝑡
∑ 𝐿𝑑(𝐺𝑑(𝑇𝑟(𝑥𝑖 , 𝐴)), 𝑑𝑖)𝑥𝑖∈𝐷𝑠∪𝐷𝑡

        [3] 

, where 𝐿𝑑 denotes the cross-entropy, 𝐺𝑑 denotes the global discriminator, 𝑇𝑟 is the feature extractor, and 𝑑𝑖 is 

the domain label for the input 𝑥𝑖 (𝑑𝑖 = 0 for source domain, 𝑑𝑖 = 1 for target domain). 𝐴 represents the graph 𝐴𝑠 

when 𝑥𝑖 ∈ 𝐷𝑠 and 𝐴𝑡 when 𝑥𝑖 ∈ 𝐷𝑡. 

Drug-specific discriminators (𝑔𝑑
𝑆 and 𝑔𝑑

𝑅): 𝑔𝑑
𝑆 and 𝑔𝑑

𝑅  are used to match the latent representations from source 

and target domains under drug-sensitive and drug-resistant category, respectively. Both drug-specific 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2023. ; https://doi.org/10.1101/2023.08.03.551911doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.03.551911
http://creativecommons.org/licenses/by-nd/4.0/


 

 

discriminators are trained to minimize the differences in the latent representations of source and target domain 

under each drug category. The output of the drug response predictor (𝐹𝑦(𝑇𝑟(𝑥𝑖))) is used to show the probability 

of being included into each drug category. The loss for each discriminator is calculated using cross-entropy: 

𝐿𝑐 =
1

𝑛𝑠+𝑛𝑡
∑ 𝐿𝑐

𝑆,𝑥𝑖
𝑥𝑖∈𝐷𝑠∪𝐷𝑡

 + 
1

𝑛𝑠+𝑛𝑡
∑ 𝐿𝑐

𝑅,𝑥𝑖
𝑥𝑖∈𝐷𝑠∪𝐷𝑡

 

=
1

𝑛𝑠+𝑛𝑡
∑ 𝐿𝑑

𝑆 (𝑔𝑑
𝑆 (�̂�𝑖

𝑆𝑇𝑟(𝑥𝑖 , 𝐴)) , 𝑑𝑖) + 𝐿𝑑
𝑅 (𝑔𝑑

𝑅 (�̂�𝑖
𝑅𝑇𝑟(𝑥𝑖 , 𝐴)) , 𝑑𝑖)𝑥𝑖∈𝐷𝑠∪𝐷𝑡

         [4] 

, where 𝑔𝑑
𝑆, 𝐿𝑑

𝑆  and 𝑔𝑑
𝑅 , 𝐿𝑑

𝑅  are the drug-specific discriminator loss and its cross-entropy loss associated with drug 

categories, respectively. �̂�𝑖
𝑆 and �̂�𝑖

𝑅 is the predicted probability of the input 𝑥𝑖 belonging to drug-sensitive or drug-

resistant category, i.e., 𝐹𝑦(𝑇𝑟(𝑥𝑖)). 𝑑𝑖 is the label for the input 𝑥𝑖 (𝑑𝑖 = 0 for source domain, 𝑑𝑖 = 1 for target 

domain). 𝐴 represents the graph 𝐴𝑠 when 𝑥𝑖 ∈ 𝐷𝑠 and 𝐴𝑡 when  𝑥𝑖 ∈ 𝐷𝑡 . 

Loss function. Given the three major components, feature extractors, domain discriminators, and label classifier 

in our model, the final learning objective is formulated as: 

𝐿𝑇 =  𝐿𝑦 − 𝐿𝑡, where 𝐿𝑡 = (1 − 𝜔)𝐿𝑔 + 𝜔𝐿𝑐         [5] 

In the loss function, 𝜔 is a dynamic adversarial factor which balances the relative weight of the global and the 

drug-specific discriminator loss. During the training, ω is dynamically updated according to the losses of the three 

discriminators: 𝜔 =
𝑑𝑔

𝑑𝑔+
1

2
(𝑑𝑐

𝑆+𝑑𝑐
𝑅)

, where 𝑑𝑔, 𝑑𝑐
𝑆 , and 𝑑𝑐

𝑅 are the proxy 𝒜-distances46 between the source and the 

target domains for the three domain discriminators, respectively. Specifically, for the discriminator 𝐺𝑑 , 

𝑑𝑔(𝐷𝑠, 𝐷𝑡) = 2 (1 − 2 ∗
1

𝑛𝑠+𝑛𝑡
∑ 𝐿𝑔

𝑥𝑖
𝑥𝑖∈𝐷𝑠∪𝐷𝑡

) ; for the discriminator 𝑔𝑑
𝑆 , 𝑑𝑐

𝑆(𝐷𝑠, 𝐷𝑡) = 2 (1 − 2 ∗

1

𝑛𝑠+𝑛𝑡
∑ 𝐿𝑐

𝑆,𝑥𝑖
𝑥𝑖∈𝐷𝑠∪𝐷𝑡

); and for the discriminator 𝑔𝑑
𝑅  , 𝑑𝑐

𝑅(𝐷𝑠, 𝐷𝑡) = 2 (1 − 2 ∗
1

𝑛𝑠+𝑛𝑡
∑ 𝐿𝑐

𝑅,𝑥𝑖
𝑥𝑖∈𝐷𝑠∪𝐷𝑡

), where 𝑛𝑠 

represents the number of cell lines in source domain, and 𝑛𝑡 is the number of cells in target domain. 

The SpaRx model is trained using the stochastic gradient descent (SGD) optimizer. In the SpaRx model, the 

parameters including the number of adjacent neighbors or mutual nearest neighbors in graph construction, as well 

as the latent dimensions in graph transformer layers, are determined through grid-based hyper-parameter fine 

tuning. The hyperparameters used in the final model are: for the SGD optimizer, momentum=0.9 and weight 

decay=5𝑒−5; the learning rate is set to 1𝑒−3; gradient clip threshold at 5; the number of graph transformer layers 

is 2, with the dimensions of 512 and 64, respectively. After the model training, SpaRx accurately predicts the 

drug response labels of cells in the spatial data and uncovers the spatially heterogeneous responses to different 

types of drugs. 

Benchmarking methods and comparison measurement 

To evaluate the performance of SpaRx, we compare it with four deep learning models, including SpaRx-GAT, 

SpaRx-GCN, scDEAL13, SCAD14, and four machine learning methods including random forest (RF), support 

vector machines (SVM), lightGBM and XGBoost. SpaRx-GAT is built based on the SpaRx model, with the 

feature extractor as GAT16 layers, rather than the graph transformer15. SpaRx-GCN uses GCN17 layers as the 

feature extractor. scDEAL13 and SCAD14 are proposed to predict single cell response to cancer drugs by 

integrating large-scale bulk cell-line data and scRNA-seq data. To evaluate the performance of each model, we 

use the F1 score to assess the agreement between the predicted drug response and the ground truth. The F1 ranges 

from 0 to 1 refering to the increasing match between the predicted drug response with ground truth. With 𝑇𝑃 

denoting true positive, FP representing false positive, and 𝐹𝑁 representing false negative, F1 score is calculated 

by 𝐹1 =
2∗𝑇𝑃

2∗𝑇𝑃+(𝐹𝑃+𝐹𝑁)
. Additional metrics including precision, recall, AUROC, and AUPR are included for 

comprehensive evaluation of SpaRx and benchmarking methods. 

Identifying surrounding microenvironment, L-R interactions, and adjacent cell communications 

When characterizing the surrounding microenvironment, we have summed up the adjacent (with 5 nearest 

neighbors) cells (by each cell type) around resistant/sensitive cells. After dividing the total number of cells within 
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each cell type, we obtain the percentage of different cell types in the microenvironment of resistant/sensitive cells. 

To identify L-R interactions, our previous tool spaCI19 is used here for SCST data. With the L-R interactions, we 

further characterize the adjacent cell communications with interaction strength. Specifically, for an L-R 

interaction pair, we define its interaction strength as the multiplication of their average expression values among 

adjacent cells, where the top and bottom 10% expressions of the ligand and the receptor are ignored. The 

interaction strength of all identified L-R pairs is then summarized as the interaction strength between two cell 

types. Thus, the higher value of the interaction strength, the stronger the two cell types adjacently interact. 

 

DATA AVAILABILITY 

NanoString CosMx SMI data: The single-cell spatial dataset (Lung-13), profiled by CosMx SMI on Formalin-

Fixed Paraffin-Embedded (FFPE) samples of the non-small-cell lung cancer (NSCLC) tissue5, is available from 

https://nanostring.com/products/cosmx-spatial-molecular-imager/ffpe-dataset/. Vizgen MERSCOPE data: We 

includes the Vizgen MERFISH liver cancer 1 dataset that contains a MERFISH measurement of a 500 gene panel. 

Data is downloaded from https://info.vizgen.com/merscope-ffpe-solution, which includes the list of detected 

transcripts, gene counts per cell matrix, and additional spatial cell metadata. The gene expression profiles of 

GDSC and CCLE cell lines are downloaded from https://www.cancerrxgene.org/ and https://depmap.org/portal/. 

The gene expression profile data of TCGA lung cancer patients, including lung adenocarcinoma and lung 

squamous cell carcinoma patients, are downloaded from the UCSC Xena database (http://xena.ucsc.edu/). The 

corresponding response information to cisplatin is retrieved from previous studies47, where responders (including 

complete response and partial response) and non-responders (including stable disease and progressive disease), 

are characterized according to the RECIST standard48. 

CODE AVAILABILITY 

SpaRx is provided as a Python package available at https://github.com/QSong-github/SpaRx, with detailed 

functions for the general applicability on different SCST data. 

COMPETING INTERESTS 

The authors declare no competing interests. 

FUNDING 

QS is supported in part by the Bioinformatics Shared Resources under the NCI Cancer Center Support Grant to 

the Comprehensive Cancer Center of Wake Forest University Health Sciences (P30CA012197). QS is also 

supported by the American Cancer Society Institutional Research Grant Pilot. JS is partially financially supported 

by the Indiana University Precision Health Initiative and the Indiana University Melvin and Bren Simon 

Comprehensive Cancer Center Support Grant from the National Cancer Institute (P30CA082709). JS is also 

supported by R01LM013771. 

MATERIALS & CORRESPONDENCE 

Correspondence and requests for materials should be addressed to QS or JS. 

FIGURE LEGENDS 

Fig. 1: Schematic overview of the SpaRx method. a, Concept design of the SpaRx model. With the 

pharmacogenomic profiles serving as the source data, SpaRx enables to predict the cells’ response to drugs in 

single-cell spatial transcriptomics data via graph-based adversarial adaptation. b, SpaRx comprises three 

components (feature extractors, drug-response predictor, and discriminators) to leverage source domain and 

predict cellular response in target domain. 

Fig. 2: SpaRx accurately identifies drug response in targe domain. a, Performance of SpaRx and other 

methods (SpaRx-GAT, SpaRx-GCN, RF, and SVM) are measured by the F1 scores across 80 different drug 
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compounds. Each point represents the F1 score of SpaRx versus an alternative method on one type of drug. b, 

Boxplot of F1 scores based on different sizes of source data.  

Fig. 3: Performance evaluation in different benchmarking scenarios. a, Accuracy of identifying ground truth 

labels for the scenario with extra noise (noise level = 1) in source and target domain. Dashed lines refer to 15% 

percentile of SpaRx’s F1 scores. b, Boxplot of F1 scores over three scenarios with extra noise (noise level = 1, 

1.5, 2) in source and target data. c, Accuracy of identifying ground truth labels for the scenario with extensive 

dropouts (dropout rate = 70%) in source and target domain. d, Boxplot of F1 scores over three scenarios with 

different dropout levels (dropout rate = 70%, 80%, 90%) in source and target domain. e, Accuracy of identifying 

ground truth labels for the scenario with limited number of genes (number of genes = 2k) in source and target 

domain. f, Boxplot of F1 scores over three scenarios with limited number of genes (number of genes = 2k, 853, 

500) in source and target domain. 

Fig. 4: Spatial heterogeneity of cellular response to cisplatin. a, Spatial visualization of single-cell spatial data 

from lung cancer tissue. Eight Field Of Views (FOVs) are included. Different colors denote different types of 

cells. b, Spatial visualization of cellular response to cisplatin. Red and Cyan colors denote resistant (R) and 

sensitive (S) tumor cells to cisplatin. c, Surrounding microenvironment of resistant (R) and sensitive (S) cells in 

each FOV. d, Heatmap quantitatively delineates the constituents around sensitive and resistant cells. e, 

Summarization across eight FOVs for the cell type distributions surrounding resistant and sensitive tumor cells 

to cisplatin. f, Characterization of the infiltrated cell types in responders and non-responders to cisplatin in TCGA 

lung cancer patient samples. 

Fig. 5: Roles of cell-cell communications in tumor cell resistance. a, Summary chord diagram of the identified 

cell-cell communication network. The chord width is proportional to the interaction strength across different cell 

types. b, Heatmap shows the identified L-R interactions between major cell types and resistant (R) or sensitive 

(S) cells. c, Spatial visualization of cellular response to cisplatin, docetaxel, and their combinations. 

Fig 6: SpaRx reveals drug resistance pattern in liver tumor tissue. a, Spatial visualization of the single-cell 

spatial data from liver tumor tissue. b, Spatial visualization of cellular response to mitoxantrone. Red and blue 

colors denote resistant and sensitive tumor cells to mitoxantrone. c, Volcano plot shows the differentially 

expressed genes (DEGs) of resistant versus sensitive tumor cells in tumor region-1. d, Overlaps of DEGs across 

three tumor regions. e, Enriched pathways based on overlapped DEGs across three tumor regions. 

Supplementary Fig. 1: Performance of SpaRx and additional benchmarking methods. a, Performance of 

SpaRx and other methods (SCAD, scDEAL, LightGBM, and XGBoost) are measured by the F1 scores across 80 

different drug compounds. Each point represents the F1 score of SpaRx versus an alternative method on one type 

of drug. b, Boxplot of F1 scores in different scenarios, including different source data sizes, noise levels, dropout 

levels, and number of genes. 

Supplementary Fig. 2: AUROC scores of benchmarking methods in different scenarios. 

Supplementary Fig. 3: AUPR scores of benchmarking methods in different scenarios. 

Supplementary Fig. 4: Precision values of benchmarking methods in different scenarios. 

Supplementary Fig. 5: Recall values of benchmarking methods in different scenarios. 

Supplementary File 1: Comprehensive evaluation of SpaRx with benchmarking methods. 
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