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Abstract11

SNP heritability (h2
snp) is defined as the proportion of phenotypic variance explained by genotyped12

SNPs and is believed to be a lower bound of heritability (h2), being equal to it if all causal variants13

are known. Despite the simple intuition behind h2
snp, its interpretation and equivalence to h2 is14

unclear, particularly in the presence of population structure and assortative mating. It is well known15

that population structure can lead to inflation in ĥsnp estimates because of confounding due to16

linkage disequilibrium (LD) or shared environment. Here we use analytical theory and simulations17

to demonstrate that h2
snp estimates can be biased in admixed populations, even in the absence of18

confounding and even if all causal variants are known. This is because admixture generates LD, which19

contributes to the genetic variance, and therefore to heritability. Genome-wide restricted maximum20

likelihood (GREML) does not capture this contribution leading to under- or over-estimates of h2
snp21

relative to h2, depending on the genetic architecture. In contrast, Haseman-Elston (HE) regression22

exaggerates the LD contribution leading to biases in the opposite direction. For the same reason,23

GREML and HE estimates of local ancestry heritability (h2
γ) are also biased. We describe this bias24

in ĥ2
snp and ĥ2

γ as a function of admixture history and the genetic architecture of the trait and show25

that it can be recovered under some conditions. We clarify the interpretation of ĥ2
snp in admixed26

populations and discuss its implication for genome-wide association studies and polygenic prediction.27
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Introduction28

The ability to estimate (narrow-sense) heritability (h2) from unrelated individuals was a major advance in29

genetics. Traditionally, h2 was estimated from family-based studies in which the phenotypic resemblance30

between relatives could be modeled as a function of their expected genetic relatedness [1]. However, this31

approach was limited to analysis of closely related individuals where pedigree information is available and32

the realized genetic relatedness is not too different from expectation [2]. With the advent of genome-wide33

association studies (GWAS), we hoped that many of the variants underlying this heritability would be34

uncovered. However, when genome-wide significant SNPs explained a much smaller fraction of the phe-35

notypic variance, it became important to explain the missing heritability – were family-based estimates36

inflated or were GWAS just underpowered, limited by variant discovery?37

Yang et al. (2010) [3] made the key insight that one could estimate the portion of h2 tagged by38

genotyped SNPs, regardless of whether or not they were genome-wide significant, by exploiting the39

subtle variation in the realized genetic relatedness among apparently unrelated individuals [3–5]. This40

quantity came to be known colloquially as ‘SNP heritability’ (h2
snp) and it is believed to be equal to41

h2 if all causal variants are included among genotyped SNPs [3]. Indeed, estimates of h2
snp explain a42

much larger fraction of trait heritability than GWAS SNPs [3], approaching family-based estimates of43

h2 when whole genome sequence data, which captures rare variants, are used [6]. This has made it clear44

that GWAS have yet to uncover more variants with increasing sample size. Now, h2
snp has become an45

important aspect of the design of genetic studies and is often used to define the power of variant discovery46

in GWAS and the upper limit of polygenic prediction accuracy.47

Despite the utility and simple intuition of h2
snp, there is much confusion about its interpretation and48

equivalence to h2, particularly in the presence of population structure and assortative mating [7–12].49

But much of the discussion of heritability in structured populations has focused on biases in ĥsnp – the50

estimator – due to confounding effects of shared environment and linkage disequilibrium (LD) with other51

variants [7, 9–11, 13]. There is comparatively little discussion, at least in human genetics, on the fact52

that LD due to population structure also contributes to genetic variance, and therefore, is a component53

of heritability [1] (but see [14–16] for a rigorous discussion). We think this is at least partly due to the54

fact that most studies are carried out in cohorts with primarily European ancestry, where the degree of55

population structure is minimal and large effects of LD can be ignored. However, that is not the case56

for diverse, multi-ethnic cohorts, which have historically been underrepresented in genetic studies, but57

thanks to a concerted effort in the field, are now becoming increasingly common [17–23]. The complex58

structure in these cohorts also brings unique methodological challenges and it is imperative that we59

understand whether existing methods, which have largely been evaluated in more homogeneous groups,60

generalize to more diverse cohorts.61

Our goal in this paper is to study the behavior of ĥsnp in admixed populations. What is its inter-62

pretation in the ideal situation where causal variants are known? Is it an unbiased estimate of h2? To63

answer these questions, we derived a general expression for the genetic variance in admixed populations,64

decomposing it in terms of the contribution of population structure, which influences both the genotypic65

variance at individual loci and the LD across loci. We used theory and simulations to show that ĥsnp66
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estimated with genome-wide restricted maximum likelihood (GREML) [3, 5] and Haseman-Elston (HE)67

regression [24] – two widely used approaches – can be biased in admixed and other structured popula-68

tions, even in the absence of confounding and when all causal variants are known. We explain this in69

terms of the discrepancy between the model assumed in ĥsnp estimation and the generative model from70

which the genetic architecture of the trait in the population may have been sampled. We describe the71

bias in ĥsnp as a function of admixture history and genetic architecture and discuss its implications for72

GWAS and polygenic prediction accuracy.73

Model74

Genetic architecture75

We begin by describing a generative model for the phenotype. Let y = g + e, where y is the phenotypic76

value of an individual, g is the genotypic value, and e is random error. We assume additive effects such77

that g =
∑m
i=1 βixi where βi is the effect size of the ith biallelic locus and xi ∈ {0, 1, 2} is the number78

of copies of the trait-increasing allele. Importantly, the effect sizes are fixed quantities and differences in79

genetic values among individuals are due to random variation in genotypes. Note, that this is different80

from the model assumed by GREML where genotypes are fixed and effect sizes are random [14].81

We denote the mean, variance, and covariance with E(.), V(.), and C(.), respectively, where the82

expectation is measured over random draws from the population rather than random realizations of the83

evolutionary process. We can express the additive genetic variance of a quantitative trait as follows:84

Vg =V(
m∑
i=1

βixi) =
m∑
i=1

β2
i V(xi) +

∑
j 6=i

βiβj C(xi, xj)

Here the first term represents the contribution of individual loci (genic variance) and the second term85

is the contribution of linkage disequilibrium (LD contribution). We make the assumption that loci are86

unlinked and therefore, the LD contribution is entirely due to population structure. We describe the87

behavior of Vg in a population that is a mixture of two previously isolated populations A and B that88

diverged from a common ancestor. To do this, we denote θ as the fraction of the genome of an individual89

with ancestry from population A. Thus, θ = 1 if the individual is from population A, 0 if they are from90

population B, and θ ∈ (0, 1) if they are admixed. Then, Vg can be expressed in terms of ancestry as91

(Appendix):92

Vg =2E(θ)
m∑
i=1

β2
i f

A
i (1− fA

i ) + 2{1− E(θ)}
m∑
i=1

β2
i f

B
i (1− fB

i ) (1.1)

+2E(θ){1− E(θ)}
m∑
i=1

β2
i (fA

i − fB
i )2 (1.2)

+2V(θ)
m∑
i=1

β2
i (fA

i − fB
i )2 (1.3)

+4V(θ)
∑
i 6=j

βiβj(f
A
i − fB

i )(fA
j − fB

j ) (1.4)
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where fA
i and fB

i are the allele frequencies in populations A and B, and E(θ) and V(θ) are the mean93

and variance of individual ancestry. The sum of the first three terms represents the genic variance and94

the last term represents the LD contribution.95

Demographic history96

From Eq. 1, it is clear that, conditional on the genetic architecture in the source populations (β, fA, fB),97

Vg is a function of the mean, E(θ), and variance, V(θ), of individual ancestry in the admixed population.98

We consider two demographic models that affect E(θ) and V(θ) in qualitatively different ways. In the99

first model, the source populations meet once t generations ago (we refer to this as t = 0) in proportions100

p and 1 − p, after which there is no subsequent admixture (Fig. 1A). In the second model, there is101

continued gene flow in every generation from one of the source populations such that the mean overall102

amount of ancestry from population A is the same as in the first model (Fig. 1A). For brevity, we refer103

to these as the hybrid-isolation (HI) and continuous gene flow (CGF) models, respectively, following104

Pfaff et al. (2001) [25]. V(θ) is also affected by ancestry-based assortative mating, where individuals are105

more likely to partner with others of similar ancestry. We refer to this simply as assortative mating for106

brevity and model this following Zaitlen et al. (2017) using a parameter P ∈ (0, 1), which represents the107

correlation of the ancestry of individuals across mating pairs in the population [26].108

Under these conditions, the behavior of E(θ) and V(θ) has been described previously [26, 27] (Fig. 1B109

and C). Briefly, in the HI model, E(θ) remains constant at p in the generations after admixture as there110

is no subsequent gene flow. V(θ) is at its maximum at t = 0 when each individuals carries chromosomes111

either from population A or B, but not both. This genome-wide correlation in ancestry breaks down112

in subsequent generations as a function of mating, independent assortment, and recombination, leading113

to a decay in V(θ), the rate depending on the strength of assortative mating (Fig. 1C). In the CGF114

model, both E(θ) and V(θ) increase with time as new chromosomes are introduced from the source115

populations. But while E(θ) continues to increase monotonically, V(θ) will plateau and decrease due to116

the countervailing effects of independent assortment and recombination which redistribute ancestry in117

the population, reaching equilibrium at zero if there is no more gene flow and the population is mating118

randomly. V(θ) provides an intuitive and quantitative measure of the degree of population structure119

(along the axis of ancestry) in admixed populations.120

Results121

Genetic variance in admixed populations122

To understand the expectation of genetic variance in admixed populations, it is first worth discussing123

its behavior in the source populations. In Eq. 1, the first term represents the within-population com-124

ponent (Vgw) and the last three terms altogether represent the component of genetic variance between125

populations A and B (Vgb). Note that Vgb = (ḡA−ḡB)2

2 is positive only if there is a difference in the mean126

genotypic values (Fig. 2). This variance increases with genetic divergence since the expected values127

of both (fA
i − fB

i )2 and (fA
i − fB

i )(fA
j − fB

j ) are functions of FST . While β2
i (fA

i − fB
i )2 is expected to128
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Figure 1: The behavior of mean and variance of individual ancestry as a function of admixture history.

(A) Shows the demographic models under which simulations were carried out. Admixture might occur

once (Hybrid Isolation, HI, left column) or continuously (Continuous Gene Flow, CGF, right column).

(B) The mean individual ancestry, E(θ) remains constant over time in the HI model and increases in

the CGF model with continued gene flow. (C) The variance in individual ancestry, V(θ) is maximum at

t = 0 in the HI model, decaying subsequently. V(θ) increases with gene flow in the CGF model and will

subsequently decrease with time. P measures the strength of assortative mating, which slows the decay

of V(θ). P=0.6 is missing for simulations run for 50 and 100 generations and θ ∈ {0.1, 0.2} due to the

difficulty in finding mate pairs (Methods).
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increase monotonically with increasing divergence, βiβj(fA
i − fB

i )(fA
j − fB

j ) is expected to be zero under129

neutrality because the direction of frequency change will be uncorrelated across loci. In this case, the LD130

contribution, i.e., (1.4), is expected to be zero and Vgb = (1.1) + (1.2) + (1.3). However, this is true only131

in expectation over the evolutionary process and the realized LD contribution may be non-zero even for132

neutral traits.133

Figure 2: Decomposing genetic variance in a two-population system. The plot illustrates the expected

distribution of genetic values in two populations under different selective pressures and the terms on the

right list the total (Vg) and between-population genetic variance (Vgb) expected over the evolutionary

process. For neutrally evolving traits (top row), we expect there to be an absolute difference in the mean

genetic values (|ḡA − ḡB |) that is proportional to FST . For traits under divergent selection (middle),

|ḡA − ḡB | is expected to be greater than that expected under genetic drift. For traits under stabilizing

selection, |ḡA − ḡB | will be less than that expected under genetic drift, and zero in the extreme case.

For traits under selection, the LD contribution is expected to be greater or less than zero, depending134

on the type of selection. Under divergent selection, trait-increasing alleles will be systematically more135

frequent in one population over the other, inducing positive LD across loci [28, 29], increasing the136

LD contribution, i.e., term (1.4). Stabilizing selection, on the other hand, induces negative LD [30,137

31]. In the extreme case, the mean genetic values of the two populations are exactly equal and Vgb =138

(1.2) + (1.3) + (1.4) = 0. For this to be true, (1.4) has to be negative and equal to (1.2) + (1.3), which139

are both positive, and the total genetic variance is reduced to the within-population variance, i.e., term140

(1.1) (Fig. 2). This is relevant because, as we show in the following sections, the behavior of the genetic141

variance in admixed populations depends on the magnitude of Vgb between the source populations.142

We illustrate this by tracking the genetic variance in admixed populations for two traits, both with143

the same mean FST at causal loci but with different LD contributions (term 1.4): one where the LD144
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contribution is positive (Trait 1) and the other where it is negative (Trait 2). Thus, traits 1 and 2145

can be thought of as examples of phenotypes under divergent and stabilizing selection, respectively, and146

we refer to them as such from hereon. To simulate the genetic variance of such traits, we drew the147

allele frequencies (fA and fB) in populations A and B for 1,000 causal loci with FST ∼ 0.2 using the148

Balding-Nichols model [32]. We drew their effects (β) from N (0, 1
2mf̄(1−f̄)

) where f̄ is the mean allele149

frequency between the two populations, m is the number of loci. To simulate positive and negative150

LD, we permuted the effect signs across variants 100 times and selected the combinations that gave the151

most positive and negative LD contribution to represent the genetic architecture of traits that might152

be under directional (Trait 1) and stabilizing (Trait 2) selection, respectively (Methods). We simulated153

the genotypes of 10,000 individuals under the HI and CGF models for t ∈ {10, 20, 50, 100} generations154

post-admixture and calculated genetic values for both traits using g =
∑m
i=1 βixi, where m = 1, 000155

(Method). The observed genetic variance at any time can then be calculated simply as the variance in156

genetic values, i.e. Vg = V(g).157

In the HI model, E(θ) does not change (Fig. 1B) so terms (1.1) and (1.2) are constant through time.158

Terms (1.3) and (1.4) decay towards zero as the variance in ancestry goes to zero and Vg ultimately159

converges to (1.1) + (1.2) (Fig. 3). This equilibrium value is equal to the E(Vg|θ) (Appendix) and the160

rate of convergence depends on the strength of assortative mating, which slows the rate at which V(θ)161

decays. Vg approaches equilibrium from a higher value for traits under divergent selection and lower value162

for traits under stabilizing selection because of positive and negative LD contributions, respectively, at163

t = 0 (Fig. 3). In the CGF model, Vg increases initially for both traits with increasing gene flow (Fig.164

3). This might seem counter-intuitive at first because gene flow increases admixture LD, which leads165

to more negative values of the LD contribution for traits under stabilizing selection (Fig. S1). But this166

is outweighed by positive contributions from the genic variance – terms (1.1) + (1.2) + (1.3) – all of167

which initially increase with gene flow (Fig. S1). After a certain point, the increase in Vg slows down as168

any increase in V(θ) due to gene flow is counterbalanced by recombination and independent assortment.169

Ultimately, Vg will decrease if there is no more gene flow, reaching the same equilibrium value as in the170

HI model, i.e., E(Vg|θ) = (1.1) + (1.2). Because the loci are unlinked, we refer to the sum (1.3) + (1.4)171

as the contribution of population structure.172

GREML estimation173

In their original paper, Yang et al. (2010) defined h2
snp as the variance explained by genotyped SNPs and174

not as heritability [3]. This is because h2 is the genetic variance explained by causal variants, which are175

unknown. Genotyped SNPs may not overlap with or tag all causal variants and thus, h2
snp is understood176

to be a lower bound of h2, both being equal if causal variants are known [3]. Our goal is to demonstrate177

that this may not be true in structured populations and quantify the bias in ĥsnp, even in the ideal178

situation when causal variants are known.179

We used GREML, implemented in GCTA [3, 5], to estimate the genetic variance for our simulated180

traits. GCTA assumes the following model: y = Zu + ε where Z is an n ×m standardized genotype181

matrix such that the genotype of the kth individual at the ith locus is zik = xik−2fi√
2fi(1−fi)

, fi being the182
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Figure 3: Genetic variance in admixed populations under the (A) HI and (B) CGF models. Dotted lines

represent the expected genetic variance based on Eq. (1) and solid lines represent results of simulations

averaged over ten replicates. Red and blue lines represent traits under divergent and stabilizing selection,

respectively. P = 0.6 is missing for simulations run for 50 and 100 generations and θ ∈ {0.1, 0.2} due to

the difficulty in finding mate pairs (Methods)
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allele frequency. The SNP effects corresponding to the scaled genotypes are assumed to be random and183

independent such that u ∼ N (0, I
σ2
u

m ) and ε ∼ N (0, Iσ2
ε ) is random environmental error. Then, the184

phenotypic variance can be decomposed as:185

V(y) =V(Zu) + V(e)

=
ZZ

m

′
σ2
u + σ2

ε

where ZZ′

m is the genetic relationship matrix (GRM), the variance components σ2
u and σ2

ε are estimated186

using restricted maximum likelihood, and ĥsnp is calculated as σ̂2
u

σ̂2
u+σ̂2

ε
. We are interested in asking187

whether σ̂2
u is an unbiased estimate of Vg. To answer this, we constructed the GRM with causal variants188

and estimated σ̂2
u using GCTA [3, 4].189

GCTA under- and over-estimates the genetic variance in admixed populations for traits under diver-190

gent (Trait 1) and stabilizing selection (Trait 2), respectively, when there is population structure, i.e.,191

when V(θ) > 0 (Fig. 4A). One reason for this bias is that the GREML model assumes that the effects192

are independent, and therefore the LD contribution is zero. This, as discussed in the previous section, is193

not true for traits under divergent or stabilizing selection between the source populations, and only true194

for neutral traits in expectation. Because of this, σ̂2
u does not capture the LD contribution, i.e. term195

(1.4) (Fig. 4A). But σ̂2
u can be biased even if the LD contribution is zero if the genotypes are scaled with196 √

2fi(1− fi) – the standard practice – where fi is the frequency of the allele in the population. This197

scaling assumes that V(xi) = 2fi(1 − fi), which is true only if the population were mating randomly.198

In an admixed population V(xi) = 2fi(1 − fi) + 2V(θ)(fAi − fBi )2, where fi, fAi , and fBi correspond199

to frequency in the admixed population, and source populations, A and B, respectively (Appendix).200

Alternatively, if the genotypes are scaled, V(zi) = 1 + 2V(θ)F
(i)
st where F (i)

st is the Fst at the ith locus.201

We show that this assumption biases σ̂2
u downwards by a factor of 2V(θ)(fAi − fBi )2 (or 2V(θ)F

(i)
st if202

genotypes are scaled) – term (1.3) (Fig. 4B, Appendix). Thus, with the standard scaling, σ̂2
u gives a203

biased estimate in the presence of population structure, even of the genic variance.204

The overall bias in σ̂2
u is determined by the relative magnitude and direction of terms (1.3) and205

(1.4), both of which are functions of V(θ), and therefore, of the degree of structure in the population.206

The contribution of term (1.3) will be modest, even in highly structured populations (Fig. S1) and207

therefore, the overall bias is largely driven by the LD contribution. If there is no more gene flow, V(θ)208

will ultimately go to zero and Vg will converge towards σ̂2
u. Thus, σ̂2

u is more accurately interpreted209

as the genetic variance expected if the LD contribution were zero and if the population were mating210

randomly. In other words, E(σ̂2
u) = (1.1) + (1.2) 6= Vg (Fig. 4B).211

In principle, we can recover the missing components of Vg by scaling the genotypes appropriately.212

For example, we can recover term (1.3) by scaling the genotype at each variant i by its sample variance,213

i.e., zik = xik−2fi√
V(xi)

(Fig. 4C) (Appendix). We can also recover term (1.4) by scaling the genotypes with214

the covariance between SNPs, i.e., the LD matrix, as previously proposed [33, 34] (Methods). In matrix215

form, the ‘LD-scaled’ genotypes can be written as Z = (X − 2P )U−1 where P is an n×m matrix such216

that all elements of the ith column contain the frequency of the ith SNP and U is the (upper triangular)217

square root matrix of the LD matrix, i.e., Σ = U ′U [33]. GREML recovers the LD contribution under218
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Figure 4: The behavior of GREML estimates of the genetic variance (σ̂2
u) in admixed populations under

the HI (left column) and CGF (right column) models either without (A-D) or with (E-H) individual

ancestry as a fixed effect. The solid lines represent estimates from simulated data averaged across

ten replicates with red and blue colors representing estimates for traits under divergent and stabilizing

selection, respectively. P indicates the strength of assortative mating. The shaded area represents the

95% confidence bands generated by bootstrapping (sampling with replacement 100 times) the point

estimate reported by GCTA. The dotted lines either represent the expected variance in the population

based on Eq. 1 (A & B) or the expected estimate for three different ways of scaling genotypes (B-D &

F-H). (A-B & E-F) show the behavior of σ̂2
u for the default scaling, (C, G) shows σ̂2

u when the genotype

at a locus is scaled by its sample variance (V(x) scaled), and (D, H) when it is scaled by the sample

covariance (LD scaled).
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this scaling, resulting in unbiased estimates of Vg for both traits (Fig. 4D, Appendix).219

In practice, however, the LD contribution may not be fully recoverable for two reasons. One, the220

LD-scaled GRM requires computing the inverse of Σ or U which may not exist, especially if the number221

of markers is greater than the sample size – the case for most human genetic studies. Second, it is222

common to include individual ancestry or principal components of the GRM as fixed effects in the model223

to account for inflation in heritability estimates due to shared environment. This should also have the224

effect of removing the components of genetic variance along the ancestry axes, the residual variance being225

equal to E{V(g|θ)} = (1.1) + (1.2)− (1.3) (Appendix). Indeed, this is what we observe in Fig. 4H. Thus,226

if ancestry is included as a fixed effect, we expect Vg to be underestimated in the presence of population227

structure, regardless of genetic architecture.228

HE estimation229

Haseman-Elston (HE) regression also assumes a random-effects model but uses a method-of-moments230

approach, as opposed to GREML, which maximizes the likelihood to estimate Vg. Previous work has231

shown that as long as all causal variants are included in the GRM calculation, the HE estimator will232

not be biased, even if they are in LD with each other [35]. We show that in the presence of positive233

and negative LD between causal loci, as exemplified by traits under divergent and stabilizing selection,234

respectively, the HE estimates of Vg are biased upwards and downwards, respectively (Fig. 5A-B). To235

understand this discrepancy and the source of bias in our simulations, recall that HE estimates Vg from236

the regression of the (pairwise) phenotypic covariance between individuals on their genotypic covariance237

[24]. More specifically, if we denote Ykl = ykyl as the product of the (centered) phenotypes of kth and238

lth individuals, and ψkl as the kth and lth entry of the GRM, then the HE estimator can be written as:239

V̂g =
Cov(Ykl, ψkl)

V ar(ψkl)

=
E(ykyl

∑M
w=1 zwkzwl)

E(
∑M
i=1 zikzil

∑M
w=1 zwkzwl)

=
E{(gk + ek)(gl + el)

∑M
w=1 zwkzwl}

E(
∑M
i=1 zikzil

∑M
w=1 zwkzwl)

=
E(gkgl

∑M
w=1 zwkzwl)

E(
∑M
i=1 zikzil

∑M
j=1 zwkzwl)

=
E(
∑M
i=1

∑M
j=1 uiujzikzjl

∑M
w=1 zwkzwl)

E(
∑M
i=1 zikzil

∑M
w=1 zwkzwl)

=
E(
∑M
i=1

∑M
j=1 uiuj

∑M
w=1 zikzjlzwkzwl)

E(
∑M
i=1

∑M
w=1 zikzilzwkzwl)

=
E(
∑M
i=1 u

2
i

∑M
w=1 zikzjlzwkzwl)

E(
∑M
i=1

∑M
w=1 zikzilzwkzwl)

+
E(
∑M
i=1

∑
j 6=i uiuj

∑M
w=1 zikzjlzwkzwl)

E(
∑M
i=1

∑M
w=1 zikzilzwkzwl)

(2)

Where the first and second terms represent the genic and LD components, respectively, of the esti-240

mate. Population structure induces correlations between the alleles at a given locus as well as across241

loci (i.e., LD). But the LD may not be directional, i.e., trait-increasing alleles may be as likely to be242

co-inherited with each other as they are to trait-decreasing alleles, and vice versa – implicit under the243
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standard random-effects model. Thus, in the absence of directional LD, the second term is zero and the244

first term is unaffected as long as all causal variants are included in the GRM, because the increase in245

the numerator due to population structure is proportional to the denominator [35]. Directional LD does246

not affect the first term but exaggerates the contribution from the second term, i.e., the LD component247

(see Appendix section A3.2). Consequently, HE regression over- and under-estimates Vg for traits with248

positive and negative LD, respectively. Note that this bias is in the opposite direction of the bias observed249

with GREML, which fails to capture the LD contribution. Scaling the genotype at a locus by its LD with250

other loci, as discussed in the previous section, corrects for the bias in HE regression regardless of genetic251

architecture, yielding estimates consistent with GREML (Fig. 5C). Thus, GREML and HE regression252

are guaranteed to yield the same estimates only if the underlying model specifying the distribution of253

effects is consistent with the true architecture of the trait.254

The practice of including individual ancestry as a covariate in HE regression to account for shared255

environment [11] reduces the bias from exaggerated LD contributions (Fig. 5D-F). But, as with GREML,256

this also removes any genetic variance that may exist along the ancestry axis, yielding underestimates257

of Vg, regardless of genetic architecture.258

Local ancestry heritability259

A related quantity of interest in admixed populations is local ancestry heritability (h2
γ), which is defined260

as the proportion of phenotypic variance that can be explained by local ancestry. Zaitlen et al. (2014)261

[36] showed that this quantity is related to, and can be used to estimate, h2 in admixed populations.262

The advantage of this approach is that local ancestry segments shared between individuals are identical263

by descent and are therefore, more likely to tag causal variants compared to array markers, allowing264

one to potentially capture the contributions of rare variants [36]. Here, we show that in the presence of265

population structure, (i) the relationship between h2
γ and h2 is not straightforward and (ii) ĥ2

γ may be a266

biased estimate of local ancestry heritability under the random effects model for the same reasons that267

ĥ2
snp is biased.268

We define local ancestry γi ∈ {0, 1, 2} as the number of alleles at locus i that trace their ancestry269

to population A. Thus, ancestry at the ith locus in individual k is a binomial random variable with270

E(γik) = 2θk, θk being the ancestry of the kth individual. Similar to genetic value, the ‘ancestry value’271

of an individual can be defined as
∑m
i=1 φiγi, where φi = βi(f

A
i − fB

i ) is the effect size of local ancestry272

(Appendix). Then, the genetic variance due to local ancestry can be expressed as (Appendix):273
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Figure 5: Genetic variance (V̂g) estimated with HE regression in admixed populations under the HI (left

column) and CGF (right column) models either without (A-C) or with (D-F) adjustment for individual

ancestry. The solid lines represent estimates from simulated data averaged across ten replicates with red

and blue colors representing estimates for traits under divergent and stabilizing selection, respectively.

P indicates the strength of assortative mating. (A & D) show the behavior of V̂g for the default scaling,

(B, E) shows V̂g when the genotype at a locus is scaled by its sample variance (V(x) scaled), and (C, F)

when it is scaled by the sample covariance (LD scaled). The dotted lines in A-E represent the expected

Vg in the population based on Eq. 1 and in F, represent the expected Vg after removing any genetic

variance along the ancestry axis. The shaded areas represent the 95% bootstrapped confidence bands of

the estimate.
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Vγ =V

(
m∑
i=1

φiγi

)
=

m∑
i=1

φ2
i V(γi) +

m∑
i=1

∑
j 6=i

φiφj C(γi, γj)

=2E(θ){1− E(θ)}
m∑
i=1

φ2
i + 2V(θ)

m∑
i=1

φ2
i + 4V(θ)

m∑
i=1

∑
j 6=i

φiφj

=2E(θ){1− E(θ)}
m∑
i=1

β2
i (fA

i − fB
i )2

+2V(θ)
m∑
i=1

β2
i (fA

i − fB
i )2

+4V(θ)
m∑
i=1

∑
j 6=i

βiβj(f
A
i − fB

i )(fA
j − fB

j )

and heritability explained by local ancestry is simply the ratio of Vγ and the phenotypic variance. Note274

that Vγ = (1.2) + (1.3) + (1.4) and therefore its behavior is similar to Vg in that the terms (1.3) and (1.4)275

decay towards zero as V(θ) → 0, and Vγ converges to (1.2) (Fig. S2). Additionally, the dependence of276

Vγ on both E(θ) and V(θ) precludes a straightforward derivation between local ancestry heritability and277

h2.278

GREML estimation of ĥ2
γ is similar to that of ĥ2

snp, the key difference being that the former involves279

constructing the GRM using local ancestry instead of genotypes [36]. The following model is assumed:280

y = Wv + ξ where W is an n × m standardized local ancestry matrix, v ∼ N (0, I
σ2
v

m ) are local281

ancestry effects, and ξ ∼ N (0, Iσ2
ξ ). Note that σ2

ξ captures both environmental noise as well as any282

genetic variance independent of local ancestry. The phenotypic variance is decomposed as V(y) =283

V(Wv) + V(ξ) = WW ′

m σ2
v + σ2

ξ where WW ′

m is the local ancestry GRM and σ2
v is the parameter of284

interest, which is believed to be equal to Vγ – the genetic variance due to local ancestry.285

We show that, in the presence of population structure, i.e., when V(θ) > 0, GREML σ̂2
v is biased286

downwards relative to Vγ for traits under divergent selection and upwards for traits under stabilizing287

selection because it does not capture the contribution of LD (Fig. 6A). But there is another source of288

bias in σ̂2
v , which tends to be inflated in the presence of population structure if individual ancestry is289

not included as a covariate, even with respect to the expectation of Vγ under equilibrium (seen more290

clearly in Fig. 6B-C). We suspect this inflation is because of strong correlations between local ancestry291

– local ancestry disequilibrium – across loci that inflates σ̂2
v in a way that is not adequately corrected292

even when all causal variants are included in the model [4, 10]. Scaling local ancestry by its covariance293

removes this bias and recovers the contribution of LD (Fig. 6D) presumably because this accounts for294

the correlation in genotypes across loci. Including individual ancestry as a fixed effect also corrects for295

the inflation in σ̂2
v (Fig. 6E-H). But as with σ̂2

u, this practice will underestimate the genetic variance296

due to local ancestry in the presence of population structure because it removes the variance along the297

ancestry axis (Fig. 6E-H).298

Based on the above, GREML ĥ2
γ and corresponding estimates of h2 are more accurately interpreted as299

the heritability due to local ancestry and heritability, respectively, expected in the absence of population300

structure. We believe ĥ2
γ is still useful in that, because it should capture the effects of rare variants, it301

can be used to estimate the upper bound of ĥsnp.302
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In a previous paper, we suggested that local ancestry heritability could potentially be used to estimate303

the genetic variance between populations [37]. Our results suggest this is not possible for two reasons.304

First, the GREML estimator of local ancestry heritability, as we show in this section is biased and305

does not capture the LD contribution. But even if we were able to recover the LD component, our306

decomposition shows that local ancestry is equal to the genetic variance between populations (Vgb) only307

when E(θ) = 0.5 and V(θ) = E(θ){1−E(θ)} = 0.25, which is only possible at t = 0 in the HI model. After308

admixture, V(θ) decays and the equivalence between Vγ and Vgb is lost, making it impossible to estimate309

the latter from admixed populations, especially for traits under divergent or stabilizing selection, even310

if the environment is randomly distributed with respect to ancestry. We note that this conclusion was311

recently reached independently by Schraiber and Edge (2023) [38].312

Figure 6: The behavior of GREML estimates of the variance due to local ancestry (σ̂2
v) in admixed

populations under the HI (left column) and CGF (right column) models either without (A-D) or with

(E-H) individual ancestry included as a fixed effect. The solid lines represent estimates from simulated

data averaged across ten replicates with red and blue colors representing estimates for traits under

divergent and stabilizing selection, respectively. P indicates the strength of assortative mating. The

dotted lines either represent the expected variance in the population (A & B) or the expected estimate

for three different ways of scaling local ancestry (B-D & F-H). (A-B & E-F) show the behavior of σ̂2
v for

the default scaling, (C, G) shows σ̂2
v when local ancestry is scaled by the sample variance, and (D, H)

when it is scaled by the sample covariance. Shaded regions represent the 95% confidence bands. Some

runs in (D & H) failed to converge as seen by the missing segments of the solid lines because the expected

variance in such cases was too small.
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How much does LD contribute to Vg in practice?313

In the previous sections, we showed theoretically that ĥsnp may be biased in admixed populations even314

if the causal variants are known and in the absence of confounding by shared environment. GREML315

fails to capture the LD contribution whereas HE regression overestimates it. The extent to which ĥsnp is316

biased because of this reason in practice is ultimately an empirical question, which is difficult to answer317

because the true genetic architecture – the LD contribution in particular – is unknown. In this section,318

we develop some intuition for this contribution among individuals with mixed African and European319

ancestry using a combination of simulations and empirical data analysis.320

First, we simulated a neutral trait using genotype data from the African Americans (ASW) from the321

1,000 Genomes Project (1KGP) [39]. To do this, we sampledm ∈ {10, 100, 1, 000} causal loci from a set of322

common (MAF > 0.01), LD pruned variants and assigned them effects such that βi ∼ N
(

0, 1√
mV(xi)

)
,323

i.e., the expected genic variance is E{
∑m
i=1 β

2
i V ar(xi)} = 1 (Methods). We computed the genic and324

LD contributions and repeated this process 1,000 times where each replicate can be thought of as an325

independent realization of the genetic architecture of a neutrally evolving trait. We show that the LD326

contribution may be zero in expectation but can be substantial for a given trait (up to 50% of the genic327

variance, Fig. S4), even in the absence of selection.328

Second, we estimated the LD contribution of genome-wide significant SNPs for 26 quantitative traits329

from the GWAS catalog [40]. To do this, we decomposed the variance explained in ASW into the four330

components in Equation 1 using allele frequencies (fA and fB) from the YRI and CEU and the mean331

(E(θ) ≈ 0.77) and variance (V(θ) ≈ 0.02) of individual ancestry from ASW (Methods). We show that332

for skin pigmentation – a trait under strong divergent selection – the LD contribution, i.e. term (1.4),333

is positive and accounts for ≈ 40 — 50% of the total variance explained. This is because of large allele334

frequency differences between Africans and Europeans that are correlated across skin pigmentation loci,335

consistent with strong polygenic selection favoring alleles for darker pigmentation in regions with high UV336

exposure and vice versa [37, 41–44]. But for most other traits, LD contributes relatively little, explaining337

a modest, but non-negligible proportion of the genetic variance in height, LDL and HDL cholestrol, mean338

corpuscular hemoglobin (MCH), neutrophil count (NEU), and white blood cell count (WBC) (Fig. 7).339

Because we selected independent associations for this exercise (Methods), the LD contribution is driven340

entirely due to population structure in ASW. The contribution of population structure to the genic341

variance, i.e., term (1.3) is also small even for traits like skin pigmentation and neutrophil count with342

large effect alleles that are highly diverged in frequency between Africans and Europeans [42, 43, 45–343

47]. Overall, this suggests that population structure contributes relatively little, as least to the variance344

explained by GWAS SNPs.345

Discussion346

Despite the growing size of GWAS and discovery of thousands of variants for hundreds of traits [40], the347

heritability explained by GWAS SNPs remains a fraction of twin-based heritability estimates. Yang et348

al. (2010) introduced the concept of SNP heritability (h2
snp) that does not depend on the discovery of349
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Figure 7: Decomposing the genetic variance explained by GWAS SNPs in the 1000 Genomes ASW

(African Americans from Southwest). We calculated the four variance components listed in Eq. 1, their

values shown on the y-axis as a fraction of the total variance explained (shown as percentage at the

bottom). The LD contribution, which can be positive or negative, is shown in yellow. The number of

variants used to calculate variance components for each trait is also shown at the bottom.

causal variants but assumes that they are numerous and are more or less uniformly distributed across the350

genome (the infinitesimal model), their contributions to the genetic variance ‘tagged’ by genotyped SNPs351

[3]. h2
snp is now routinely estimated in most genomic studies and at least for some traits (e.g. height and352

BMI), these estimates now approach twin-based heritability [6]. But despite the widespread use of ĥsnp,353

its interpretation remains unclear, particularly in the presence of admixture and population structure.354

It is generally accepted that ĥsnp can be biased in structured populations because of confounding effects355

of unobserved environmental factors and LD between causal variants [4, 7, 9–11, 48]. But ĥsnp may be356

biased even in the absence of confounding because of misspecification of the underlying random-effects357

model, i.e., if the model does not represent the genetic architecture from which the trait is sampled358

[14–16, 49, 50].359

Under the standard GREML model, SNP effects are assumed to be uncorrelated and the total genetic360

variance can be represented as the sum of the variance explained by individual loci, i.e. the genic variance361

[14–16]. In admixed populations, there is substantial LD, which can contribute to the genetic variance,362

and can persist for a number of generations, despite recombination, due to continued gene flow and/or363

ancestry-based assortative mating. GREML does not capture this LD contribution [12, 15], and therefore,364

may lead to biased estimates of h2
snp. The LD contribution can be negative for traits under stabilizing365

selection, and positive for traits under divergent selection between the source populations, leading to366

over- or under-estimates, respectively. Thus, GREML estimates of h2
snp, assuming genotypes are scaled367

properly (see below), is better interpreted as the proportion of phenotypic variance explained by the368
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genic variance. Estimates of local ancestry heritability (ĥ2
γ) [36, 51] should be interpreted similarly.369

We show that with GREML, ĥsnp can be biased even when the LD contribution is zero if the geno-370

types are scaled by
√

2f(1− f) – the standard approach, which implicitly assumes a randomly mating371

population. In the presence of population structure, the variance in genotypes can be higher and ĥsnp372

does not capture this additional variance, which we show can be recovered by scaling genotypes by the373

SNP variance (
√
V ar(x)). In principle, the LD contribution can also be recovered by scaling genotypes374

by the SNP covariance, i.e., the LD matrix, as previously suggested [33, 34]. But this approach is limited375

to situations where the sample size is much larger than the number of markers.376

We also investigated the behavior of another widely used approach to estimate h2
snp – Haseman-377

Elston regression. We show that ĥsnp estimated with HE regression is also biased, but for different378

reasons and in the opposite direction of the bias observed with GREML. HE regression exaggerates379

the LD contribution, leading to over- and under-estimates of h2
snp for traits where the causal loci are380

in positive and negative LD, respectively. Approaches that correct for population structure [35] should381

remove this source of bias but would also remove any genetic variance in the trait along the ancestry axis,382

including the LD contribution. This results in underestimates of h2
snp, regardless of trait architecture.383

One limitation of this paper is that we have focused on random-effects estimators of h2
snp because of384

their widespread use. Estimators of h2
snp can be broadly grouped into random- and fixed effect estimators385

based on how they treat SNP effects [35]. Fixed effect estimators make fewer distributional assumptions386

but they are not as widely used because they require conditional estimates of all variants – a high-387

dimensional problem where the number of markers is often far larger than the sample size [52]. This is388

one reason why random effect estimators, such as GREML, are popular – because they reduce the number389

of parameters that need to be estimated by assuming that the effects are drawn from some distribution390

where the variance is the only parameter of interest. Fixed effects estimators, in principle, should be able391

to capture the LD contribution but this is not obvious in practice since the simulations used to evaluate392

the accuracy of such estimators still assume uncorrelated effects [35, 52, 53]. Further research is needed393

to clarify the interpretation of the different estimators of h2
snp in structured populations under a range394

of genetic architectures.395

Does the LD contribution to the genetic variance have practical implications? The answer to this396

depends on the context in which SNP heritability is used. ĥsnp can be useful in quantifying the power397

to detect variants in GWAS where the quantity of interest is the genic variance. But ĥsnp can lead to398

misleading conclusions if used to measure the extent to which genetic variation contributes to phenotypic399

variation, in predicting the response to selection, or in defining the upper limit of polygenic prediction400

accuracy [2] – applications where the LD contribution is important.401

Ultimately, the discrepancy between ĥsnp and h2 in practice is an empirical question, the answer to402

which depends on the degree of population structure (which we can measure) and the genetic architecture403

of the trait (which we do not know a priori). We show that for most traits, the contribution of population404

structure to the variance explained by GWAS SNPs is modest among African Americans. Thus, if we405

assume that the genetic architecture of GWAS SNPs represents that of all causal variants, then despite406

incorrect assumptions, the discrepancy between ĥsnp and h2 should be fairly modest. But this assumption407

is unrealistic given that GWAS SNPs are common variants that in most cases cumulatively explain a408
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fraction of trait heritability. What is the LD contribution of the rest of the genome, particularly rare409

variants? This is not obvious and will become clearer in the near future through large sequence-based410

studies [54]. While these are underway, theoretical studies are needed to understand how different411

selection regimes influence the directional LD between causal variants – clearly an important aspect of412

the genetic architecture of complex traits.413

Methods414

Simulating genetic architecture415

We first drew the allele frequency (f0) of 1,000 biallelic causal loci in the ancestor of populations A and416

B from a uniform distribution, U(0.001, 0.999). Then, we simulated their frequency in populations A and417

B (fA and fB) under the Balding-Nichols model [32], such that fA, fB ∼ Beta( f
0(1−F )
F , (1−f0)(1−F )

F )418

where F = 0.2 is the inbreeding coefficient. We implemented this using code adapted from Lin et al.419

(2021) [55]. To avoid drawing extremely rare alleles, we continued to draw fA and fB until we had 1,000420

loci with fA, fB ∈ (0.01, 0.99).421

We generated the effect size (β) of each locus by sampling from N (0, 1
2mf̄(1−f̄)

), where m is the422

number of loci and f̄ is the mean allele frequency across populations A and B. Thus, rare variants have423

larger effects than common variants and the total genetic variance sums to 1. Given these effects, we424

simulated two different traits, one with a large difference in means between populations A and B (Trait425

1) and the other with roughly no difference (Trait 2). This was achieved by permuting the signs of the426

effects 100 times to get a distribution of Vgb – the genetic variance between populations. This has the427

effect of varying the LD contribution without changing the FST at causal loci. We selected the maximum428

and minimum of Vgb to represent Traits 1 and 2.429

Simulating admixture430

We simulated the genotypes, local ancestry, and phenotype for 10,000 admixed individuals per generation431

under the hybrid isolation (HI) and continuous gene flow (CGF) models by adapting the code from Zaitlen432

et al. (2017) [26]. We denote the ancestry of a randomly selected individual k with θ, the fraction of their433

genome from population A. At t = 0 under the HI model, we set θ to 1 for individuals from population A434

and 0 if they were from population B such that E(θ) = p ∈ {0.1, 0.2, 0.5} with no further gene flow from435

either source population. In the CGF model, population B receives a constant amount q from population436

A in every generation starting at t = 0. The mean overall proportion of ancestry in the population is437

kept the same as the HI model by setting q = 1− (1− p) 1
t where t is the number of generations of gene438

flow from A. In every generation, we simulated ancestry-based assortative mating by selecting mates439

such that the correlation between their ancestries is P ∈ {0, 0.3, 0.6, 0.9} in every generation. We do this440

by repeatedly permuting individuals with respect to each other until P falls within ±0.01 of the desired441

value. It becomes difficult to meet this criterion when V(θ) is small (Fig.1C). To overcome this, we442

relaxed the threshold up to 0.04 for some conditions, i.e., when θ ∈ {0.1, 0.2} and t ≥ 50. We generated443

expected variance in individual ancestry using the expression in Zaitlen et al. (2017) [26]. At time t444
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since admixture, V(θt) = V(θt−1) (1+P )
2 under the HI model where P measures the strength of assortative445

mating, i.e, the correlation between the ancestry between individuals in a mating pair. Under the CGF446

model, V(θt) = q(1− q)E(θt−1)2 + q(1− q){1− 2E(θt−1)}+ (1− q)V(θt−1) (1+P )
2 (Appendix).447

We sampled the local ancestry at each ith locus as γi = γif + γim where γim ∼ Bin(1, θm), γif ∼448

Bin(1, θf ) and θm and θf represent the ancestry of the maternal and paternal chromosome, respectively.449

The global ancestry of the individual is then calculated as θk =
∑m
i=1

γim+γif
2m , where m is the number of450

loci. We sample the genotypes xim and xif from a binomial distribution conditioning on local ancestry.451

For example, the genotype on the maternal chromosome is xim ∼ Bin(1, fA
i ) if γim = 1 and xim ∼452

Bin(1, fB
i ) if γim = 0 where fA

i and fB
i represent the allele frequency in populations A and B, respectively.453

Then, the genotype can be obtained as the sum of the maternal and paternal genotypes: xi = xim +xip.454

We calculate the genetic value of each individual as g =
∑m
i=1 βixi and the genetic variance as V(g).455

Heritability estimation with GREML456

We used the --reml and --reml-no-constrain flags in GCTA [5] to estimate σ2
u and σ2

v , the genetic variance457

due to genotypes and local ancestry, respectively. We could not run GCTA without noise in the genetic458

values so we simulated individual phenotypes with a heritability of h2 = 0.8 by adding random noise459

e ∼ N (0, Vg
1−h2

h2 ). We computed three different GRMs, which correspond to different transformations460

of the genotypes: (i) standard, (i) Variance or V (x) scaled, and (ii) LD-scaled.461

For the standard GRM, the genotypes at the ith SNP are standardized such that zi = xi−2fi√
2fi(1−fi)

.462

For the variance scaled GRM, we computed zi = xi−2fi√
V(xi)

where V(xi) is the sample variance of the463

genotypes at the ith SNP. The LD-scaled GRM conceptually corresponds to standardizing the genotypes464

by the SNP covariance, rather than its variance. Let X represent the n ×m unstandardized matrix of465

genotypes and P represent an n×m matrix where the ith column contains the allele frequency of that466

SNP. Let U be the upper triangular ‘square root’ matrix of the m ×m SNP covariance matrix Σ such467

that Σ = U ′U . Then, the standardized genotypes are computed as Z = (X − 2P )U−1 and the GRM468

becomes (X − 2P )Σ−1(X − 2P )′ [33]. Similarly, the three GRMs for local ancestry were computed by469

scaling local ancestry with (i)
√

2γ̄i(1− γ̄i) where we denote γ̄i as the mean local ancestry at the ith470

SNP, or with the (ii) variance, or (iii) covariance of local ancestry, respectively. We estimated σ2
u and471

σ2
v with and without individual ancestry as a fixed effect to correct for any confounding due to genetic472

stratification. This was done by using the --qcovar flag.473

Heritability estimation with HE regression474

Haseman-Elston regression with and without ancestry correction was implemented using custom scripts475

in R [56]. To estimate Vg without ancestry correction, we first computed the cross-product of the centered476

phenotypes (y), resulting in an n× n matrix yy′. We stacked the upper-triangular matrix of yy′ into a477

vector and regressed it on the corresponding elements of the GRM (ψ), taking the slope as an estimate478

of Vg:479
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V̂g =

∑
k=1

∑
l<k ykylψkl∑

k

∑
l<k ψ

2
kl

To correct for individual ancestry, we followed the approach of Min et al. (2022) [35]. To do this, we480

first regressed out the effect of individual ancestry (θ) on phenotype. The regression coefficient can be481

expressed as θ(θ′θ)−1θ′ and the residuals as y∗ = (I − θ(θ′θ)−1θ′)y. Then, we fit the following model:482

E(y ∗ y∗′) = Vgψ + VeI + δθθ′

where θθ′ represents the cross-product of individual ancestry, δ represents its corresponding regression483

coefficient, and Vg represents the parameter of interest, i.e., the genetic variance and Ve, the residual484

variance.485

To demonstrate that the bias in HE estimates arises because of a bias in the estimate of LD contri-486

bution, not the genic variance, we carried out a simple simulation where half of the individuals in the487

population derive their ancestry from population A and the rest from population B. This is equivalent to488

the meta-population under the HI model at t = 0 where E(θ) = 0.5. We simulated genotypes for 1, 000489

individuals for m = 100 loci where the allele frequencies in populations A and B were set to fA = 0.1490

and fB = 0.8, respectively. We standardized the genotypes at each locus i using the square-root of the491

sample variance and assigned effect sizes such that the total genetic variance explained by all loci is equal492

to 1, i.e., the effect of the scaled genotype at the ith locus is ui = 1√
m
. This is equivalent to the effect493

size of the unscaled genotypes being βi = 1√
mV(xi)

where V(xi) is the sample variance at the ith locus.494

We introduced randomness in the direction of the effect by assigning a negative or positive sign to each495

locus uniformly at random 100 times to generate 100 traits with the same genic variance but varying LD496

contributions. Then, for each trait we computed the two terms in Eq. 2, which should converge to the497

genic variance and LD contributions, which represent the genic and LD components to the HE regression498

estimate. Fig. S5 shows that in the presence of directional LD, the overall bias is in the HE regression499

estimate is due to an exaggerated estimate of the LD contribution.500

Estimating variance explained by GWAS SNPs501

To decompose the variance explained by GWAS SNPs in African Americans, we needed four quantities:502

(i) effect sizes of GWAS SNPs, (ii) their allele frequencies in Africans and Europeans, and (iii) the mean503

and variance of global ancestry in African Americans (Equation 1).504

We retrieved the summary statistics of 26 traits from GWAS catalog [40]. Full list of traits and the505

source papers [44, 57–64] are listed in Table S1. To maximize the number of variants discovered, we chose506

summary statistics from studies that were conducted in both European and multi-ancestry samples and507

that reported the following information: effect allele, effect size, p-value, and genomic position. For birth508

weight, we downloaded the data from the Early Growth Genetics (EGG) consortium website [61] since the509

version reported on the GWAS catalog is incomplete. For skin pigmentation, we chose summary statistics510
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from the UKB [65] released by the Neale Lab (http://www.nealelab.is/uk-biobank) and processed by Ju511

and Mathieson [44] to represent effect sizes estimated among individuals of European ancestry. We512

also selected summary statistics from Lona-Durazo et al. (2019) where effect sizes were meta-analyzed513

across four admixed cohorts [57]. Lona-Durazo et al. provide summary statistics separately with and514

without conditioning on rs1426654 and rs35397 – two large effect variants in SLC24A5 and SLC45A2.515

We used the ‘conditioned’ effect sizes and added in the effects of rs1426654 and rs35397 to estimate516

genetic variance.517

We selected independent hits for each trait by pruning and thresholding with PLINK v1.90b6.21 [66]518

in two steps as in Ju et al. (2020) [44]. We used the genotype data of GBR from the 1000 genome519

project [39] as the LD reference panel. We kept only SNPs (indels were removed) that passed the520

genome-wide significant threshold (--clump-p1 5e-8 ) with a pairwise LD cutoff of 0.05 (--clump-r2 0.05 )521

and a physical distance threshold of 250Kb (--clump-kb 250 ) for clumping. Second, we applied a second522

round of clumping (--clump-kb 100 ) to remove SNPs within 100kb.523

When GWAS was carried out separately in different ancestry cohorts in the same study, we used524

inverse-variance weighting to meta-analyze effect sizes for variants that were genome-wide significant525

(p-value < 5× 10−8) in at least one cohort. This allowed us to maximize the discovery of variants such526

as the Duffy null allele that are absent among individuals of European ancestry but polymorphic in other527

populations [47].528

We used allele frequencies from the 1000 Genomes CEU and YRI to represent the allele frequencies529

of GWAS SNPs in Europeans and Africans, respectively, making sure that the alleles reported in the530

summary statistics matched the alleles reported in the 1000 Genomes. We estimated the global ances-531

try of ASW individuals (N = 74) with CEU and YRI individuals from 1000 genome (phase 3) using532

ADMIXTURE 1.3.0 [67] with k=2 and used it to calculate the mean (proportion of African ancestry =533

0.767) and variance (0.018) of global ancestry in ASW. With the effect sizes, allele frequencies, and the534

mean and variance in ancestry, we calculated the four components of genetic variance using Equation 1535

and expressed them as a fraction of the total genetic variance.536

Initially, the multi-ancestry summary statistics for a few traits (NEU, WBC, MON, MCH, BAS)537

yielded values > 1 for the proportion of variance explained. This is likely because, despite LD pruning,538

some of the variants in the model are not independent and tag large effect variants under divergent539

selection such as the Duffy null allele, leading to an inflated contribution of LD. We checked this by540

calculating the pairwise contribution , i.e., βiβj(fA
i − fB

i )(fA
j − fB

j ), of all SNPs in the model and show541

long-range positive LD between variants on chromosome 1 for NEU, WBC, and MON, especially with the542

Duffy null allele (Fig. S6A-C). A similar pattern was observed on chromosome 16 for MCH, confirming543

our suspicion. This also suggests that for certain traits, pruning and thresholding approaches are not544

guaranteed to yield independent hits. To get around this problem, we retained only one association with545

the lowest p-value, each from chromosome 1 (rs2814778 for NEU, WBC, and MON) and chromosome 16546

(rs13331259 for MCH) (Fig. S6D). For BAS, we observed that the variance explained was driven by a547

rare variant (rs188411703, MAF = 0.0024) of large effect (β = −2.27). We believe this effect estimate548

to be inflated and therefore, we removed it from our calculation.549

As a sanity check, we independently estimated the genetic variance as the variance in polygenic550
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scores, calculated using --score flag in PLINK, [66] in ASW individuals. We compared the first estimate551

of the genetic variance to the second (Fig. S7) to confirm two things: (i) the allele frequencies, and552

mean and variance in ancestry are estimated correctly, and (ii) the variants are more or less independent553

in that they do not absorb the effects of other variants in the model. We show that the two estimates554

of the genetic variance are strongly correlated (r ∼ 0.85, Fig. S7). The 95% confidence intervals were555

calculated by sampling individuals with replacement 10,000 times.556

Code availability557

We carried out all analyses in R version 4.2.3 [56], PLINK v1.90b6.21 and PLINK 2.0 [66, 68], and GCTA558

version 1.94.1 [5]. All code is freely available on https://github.com/jinguohuang/admix_heritability.git.559
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Appendix724

A1 Variance in ancestry725

We denote variance and covariance with V(.) and C(.) and used the expressions in [26] to generate the726

expected value for the variance in ancestry, i.e., V(θ). This is straightforward for the HI model, where at727

time t V(θt) = V(θt−1) (1+Pt−1)
2 . Pt = Cor(θm, θf ) measures the strength of assortative mating, i.e, the728

correlation between the ancestry across mating pairs (θm, θf ) at time t. For simplicity, we assumed this to729

be constant in every generation, i.e. Pt = Pt−1 = P following [26]. Since our notation slightly differs from730

[26], we re-derived the expression for V (θt) for the CGF model where population B receives a constant731

amount q of gene flow from population A in every generation. Note, that E(θt) = q + (1 − q)E(θt−1).732

Then,733

V(θt) =E(θ2
t )− E(θt)

2

=q + (1− q)E

[(
θmt−1 + θft−1

2

)(
θmt−1 + θft−1

2

)]
− {q + (1− q)E(θt−1)}2

=q +
(1− q)

4
{2E(θ2

t−1) + 2E(θmt−1θ
f
t−1)} − {q2 + 2q(1− q)E(θt−1) + (1− q)2 E(θt−1)2}

=q +
1− q

2
E(θ2

t−1) +
1− q

2
E(θmt−1θ

f
t−1)− q2 − 2q(1− q)E(θt−1)− (1− q)2 E(θt−1)2

=q(1− q) +
1− q

2
{V(θt−1) + E(θt−1)2}+

1− q
2
{C(θmt−1, θ

f
t−1) + E(θt−1)2} − 2q(1− q)E(θt−1)− E(θt−1)2

=q(1− q) +
1− q

2
V(θt−1) +

1− q
2

E(θt−1)2 +
1− q

2
Pt−1 V(θt−1) +

1− q
2

E(θt−1)2 − 2q(1− q)E(θt−1)− E(θt−1)2

=q(1− q) +
1− q

2
V(θt−1){1 + Pt−1}+ (1− q)E(θt−1)2 − 2q(1− q)E(θt−1)− (1− q)2 E(θt−1)2

=q(1− q)E(θt−1)2 + q(1− q){1− 2E(θt−1)}+
1− q

2
V(θt−1){1 + Pt−1}

A2 Genetic variance734

Let y = g+ e, where y is the phenotypic value of an individual, g is the genotypic value, and e is random735

error. We assume additive effects such that g =
∑m
i=1 βixi where βi is the effect size of the ith biallelic736

locus and xi ∈ {0, 1, 2} is the number of copies of the trait-increasing allele. Then, the genetic variance737

Vg is:738

Vg =V(

m∑
i=1

βixi) =

m∑
i=1

β2
i V(xi) +

∑
j 6=i

βiβj C(xi, xj)

In the following sections, we decompose V(xi) and C(xi, xj) further as functions of ancestry.739

A2.1 V(xi)740

We first derive V(xi) as a function of ancestry (θ) using the law of total variance:741
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V(xi) = E
θ
{V(xi|θ)}+ V{E

θ
(xi|θ)}

where Eθ represents the expectation taken over θ.742

A2.1.1 Eθ{V(xi|θ)}743

We derive V(xi|θ) by further conditioning on the local ancestry at each locus.744

V(xi|θ) =E
γ
{V(xi|γ, θ)}+ V{E

γ
(xi|γ, θ)}

where Eγ represents expectation taken over local ancestry. Since we are interested in the variance at745

a single locus, we will ignore the subscript i and denote the frequency of the trait-increasing allele in746

populations A and B with fA and fB, respectively.747

E
γ
{V(xi|γ, θ)} =V(xi|γ = 0, θ)P(γ = 0|θ) + V(xi|γ = 1, θ)P(γ = 1|θ) + V(xi|γ = 2, θ)P(γ = 2|θ)

=2 fB(1− fB)(1− θ)2 + {fA(1− fA) + fB(1− fB)}2θ(1− θ) + 2 fA(1− fA)θ2

=(2 fB−2fA
2

)(1− 2θ + θ2) + (fA−fA
2

+ fB−fB
2

)(2θ − 2θ2) + (2 fA−2fA
2

)θ2

=2 fB−2θ fB−2fB
2

+ 2θfB
2

+ 2θ fA−2θfA
2

=2 fB(1− θ)− 2fB
2

(1− θ) + 2θ fA(1− fA)

=2 fB(1− fB)(1− θ) + 2θ fA(1− fA)

To derive V{Eγ(x|γ, θ)}, note that748

E
γ

(x|γ, θ) =E
γ
{E(x|θ)}

=E(x|γ = 0, θ)P(γ = 0|θ) + E(x|γ = 1, θ)P(γ = 1|θ) + E(x|γ = 2, θ)P(γ = 2|θ)

=2θ fA +2(1− θ) fB

And,749

V{E
γ

(x|γ, θ)} = [E(x|γ = 0, θ)− E(x|θ)]2 P(γ = 0|θ)

+ [E(x|γ = 1, θ)− E(x|θ)]2 P(γ = 1|θ)

+ [E(x|γ = 2, θ)− E(x|θ)]2 P(γ = 2|θ)

=θ2
[
2 fA−{2θ fA +2(1− θ) fB}

]2
+2θ(1− θ)

[
fA + fB−{2θ fA +2(1− θ) fB}

]2
+(1− θ)2

[
2 fB−{2θ fA +2(1− θ) fB}

]2
=2θ(1− θ)(fA− fB)2
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Putting this together,750

E
θ
{V(xi|θ)} =E

θ
{2 fB(1− fB)(1− θ) + 2θ fA(1− fA) + 2θ(1− θ)(fA− fB)2}

=2 fB(1− fB){1− E
θ
(θ)}+ 2E

θ
(θ) fA(1− fA) + 2E

θ
(θ − θ2)(fA− fB)2

=2 fB(1− fB){1− E
θ
(θ)}+ 2E

θ
(θ) fA(1− fA) + 2{E

θ
(θ)− E

θ
(θ2)}(fA− fB)2

=2 fB(1− fB){1− E
θ
(θ)}+ 2E

θ
(θ) fA(1− fA) + 2{E

θ
(θ)− V(θ)− E

θ
(θ)2}(fA− fB)2

=2 fB(1− fB){1− E
θ
(θ)}+ 2E

θ
(θ) fA(1− fA) + 2E

θ
(θ)(1− E

θ
(θ))(fA− fB)2 − 2V(θ)(fA− fB)2

A2.1.2 V{Eθ(xi|θ)}751

Recall from the previous section that Eθ(xi|θ) = 2θ fA +2(1− θ) fB. Then,752

V{E
θ
(xi|θ)} =V{2θ fA +2(1− θ) fB}

=4V(θ)fA
2

+ 4V(1− θ)fB
2

+ 2C(2θ fA, 2(1− θ fB)

=4V(θ)fA
2

+ 4V(1− θ)fB
2

− 8 fA fB V(θ)

=4V(θ)(fA− fB)2

We are now ready to express V(xi):753

V(xi) =2 fB(1− fB){1− E
θ
(θ)}+ 2E

θ
(θ) fA(1− fA) + 2E

θ
(θ)(1− E

θ
(θ))(fA− fB)2

− 2V(θ)(fA− fB)2 + 4V(θ)(fA− fB)2

=2E
θ
(θ) fA

i (1− fA
i ) + 2{1− E

θ
(θ)} fB

i (1− fB
i )

+ 2E
θ
(θ){1− E

θ
(θ)}(fA

i − fB
i )2 − 2V(θ)(fA

i − fB
i )2

Note, that we can also express V (xi) as:754

V(xi) =2fi(1− fi) + 2V(θ)(fAi − fBi )2

where the second term is the contribution of population structure to the genetic variance at locus i.755

A2.2 C(xi, xj)756

We can derive C(xi, xj) using the law of total covariance:757
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C(xi, xj) =E
θ
{C(xi, xj |θ)}+ C{E

θ
(xi|θ),E

θ
(xj |θ)}

=0 + C{2 fA
i θ + 2 fB

i (1− θ), 2 fA
j θ + 2 fB

j (1− θ)}

=C(2 fA
i θ, 2 fA

j θ) + C(2 fA
i θ, 2 fB

j (1− θ)+

C(2 fB
i (1− θ), 2 fA

j θ) + C(2 fB
i (1− θ), 2 fB

j (1− θ))

=4V(θ)(fA
i − fB

i )(fA
j − fB

j )

Eθ{C(xi, xj |θ)} = 0 because we assume that the loci are unlinked and therefore, xi and xj are condi-758

tionally independent. Putting this all together, we get the genetic variance in admixed populations as759

presented in the main text:760

Vg =
m∑
i=1

β2
i V(xi) +

∑
j 6=i

βiβj C(xi, xj)

=
m∑
i=1

β2
i 2E

θ
(θ) fA

i (1− fA
i ) +

m∑
i=1

β2
i 2{1− E

θ
(θ)} fB

i (1− fB
i )

+
m∑
i=1

β2
i 2E

θ
(θ){1− E

θ
(θ)}(fA

i − fB
i )2+

+
m∑
i=1

β2
i 2V(θ)(fA

i − fB
i )2]

+
∑
j 6=i

βiβj4V(θ)(fA
i − fB

i )(fA
j − fB

j )

The only difference being that in the main text we use E instead of Eθ for simplicity. With two ‘unad-761

mixed’ source populations with equal number of individuals, E(θ) = 0.5 and V(θ) = E(θ){1−E(θ)} = 0.25762

and Vg reduces to:763

Vg =V

(
m∑
i=1

βixi

)
=

m∑
i=1

β2
i V(xi) +

∑
j 6=i

βiβj C(xi, xj)

=
m∑
i=1

β2
i

[
fA

i (1− fA
i ) + fB

i (1− fB
i )
]

+
m∑
i=1

β2
i (fA

i − fB
i )2

+
∑
i 6=j

βiβj(f
A
i − fB

i )(fA
j − fB

j )

A3 The effect of genotype scale on V̂g764

In the main text, we showed that both GREML and Haseman-Elston regression estimates of Vg depend765

on how the genotypes are scaled. We provide an explanation of this behavior using the Haseman-Elston766

(HE) regression estimator, which is asymptotically equivalent to the GREML estimator if effects are767

uncorrelated [69] but which, unlike GREML, has a closed-form solution.768
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A3.1 No directional LD769

A3.1.1 Scaling by 2fi(1− fi)770

First, let’s assume a genetic architecture where all loci contribute equally to the genetic variance and there771

is no LD contribution. With the standard scaling, the genotype at a given locus i is zi = xi−2fi
2fi(1−fi) where772

fi is the frequency of the allele in the population. Under the random-effects model, this is equivalent773

to saying that the unscaled effects are: βi ∼ N (0,
σ2
u

2mfi(1−fi) ), σ2
u being the parameter of interest. In a774

panmictic population,775

Vg =V

(
m∑
i=1

βixi

)
=

m∑
i=1

β2
i V(xi)

=
m∑
i=1

σ2
u

2mfi(1− fi)
2fi(1− fi)

=σ2
u

In an admixed population,776

Vg =
m∑
i=1

β2
i {2fi(1− fi) + 2V(θ)(fAi − fBi )2}

=
m∑
i=1

σ2
u

2mfi(1− fi)
{2fi(1− fi) + 2V(θ)(fAi − fBi )2}

=
σ2
u

m

m∑
i=1

{1 + V(θ)
(fA

i − fB
i )2

fi(1− fi)
}

=σ2
u + V(θ)

σ2
u

m

m∑
i=1

(fA
i − fB

i )2

fi(1− fi)︸ ︷︷ ︸
contribution of population structure

to the genic variance

The HE estimator of Vg is based on the regression of products of (centered) phenotypes ykyl for all pairs777

of individuals k 6= l on the corresponding entries of the GRM (ψ) where ψkl =
∑m
i=1 zikzil
m and zik is the778

centered and scaled genotype of individual k for locus i:779

V̂g =
C(ykyl, ψkl)

V(ψkl)

=
Ekl(ykylψkl)− Ekl(ykyl)Ekl(ψkl)

Ekl(ψ2
kl)− E(ψkl)2

=
Ekl(ykylψkl)
Ekl(ψ2

kl)

Where Ekl represents the expectation over all k × l pairwise comparisons between individuals. It is780

simpler to express the HE estimator in terms of the scaled effects ui ∼ N (0,
σ2
u

m ).781
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V̂g =
Ekl(ykylψkl)
Ekl(ψ2

kl)
=

Ekl (
∑m
i=1 uizik

∑m
i=1 uizilψkl)

Ekl(ψ2
kl)

=
Ekl
(∑m

i=1 u
2
i zikzilψkl

)
Ekl(ψ2

kl)
+

Ekl
(∑m

i=1

∑
j 6=i uiujzikzjlψkl

)
Ekl(ψ2

kl)

=
E(u2

i )Ekl (
∑m
i=1 zikzilψkl)

Ekl(ψ2
kl)

+
E(uiuj)Ekl

(∑m
i=1

∑
j 6=i zikzjlψkl

)
Ekl(ψ2

kl)

=
E(u2

i )Ekl(mψ2
kl)

Ekl(ψ2
kl)

+ 0 = σ2
u

Where E(ui) and E(uiuj) represent expectations over random realizations of effect sizes. Thus, the last782

line follows from our assumption that the effect sizes are independent in expectation, i.e., E(uiuj) = 0.783

Note, that the estimate is still biased since it does not capture the contribution of population structure.784

A3.1.2 Scaling by V(xi)785

Next, we consider the case where the genotypes are standardized instead by the sample variance, i.e.,786

zkl = xik−2fi√
V(xi)

such that V(zi) = 1. We can derive E(u2
i ) corresponding to this scaling by noting that the787

genetic variance is invariant under linear transformations of the genotype [14]:788

m∑
i=1

β2
i V(xi) =

m∑
i=1

u2
i V(zi)

mE(u2
i ) = σ2

u + V(θ)
σ2
u

m

m∑
i=1

(fA
i − fB

i )2

fi(1− fi)

E(u2
i ) =

σ2
u

m
+ V(θ)

σ2
u

m2

m∑
i=1

(fA
i − fB

i )2

fi(1− fi)

Then, the HE estimator becomes:789

V̂g =mE(u2
i )

=m

(
σ2
u

m
+ V(θ)

σ2
u

m2

m∑
i=1

(fA
i − fB

i )2

fi(1− fi)

)

=σ2
u + V(θ)

σ2
u

m

m∑
i=1

(fA
i − fB

i )2

fi(1− fi)

Which provides an unbiased estimate of the genic variance. It’s important to note that even though we790

assumed effect sizes under a random-effect model, the above result holds under a fixed-effect model as791

long as there is no directional LD. We discuss the implications of directional LD in the following section.792

A3.2 Directional LD793

Under the standard random-effect model, the effect sizes are assumed to be independent in expectation.794

We discussed in the main text how certain processes (e.g. selection and assortative mating) can induce795

directional LD across causal loci. But directional LD might arise even for neutral traits and under the796

random-effects model for any given realization of effects. This can lead to biases both HE and GREML797
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estimates of Vg, though the direction and reason for bias is different for the two methods. GREML does798

not have a closed-form solution so the exact estimand is difficult to derive. Instead, we develop some799

intuition based on HE regression.800

A3.2.1 Scaling by V(xi)801

To do this, let u′ = [u1, u2, ..., um] represent the vector of a given realization of (fixed) effects correspond-802

ing to the standardized genotypes such that each locus contributes equally to σ2
u, the genic variance, i.e.,803

u2
i =

σ2
u

m . Let there be positive LD across loci such that all cross-product terms are uiuj =
σ2
u

m . Then,804

the genetic variance explained by all loci is:805

Vg =
m∑
i=1

u2
i V(zi) +

∑
j 6=i

uiuj C(zi, zj)

=
m∑
i=1

u2
i +

∑
j 6=i

uiuj C(zi, zj)

=σ2
u +

σ2
u

m

∑
j 6=i

C(zi, zj) (3)

where C(zi, zj) is the LD between the ith and jth loci that ranges from 0 (no LD) to 1 (perfect LD).806

Thus, the LD contribution to Vg ranges from 0 to (m− 1)σ2
m. In comparison, the HE estimator is:807

V̂g =
Ekl
(∑m

i=1 u
2
i zikzilψkl

)
Ekl(ψ2

kl)
+

Ekl
(∑m

i=1

∑
j 6=i uiujzikzjlψkl

)
Ekl(ψ2

kl)

=
Ekl
(∑m

i=1
σ2
u

m zikzil
∑m
w=1 zwkzwl/m

)
Ekl(

∑m
i=1 zikzil/m

∑m
w=1 zwkzwl/m)

+
Ekl
(∑m

i=1

∑
j 6=i

σ2
u

m zikzjl
∑m
w=1 zwkzwl/m

)
Ekl(

∑m
i=1 zikzil/m

∑m
w=1 zwkzwl/m)

=σ2
u + σ2

u

Ekl
(∑m

i=1

∑
j 6=i zikzjlzwkzwl

)
Ekl(

∑m
i=1 zikzil

∑m
w=1 zwkzwl)

(4)

This shows that the bias due to directional LD in the HE estimate of Vg does not come from the genic,808

but the LD component. When there is no LD, e.g. if the population has reached equilibrium after809

generations of random mating, this component goes to zero and both the estimate and Vg converge to810

the same value – the genic variance. The LD component is maximum when the ith and jth loci are811

in perfect LD. In this case, i and j are exchangeable and the second term of the estimator reduces812

to (m − 1)σ2
m. Thus, HE regression should give an unbiased estimate of Vg, even in the presence of813

directional LD, but only when LD is perfect. For any other value 0 < C(zi, zj) < 1, the estimate is814

biased (Fig. A1). An interpretable, analytical derivation of the second term in Eq. 4 is complicated but815

we illustrate the bias with simulations below.816

For unlinked markers, C(zi, zj) is a function of 4V(θ)(fA
i − fB

i )(fA
j − fB

j ) (see A2.1). Perfect LD arises817

when (i) both fA
i − fB

i = 1 and fA
j − fB

j = 1 and (ii) V(θ) is maximum, which occurs at the time of818

admixture when source populations mix equally, i.e, E(θ) = 0.5. To generate a range of LD, we simulated819

an admixed population (N = 1, 000) with equal number of individuals from populations A and B. Thus,820
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4V(θ) = 4E(θ){1 − E(θ)} = 1. We simulated genotypes for each individual at 50 ‘causal’ loci where821

the difference between the frequencies in the source populations, fAi − fBi ∈ [0, 1] with the condition822

that fAi +fBi
2 = 0.5. We assigned each locus the same effect size (on the variance-standardized scale) of823

+1/
√
m summing up to a genic variance of 1. The positive sign ensures positive LD across loci, i.e,824

all off-diagonal elements of uu′ are set to 1/m. For each simulation, we computed the expected and825

estimated LD component using the second terms in Eqs. 3 and 4, respectively, and averaged the results826

over 100 replications.827

Figure A1: The behavior of the LD contribution (y-axis) to the genetic variance (red) and the Haseman-

Elston regression estimate (blue) as a function of LD, i.e. C(zi, zj) (x-axis). Each point represents the

contribution calculated from a random draw of genotypes, given C(zi, zj) ∝ (fA
i − fB

i )(fA
j − fB

j ). The

red line represents the expected LD contribution and the black dashed line represents the contribution

expected in the case of perfect LD.

A3.2.2 Scaling by LD828

In the main text, we showed that standardizing the genotypes at a locus by its covariance with other loci829

accounts for the bias for GREML and HE estimators. More specifically, the ‘LD-scaled’ genotypes can830

be written as Z = (X − 2P )U−1 where P is an n×m matrix such that all elements of the ith column831

contain the frequency of the ith SNP and U is the (upper triangular) square root of the LD matrix, i.e,832

Σ = U ′U . Under this scheme, the standardized genotypes are uncorrelated and therefore, the second833

term in Eqs. 3 and 4 are zero. This reduces the estimator to the first term, representing the sum of834

squares of effect sizes, i.e. u′u =
∑m
i=1 u

2
i . The effect sizes corresponding to the LD scaled genotypes835

are u = Uβ and the sum of squares is:836
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u′u = (Uβ)
′
(Uβ) = β′U ′Uβ = βΣβ =

m∑
i=1

m∑
j=1

βiβj C(xi, xj)

Which captures both the genic and LD contributions and therefore, provides an unbiased estimate of Vg.837

A4 Genetic variance after correction for individual ancestry838

In the main text, we stated that including individual ancestry as a fixed effect in GREML can lead to an839

underestimate of Vg in the presence of population structure. Mixed effect models deal with fixed effects840

(ancestry in our case) by projecting them out of the phenotypes, and estimating the residual variance.841

This is conceptually equivalent to measuring the residual variance of the regression between phenotype842

and ancestry. As a result, any variance in the phenotype that is explained by ancestry is removed. To843

understand this quantitatively, it is helpful to decompose Vg into components of variance explained by844

and variance orthogonal to ancestry:845

V(g) = V{E
θ
(g|θ)}︸ ︷︷ ︸

variance along
ancestry axis

+ E
θ
{V(g|θ)}︸ ︷︷ ︸

variance orthogonal
to ancestry axis

We can express the residual variance as:846

E
θ
{V(g|θ)} =E

θ
{V(

M∑
i=1

β2
i xi|θ)}

=E
θ
{
M∑
i=1

β2
i V(xi|θ)}+ E

θ
{
∑
i 6=j

βiβj C(xi, xj |θ)

=
M∑
i=1

β2
i E
θ
{V(xi|θ)}+ 0

=2E
θ
(θ)

M∑
i=1

β2 fA
i (1− fA

i ) + 2{1− E
θ
(θ)}

M∑
i=1

β2 fB
i (1− fB

i )

+ 2E
θ
(θ)

M∑
i=1

β2{1− E
θ
(θ)}(fA

i − fB
i )2 − 2V(θ)

M∑
i=1

β2(fA
i − fB

i )2

Note, that this represents the following components of Vg from the main text: (1.1) + (1.2) - (1.3). Note,847

that (1.3), which is subtracted out, is always positive and depends on V(θ). Thus, the residual genetic848

variance will be underestimated, regardless of trait architecture, in the presence of population structure,849

i.e. when V(θ) > 0.850

A5 Effect size of local ancestry851

We define local ancestry γi ∈ {0, 1, 2} as the number of alleles at locus i that trace their ancestry to852

population A. Thus, the local ancestry at locus i in individual k is a Binomial random variable with853
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E(γi,k) = 2θk. We define the ancestry value of an individual as the weighted sum of their local ancestry:854 ∑m
i=1 φiγi where φi = βi(f

B
i − fA

i ).855

To show this, note that φ = E(y|γ = 1) − E(y|γ = 0) where E(y|γ = 1) =
∫∞
−∞ yh(y|γ = 1) and h is856

a density function. Our goal is to express φ in terms of β, which is equal to E(y|x = 1) − E(y|x = 0).857

Furthermore, E(y|x = 1) =
∫∞
−∞ yh(y|x = 1). We can express h(y|γ) in terms of h(y|x) as follows:858

h(y|γ = 1) = h(y|x = 0)P(x = 0|γ = 1) + h(y|x = 1)P(x = 1|γ = 1) + h(y|x = 2)P(x = 2|γ = 1)

= h(y|x = 0)2(1− fA)(1− fA) + h(y|x = 1){fA(1− fB) + fB(1− fA)}+ h(y|x = 2)2 fA fB

E(y|γ = 1) =

∫ ∞
−∞

yh(y|γ = 1)dy

=(1− fA)(1− fB)

∫ ∞
−∞

yh(y|x = 0)dy

+ {fA(1− fB) + fB(1− fA)}
∫ ∞
−∞

yh(y|x = 1)dy

+ fA fB

∫ ∞
−∞

yh(y|x = 2)dy

=(1− fA)(1− fB)E(y|x = 0) + {fA(1− fB) + fB(1− fA)}E(y|x = 1) + fA fB E(y|x = 2)

=0 + {fA(1− fB) + fB(1− fA)}β + fA fB 2β

=β fA +β fB

Similary, E(y|γ = 0) = 2β fB and φ = E(y|γ = 1)− E(y|γ = 0) = β(fB− fA)859

A6 Genetic variance due to local ancestry860

Vγ = V(
m∑
i=1

φiγi)

=
m∑
i=1

φ2
i V(γi) +

m∑
i=1

∑
j 6=i

φiφj C(γi, γj)

(5)

We use the law of total variance and covariance to derive V(γi) and C(γi, γj):861

V(γi) =E{V(γi|θ)}+ V{E(γi|θ)}

=E{2θ(1− θ)}+ V(2θ)

=2E(θ)− 2E(θ2) + 4V(θ)

=2E(θ)− 2V(θ)− 2E(θ)2 + 4V(θ)

=2E(θ){1− E(θ)}+ 2V(θ)

C(γi, γj) =E{C(γi, γj |θ)}+ C{E(γi, γj |θ)}

=0 + C(2θ, 2θ) = 4V(θ)
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Vγ =2E(θ){1− E(θ)}
m∑
i=1

φ2
i + 2V(θ)

m∑
i=1

φ2
i + 4V(θ)

m∑
i=1

∑
j 6=i

φiφj

=2E(θ){1− E(θ)}
m∑
i=1

β2
i (fB

i − fA
i )2

+ 2V(θ)
m∑
i=1

β2
i (fB

i − fA
i )2

+ 4V(θ)
m∑
i=1

∑
j 6=i

βiβj(f
B
i − fA

i )(fB
j − fA

j )
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Supplement862

Figure S1: The behavior of the four components of genetic variance in admixed populations under the

(A) HI and (B) CGF models. We assume that the mean ancestry proportion in the population is 0.5.

The solid lines represent values observed in simulations averaged across ten replicates and the dotted

lines represent the expected values based on Eq. 1 of the main text. The red and blue lines represent

values for traits 1 and 2, respectively. P indicates the strength of assortative mating. P=0.6 is missing

for simulations run for 50 and 100 generations and θ ∈ {0.1, 0.2} due to the difficulty in finding mate

pairs (Methods).
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Figure S2: The behavior of the genetic variance due to local ancestry in admixed populations under the

(A) HI and (B) CGF models. The solid lines represent values observed in simulations averaged across

ten replicates and the dotted lines represent the expected values based on Eq. 1 of the main text. The

red and blue lines represent values for traits 1 and 2, respectively. P indicates the strength of assortative

mating. P=0.6 is missing for simulations run for 50 and 100 generations and θ ∈ {0.1, 0.2} due to the

difficulty in finding mate pairs (Methods).
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Figure S3: The behavior of GREML estimates of SNP heritability (ĥsnp) in admixed populations under

the HI (left column) and CGF (right column) models either without (A-C) or with (D-F) individual

ancestry as a fixed effect. The solid lines represent ĥsnp averaged across ten replicates, with red and

blue colors representing estimates for traits under divergent and stabilizing selection, respectively. (A,

D) show the behavior of ĥsnp for the default scaling, (B, E) shows ĥsnp when the genotype at a locus is

scaled by its sample variance (V(x) scaled), and (C, F) when it is scaled by the sample covariance (LD

scaled). The shaded area represents the 95% confidence bands generated by bootstrapping (sampling

with replacement 100 times) the point estimate reported by GCTA. The black dotted lines represent

the expected heritability value given the simulation settings (h2 = 0.8). P indicates the strength of

assortative mating

Figure S4: Distribution of the total genetic variance (left), genic variance (middle), and LD component

(right) for a neutral trait simulated by drawing effects for 10, 100, or 1,000 causal variants in ASW. The

total genetic variance is the sum of the genic and LD components.

42

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2023.08.04.551959doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.04.551959
http://creativecommons.org/licenses/by/4.0/


Figure S5: The effect of directional LD on Haseman-Elston estimate of genetic variance (Vg). Each

individual point is an independent simulation where the effects were drawn from a normal distribution

and applied to genotypes from an admixed population (Methods). The solid red line shows the y = x

line and the color of each point represents the contribution of LD to Vg.

Figure S6: The LD contribution to the variance explained by variant pairs for (A) neutrophil counts

(NEU), (B) white blood count (WBC), (C) monocyte count (MON), and (D) mean corpuscular

hemoglobin (MCH). Only chromosomes where we suspected there was a disproportionate contribution

to the variance explained are shown.
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Figure S7: Expected variance explained estimated using Equation 1 (x-axis) vs the observed variance

in polygenic scores (y-axis) in ASW are strongly correlated. Confidence intervals were generated by

non-parametric bootstrap (Methods).
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