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Abstract  10 

Microbial communities are shaped by the metabolites available in their environment, but the 11 

principles that govern whether different communities will converge or diverge in any given condition 12 

remain unknown, posing fundamental questions about the feasibility of microbiome engineering. To this 13 

end, we studied the longitudinal assembly dynamics of a set of natural microbial communities grown in 14 

laboratory conditions of increasing metabolic complexity. We found that different microbial communities 15 

tend to become similar to each other when grown in metabolically simple conditions, but diverge in 16 

composition as the metabolic complexity of the environment increases, a phenomenon we refer to as 17 

the divergence-complexity effect. A comparative analysis of these communities revealed that this 18 

divergence is driven by community diversity and by the diverse assortment of specialist taxa capable of 19 

degrading complex metabolites. An ecological model of community dynamics indicates that the 20 

hierarchical structure of metabolism itself, where complex molecules are enzymatically degraded into 21 

progressively smaller ones, is necessary and sufficient to recapitulate all of our experimental 22 

observations. In addition to pointing to a fundamental principle of community assembly, the divergence-23 

complexity effect has important implications for microbiome engineering applications, as it can provide 24 

insight into which environments support multiple community states, enabling the search for desired 25 

ecosystem functions. 26 

 27 

Introduction 28 

 Understanding how complex microbial communities assemble is important for addressing open 29 

challenges in microbial ecology with applications that range from medicine1,2 to climate change 30 

mitigation3–5. Studies in natural6,7 and laboratory8–11 settings have investigated the reproducibility of 31 

assembly dynamics across a range of environmental conditions leading to seemingly contradictory 32 

results. Under certain conditions, microbial community assembly appears to be highly deterministic, as 33 

different communities are driven by strong environmental selection towards a specific steady state 34 

independent of their initial composition8. Under other conditions, however, environmental selection is 35 

weaker, resulting in highly variable assembly of communities with more dependence on their initial 36 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2023. ; https://doi.org/10.1101/2023.08.03.551516doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.03.551516
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

composition9. Uncovering what properties govern this variability in microbial community assembly 37 

constitutes one of the fundamental questions of microbial ecology12 and is crucial for successful 38 

microbiome engineering, which aims to steer communities towards a desired structure in a given 39 

environment13. 40 

Here, we combined experimental measurements and computational modeling to investigate the 41 

interplay of initial composition and environmental selection in determining community assembly and its 42 

variability. We followed the dynamic assembly of diverse microbial communities inoculated from 43 

different soil samples grown on carbon sources of increasing metabolic complexity. By tracking how 44 

closely these communities resembled each other over time, we found that the effect of environmental 45 

selection on communities depended on the metabolic complexity of the environment itself. Specifically, 46 

different microbial communities diverged in their taxonomic composition across a gradient of 47 

increasingly complex metabolic conditions, suggesting that the forces dominating microbial community 48 

assembly shift from strong to weak environmental selection in increasingly complex conditions. By 49 

constructing a consumer resource model that recapitulates this effect, we additionally learned that this 50 

divergence-complexity relationship depends on a hierarchical structure of metabolite transformations 51 

(e.g. polysaccharides to oligosaccharides to monosaccharides), but does not depend on the distribution 52 

of these metabolic functions across taxa. Our results point to an ecosystem organization principle that 53 

can help reconcile seemingly incompatible observations of divergence in different conditions and 54 

provide guidelines for which environments may be more susceptible to microbiome engineering 55 

projects.  56 
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Fig. 1 | Microbial communities may diverge in environments with increasing metabolic complexity. a-d, Hypothesis of 
microbial community divergence in theoretical simple (b) and complex (c) metabolic conditions. Microbial communities A, B, 
and C are initially composed of different compositions of the same three microbial species (a; blue, red, and yellow). Over 
time, communities grown on a simple substrate (b) converge, while these same communities grown on a complex substrate 
(c) diverge. d, Quantification of divergence at the final time point for hypothetical scenarios in a and b. e-g, Divergence 
observed in two independent experimental studies where microbial communities were sourced from soils or leaves and grown 
on glucose (e; a relatively simple metabolic environment from Goldford et al.) and communities were sourced from pitcher 
plants and grown on acidified cricket media (f; a more complex metabolic environment from Bittleston et al.). Each colored line 
in e and f represents the trajectory of a community’s composition over time in separately computed multidimensional scaling 
(MDS) projections. g, The divergence for each metabolic environment, calculated as the pairwise distances between all 
communities within a given condition at each time point. Each point is the mean pairwise distance within condition at each time 
point and shading represents the 95% confidence interval over all pairwise distances within each environment at each 
timepoint. 
 
The divergence-complexity effect hypothesis 57 

To assess the strength of environmental selection on community assembly, one would ideally 58 

compare how the trajectories of multiple distinct microbial communities diverge in taxonomic 59 

composition across a set of conditions. A key question we ask is whether distinct communities 60 

assembled in the same condition tend to become taxonomically similar and how the degree of similarity 61 

depends on the metabolic complexity of the environment. For example, we can imagine how different 62 

microbial communities that initially vary in taxonomic composition (Fig. 1a) may converge in 63 

composition over time when grown in one environment (strong environmental selection, Fig. 1b) while 64 

those same communities may diverge in another environment, arriving at alternative stable states 65 
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(weak environmental selection, Fig. 1c). To quantify the degree to which different communities diverge 66 

taxonomically from each other when grown in a given condition, we calculate the difference (beta 67 

diversity) in their compositions as they develop towards a steady state (Methods; Fig. 1d).  68 

We initially identified existing data that could indicate whether and how community divergence 69 

would indeed depend on environmental conditions. We re-analyzed two independent studies that both 70 

explored how a collection of diverse microbial communities assembled over time, but did so under very 71 

different conditions. When one study, Goldford et al.8, cultured communities in (simple) glucose media, 72 

communities converged (Fig. 1e). By contrast, when Bittleston et al.9 cultured communities in (complex) 73 

acidified cricket media, they diverged (Fig. 1f). In both cases, the initial communities differed 74 

substantially from each other and then immediately became more similar; however, communities 75 

enriched on glucose ultimately converged significantly more, despite starting with greater variation in 76 

initial community composition (Fig. 1g). Based on the striking discrepancy in the degree of divergence 77 

across these two studies we formulated the hypothesis that divergence increases with the metabolic 78 

complexity of the provided resources (Fig. 1d), a relationship that we will refer to as the divergence-79 

complexity effect. 80 
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Fig. 2 | Divergence of microbial communities increases in environments of increasing metabolic complexity. a, Study 
design: microbial communities were extracted from six forest soils and were then grown in nine conditions (citrate, glucose, 
cellobiose, cellulose, lignin, citrate + glucose, citrate + glucose + cellobiose, citrate + glucose + cellobiose + cellulose, and 
citrate + glucose + cellobiose + cellulose + lignin). Communities were passaged ten times once every three days and 
sequenced on days 0, 3, 6, 9, 12, and 33. b-c, MDS projections of community trajectories over time in each single-metabolite 
condition (b) and mixed-metabolite condition (c). MDS was calculated on all samples together for ease of visually comparing 
trajectories between conditions. d, Divergence of communities within each condition over time from day 3 onwards. Initial 
communities are a distance of 58.1+/-3.5 (not shown for clarity). Single metabolite conditions are in blue, mixed conditions are 
in orange, and colors darken with complexity. Points on each line represent the mean divergence and the shaded region 
represents the 95% confidence interval for pairwise distances between all six communities within each condition. e, 
Distribution of divergence for the final time point where divergence increases with metabolic complexity for single and mixed-
metabolite conditions (same colors as d). f, Metabolic complexity effect by condition type (slopes shown in e) for all time 
points. P-values computed on significance of effect (slope) > 0 (*: p<.05, ***: p<1e-3). 
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Community divergence increases with metabolic complexity 81 

In order to directly test the divergence-complexity effect, we designed an experiment to quantify 82 

the divergence of microbial communities grown in conditions of increasing metabolic complexity 83 

(Methods; Fig. 2a). To assess divergence, we sourced six microbial communities from forest soils that 84 

are generally diverse and distinct from each other14, even over small (centimeter) spatial scales7. Each 85 

microbial community was grown in nine different minimal media, each supplemented with equimolar 86 

concentrations of at least one carbon source commonly found in soils15: (1) citrate, (2) glucose, (3) 87 

cellobiose, (4) cellulose, (5) lignin, (6) citrate + glucose, (7) citrate + glucose + cellobiose, (8) citrate + 88 

glucose + cellobiose + cellulose, or (9) citrate + glucose + cellobiose + cellulose + lignin. In testing the 89 

divergence-complexity effect, we consider metabolic complexity to increase from citrate to lignin (in line 90 

with the number of metabolic byproducts expected from each metabolite16). We included single- and 91 

mixed-metabolite conditions in order to test the divergence-complexity effect with increasing complexity 92 

of each metabolite (single), as well as increasing resource diversity (mixed). Each microcosm, 93 

containing one source community growing in one condition, was serially passaged ten times, in 94 

intervals of three days. 16S rRNA sequencing was performed and amplicon sequence variant (ASV) 95 

counts were generated for the initial soil inocula and microcosm communities at days 3, 6, 9, 12, and 96 

33. 97 

Supporting our hypothesis of the divergence-complexity effect, we observed that divergence 98 

increased with metabolic complexity (Fig. 2b-f). In accordance with previous studies (Fig. 1e-f), our 99 

source communities initially differed from each other and then immediately converged and stabilized 100 

once introduced to laboratory conditions (Supp. Fig. 1, Fig. 2d). Once stabilized, we observed the 101 

divergence-complexity effect on single- and mixed-metabolite conditions, separately (Fig. 2e). Within 102 

single-metabolite conditions, the communities converged strongly on simple metabolites, while they 103 

diverged to increasingly distinct states on the more complex metabolites (Fig. 2b, 2d-f). Similarly, 104 

community divergence increased from the least (citrate + glucose) to the most diverse (all metabolites) 105 

mixed-metabolite conditions (Fig. 2c-f). Interestingly, the effect is stronger in single-metabolite 106 

conditions than in mixed-metabolite conditions (Fig. 2e), suggesting that assembly dynamics are 107 

sensitive to the order in which different metabolites become available through trophic interactions17. 108 

These trends are detectable at each sampled time point (Fig. 2f) and when we re-computed divergence 109 

at the Family taxonomic level (Supp. Fig. 3-4). Because bacteria often differ in metabolic function at 110 

the Family level18, this latter result suggests that our communities, which assemble to distinct 111 

taxonomic compositions, may also be engaging in distinct metabolic activities. 112 

The degree of divergence in complex conditions appears to be particularly sensitive to 113 

differences in initial community composition. Communities sourced from different locations, but that 114 

were initially similar to each other, did not necessarily converge to similar final states (Fig. 2b-c), 115 

suggesting that they may be traversing a rugged structure-function landscape in complex conditions, 116 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2023. ; https://doi.org/10.1101/2023.08.03.551516doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.03.551516
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

where slight differences in initial composition can lead to distinct final compositions19. Conversely, 117 

replicate microcosms assembled from the same source did cluster together (Supp. Fig. 2), suggesting 118 

that while assembly dynamics are indeed complex (initially similar communities can diverge), they are 119 

reproducible and not diverging merely due to stochasticity. These trajectories show that complex 120 

environments can support a greater number of discrete alternative stable states than simple 121 

environments.  122 

Fig. 3 | Divergence dynamically correlates with diversity. a, The slope of the relationship between community alpha 
diversity and divergence (red) and the mean community alpha diversity (gray) over time.  Shaded areas around each 
regression line represents the 95% confidence interval. b, The data underlying the relationship in a over time. Each point is the 
diversity of a community in a condition (x-axis) and the divergence of that community from all others within a condition. While 
diversity is expected to increase with metabolic complexity, it is not clear if different communities will increase in diversity in the 
same ways. 
 
Community diversity dynamically correlates with divergence and implicates the role of 123 

specialists 124 

In order to gain a deeper understanding of the divergence-complexity effect, we investigated 125 

how alpha diversity within each individual community correlates with divergence across communities. In 126 

particular, two separate principles could jointly give rise to the divergence-complexity effect. The first 127 

principle, “metabolic complexity begets diversity”, where community diversity increases with increasing 128 

metabolic complexity, has been experimentally documented in both natural and synthetic 129 

communities11,16. A proposed second principle, “diversity begets divergence”, could result from the 130 

expectation that more diverse communities have more variation in the abundance of each microbe, 131 

leading to higher divergence across communities. If metabolic complexity yields diversity and diversity 132 

yields divergence, we would expect higher divergence in increasingly complex conditions, leading to 133 

the divergence-complexity effect. 134 
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 Consistent with these expectations, we observed a strong linear relationship between diversity 135 

and divergence, which strengthened over time, indicating that specific changes in community assembly 136 

drive the rise of divergence. The slope of the diversity-divergence relationship increased over time (Fig. 137 

3a-b), despite the fact that diversity itself, on average, decreased (Fig. 3a). In other words, over time, 138 

the same degree of divergence is maintained by communities with reduced diversity. For divergence to 139 

remain relatively stable while diversity decreases (Fig. 2d), taxa endemic (i.e. specific) to each 140 

community must persist while a set of species shared across communities universally go extinct within 141 

each condition. One possible explanation is that these persistent taxa are metabolic specialists, which 142 

produce enzymes that target specific biochemical bonds20. We hypothesize that functionally 143 

redundant21 specialists that differ between communities and target complex metabolites are less evenly 144 

distributed across communities than taxa that specialize on simpler metabolites, driving the divergence-145 

complexity effect. 146 

Fig. 4 | Endemic taxa are enriched and unevenly distributed in complex conditions. a, The distribution of condition-
specificity per condition for day 33. Condition-specificity is calculated as the fraction of occurrences of a taxon that is attributed 
to a particular condition, such that a specificity of 1 means that taxon occurs in only one condition (a specialist). b, The number 
of specialists per condition. c, Taxon occurrence by number of conditions and number of source communities. ASVs found in 
fewer conditions are less evenly distributed across source communities (found in fewer source communities) and taxa found in 
more conditions are more evenly distributed across source communities. d, Two hypotheses for single metabolite conditions 
following from a and b, where H2 is supported and H1 is not. H1: more complex conditions are enriched for specialists and 
when those taxa are evenly distributed across source communities, it results in similar divergence for complex and simple 
metabolic conditions. H2: when more complex conditions are enriched for specialists and these taxa are less evenly 
distributed across communities, more complex conditions result in greater divergence. 
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Specialists are more endemic in complex conditions 147 

 To investigate the role of specialists in the divergence-complexity effect, we explored the 148 

distribution of taxa across experimental conditions and source communities. If specialists drive the 149 

diversity-complexity effect, we would expect to see that specialists are increasingly endemic, or 150 

unevenly distributed across source communities, in more complex conditions.  151 

 To quantify the degree of specialization, we computed a condition-specificity metric for each 152 

taxon (ASV) in each condition, and then assessed whether specialization and endemism depended on 153 

metabolic complexity. We defined condition-specificity for each taxon and condition as the fraction of 154 

source communities in which that taxon was found at the final sampling time point on that given 155 

condition. In particular, if a taxon only occurs in one condition, its condition-specificity is 1 and will be 156 

referred to as a “specialist”. In accordance with our expectations, we observed that more complex 157 

conditions (particularly single-metabolite ones) had greater condition-specificity (Fig. 4a) and more 158 

specialists (Fig. 4b).  159 

These results alone are encouraging, but are not sufficient for linking specialists to the 160 

divergence-complexity effect, which would additionally require specialists to differ between communities 161 

in the same condition. While we observed an enrichment of condition-specific taxa in complex 162 

conditions, it hypothetically could be the case that these same taxa were found across all source 163 

communities, in which case communities in complex conditions would not diverge more than those in 164 

simple conditions (H1 Fig. 4d). However, when we count the occurrence of each taxon in each 165 

condition and source community, we find that condition-specific taxa are also source community-166 

specific (endemic; Fig. 4c). As a result, taxa that specialize on complex metabolites are less evenly 167 

distributed across communities than taxa that specialize on simpler metabolites, and are therefore 168 

heavily implicated in mediating the divergence-complexity effect (H2 Fig. 4d). 169 
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Fig. 5 | Trophic resource transformations reproduce divergence with consumer resource model simulations. The 
distribution of divergence for communities with simulated consumer resource models with and without trophic structure in 
resource transformations and consumer preferences. Mimicking our experiment, community growth was simulated in single 
metabolite (blue) and mixed metabolite (orange) conditions of increasing complexity (darker). a-d, Divergence for communities 
simulated with trophic resource transformations consumer preferences (fully structured; a), trophic resource transformations 
and random consumer preferences (resource structured; b), random resource transformations and trophic consumer 
preferences (consumer structured; c), and random resource transformations and consumer preferences (fully random; d). e-f, 
The effect of metabolic complexity on divergence for single and mixed metabolite conditions with trophic resource 
transformations (e) and random transformations (f; ***: p<1e-6). g-h, Using the fully structured configuration, the relationship 
between diversity and mean divergence (g) and the relationship between occupancy in conditions and number of source 
communities (h). 
 
Trophic resource transformations reproduce divergence with consumer resource models 170 

 To better understand what aspects of the organisms and their environment are necessary for 171 

the diversity-complexity effect, we performed a series of simulations with microbial consumer-resource 172 

models (CRMs; Methods)22. In particular, we wanted to corroborate our hypothesized mechanism of the 173 
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diversity-complexity effect, that divergence correlates with metabolic complexity and emerges from 174 

endemism of specialist taxa. CRMs are dynamical ecological models where consumers are defined by 175 

the set of resources they prefer (consumer preferences) and resources are able to be transformed by 176 

consumers into other resources following consumption (resource transformations). Overlapping 177 

consumer preferences give rise to competition, while the exchange of secreted transformed products 178 

can generate cross-feeding interactions22. Taxonomic structure in CRMs can be represented by 179 

specifying “families'' of consumers that have similar resource preferences (specialization; Supp. Fig. 180 

6c-d). Metabolic structure can be represented by assuming that upon metabolization, resources of a 181 

given type transform into resources of another specific type in a hierarchical fashion23 (Supp. Fig. 6a-182 

b). In natural ecosystems, consumer preferences and resource transformations are typically arranged 183 

in a trophic structure, where taxa specialize in the hierarchical consumption of environmentally 184 

available metabolites and cross-feed the resulting (simpler) byproducts to taxa at subsequently lower 185 

trophic levels17.  In order to understand whether the divergence-complexity effect could emerge solely 186 

from these ecological forces (consumer preferences and resource transformations), we assumed 187 

physiological parameters such as rates of consumer growth, consumer maintenance, resource 188 

utilization, resource energy density, and leakage (the fraction of transformed resource that is secreted) 189 

to be uniform across all consumers and resources22,23.  190 

To investigate the role of taxonomic and metabolic structure in community divergence, we 191 

closely mimicked our experimental design and measured divergence of simulated communities using 192 

four different CRM configurations that captured combinations of trophic structures of consumer 193 

preferences and resource transformations, as well as corresponding random controls, similar to those 194 

shown to be sufficient to reproduce a number of ecological properties23 (Fig. 5, Supp. Fig 6, Methods). 195 

Trophic consumer preferences were defined with “families” of specialists and generalists (Supp. Fig 196 

6c). In line with our experimental observations (Fig. 4), we set the diversity of specialists to be 197 

proportional to the complexity of the resource type they prefer. Trophic resource transformations were 198 

defined such that complex resources successively transformed into simpler ones in a hierarchical 199 

fashion (Supp. Fig. 6a). Random controls of consumer preferences (Supp. Fig 6d) and resource 200 

transformations (Supp. Fig 6b) were also generated, where consumers preferred resources of any type 201 

and resources transformed into others of any type, respectively. Combinations of these four 202 

parameterizations led to the following four model configurations: trophic consumer preferences and 203 

resource transformations (fully structured; Fig. 5a), random preferences and trophic transformations 204 

(resource structured; Fig. 5b), trophic preferences and random transformations (consumer structured; 205 

Fig. 5c), and random preferences and transformations (fully random; Fig. 5d). All four model 206 

configurations were initialized with six source communities and seven conditions (four single and three 207 

mixed resource conditions) and growth dynamics were simulated until reaching a steady state. 208 
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Surprisingly, our simulations showed that trophic structure of the resource transformations alone 209 

was necessary and sufficient to reproduce the divergence-complexity effect in both single- and mixed-210 

resource conditions (Fig. 5a-f). Notably, even when consumer preferences were random, the 211 

divergence-complexity effect was still observed as long as resource transformations were structured 212 

(Fig. 5a,b,e). However whenever resource transformations were random, all communities diverged 213 

equally, irrespective of metabolic complexity, and thus there was no divergence-complexity effect (Fig. 214 

5c,d,f). In addition to qualitatively reproducing the divergence-complexity effect, our model recovered, 215 

as emergent properties, further non-trivial trends detected in our experiment. For example, in model 216 

configurations with trophic resource transformations, the divergence-complexity effect is greater for 217 

single resource conditions than mixed ones (Fig. 5e), as observed experimentally (Fig. 2f). 218 

Additionally, the maximum divergence in single resource conditions exceeds that of mixed conditions 219 

(Fig. 5a-b; Fig. 2e). These model configurations also reproduced our downstream analyses, such as 220 

the correlation between divergence and diversity (Fig. 5g; Fig. 3b) and the tendency for specialists to 221 

be endemic (Fig. 5h; Fig. 4d). The reproduction of these patterns with physiologically neutral 222 

consumers (uniform physiological parameters) and resources implicates the trophic metabolic structure 223 

in resource transformations as the driving mechanism of the divergence-complexity effect. 224 

 225 

Discussion 226 

 Compelled by recent experiments which found that microbial community diversity increases with 227 

metabolic complexity11,16, we sought to reconcile contradictory interpretations of whether microbial 228 

communities tend to converge8 or diverge9 in the same conditions. By jointly revisiting these two 229 

propositions, we uncovered a new, reproducible, and quantitative ecological principle, the divergence-230 

complexity effect, which has important consequences for ecological theory and microbiome 231 

engineering. While previous work explored community assembly by modulating the complexity of 232 

metabolic conditions11,16,24 or the variability of source communities8–10, the divergence-complexity effect 233 

could be observed only by systematically varying both, i.e. analyzing multiple source communities 234 

under increasingly complex conditions. We found that divergence correlates strongly with diversity, 235 

which is driven by an enrichment of specialists in complex conditions. We concluded our analysis by 236 

reproducing these results using consumer resource model simulations, which provide insights into the 237 

potential ecological mechanisms of the divergence-complexity effect. 238 

 While our experimental results are robust and reproducible, they necessarily rely on specific 239 

design constraints. Experimental choices that could be revisited in future studies include the passaging 240 

time, chosen here to be three days, as used in other microbial community assembly studies with 241 

complex metabolites9; the selection of metabolites, which constitute a representative, but oversimplified 242 

version of the metabolic complexity of soil environments; and the focus on taxonomic divergence 243 

(through 16S amplicon sequencing) rather than functional divergence, which would require a 244 
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comprehensive profiling of microbial functions with metagenomic or metatranscriptomic sequencing. 245 

We designed our simulations to represent the ecological structure of microbial communities and 246 

organization of metabolites as accurately as possible; however, our consumer resource models lacked 247 

the encoding of certain granular processes such as diffusion, transcriptional regulation, and anti-248 

microbial defense. Inclusion of these processes with other ecological models25 could help to reveal 249 

further mechanistic insights into the diversity-complexity effect.  250 

 The most surprising result from our simulations was how structured resource transformations 251 

(where complex metabolites are progressively degraded into simpler ones), but not consumer 252 

preferences, were required for reproducing the divergence-complexity effect (Fig. 5). This result 253 

disappears completely when the resource transformations are uniformly random. A possible 254 

interpretation of this result is that microbial community assembly and dynamics are strongly dependent 255 

on the actual structured architecture of metabolism, which differs substantially from a network of 256 

random transformations. We cannot rule out the possibility that adding more parameters, and 257 

increasing the realism of simulations may affect our results. For example, we could parameterize our 258 

models to incorporate the trade-offs that are known to exist between enzyme production and growth 259 

rate in nutrient limited conditions26. However, since our current model captures so many of our 260 

observations, including the similarities and subtle differences between the single- and mixed-metabolite 261 

conditions, it lends confidence to the dominant role that the architecture of metabolism plays in 262 

community structure, corroborating previous reports16. 263 

 Importantly, the divergence-complexity effect has direct implications for the engineering of 264 

microbial communities towards any target, suggesting that metabolically complex environments may be 265 

more susceptible to microbiome engineering than simple ones. Potential targets for microbiome 266 

engineering include correcting the dysbiosis in the human gut2 and increasing the carbon stabilization 267 

capacity of soils5, among many other microbially-regulated traits. The consequences of the diversity-268 

complexity effect are encouraging for efforts along these lines, since complex environments may be 269 

more likely to support an alternative community that is equally stable as the original one, but with 270 

potentially increased expression of a trait of interest. Culturing techniques such as directed evolution, 271 

where a set of microbial communities undergoes iterative rounds of perturbation and artificial selection 272 

in order to assemble high-performing communities27, offer an ideal strategy for exploring the different 273 

alternative states that a complex environment can support. Future research is required in order to 274 

understand how, in light of functional redundancy28, the divergence in taxonomic composition that we 275 

observe relates to divergence in functional composition, since modifying functional activity is commonly 276 

the goal of microbiome engineering efforts. Ultimately, we envisage that the awareness of the 277 

divergence-complexity effect may help microbial ecologists reframe the role of environmental selection 278 

in microbial community assembly and enable further research into the engineering of complex 279 

microbially-regulated environments. 280 
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 281 

Methods 282 

Media preparation 283 

Eleven different media were generated at equimolar (50mM) concentrations of carbon (C) in 284 

increasing levels of complexity. Stocks of citrate, glucose, cellobiose, cellulose, and lignin were 285 

generated at 1 mol C/L (1M C) and then sterilized. Citrate, glucose and cellobiose stocks were 286 

sterilized through 0.2um RapidFlow filters while cellulose and lignin stocks, whose particle sizes were 287 

too large for filters, were autoclaved. C source stocks were then mixed with M9 minimal media (5x M9 288 

salts, 1M MgSO4, 1M CaCl2, 1x trace minerals)29 to form the following nine conditions, each made at a 289 

final concentration of 50mM C and with equal ratios of each C source: citrate, glucose, cellobiose, 290 

cellulose, lignin, citrate + glucose, citrate + glucose + cellobiose, citrate + glucose + cellobiose + 291 

cellulose, and citrate + glucose + cellobiose + cellulose + lignin. All media were stored in glass bottles, 292 

wrapped in foil, and stored at 4°C. 293 

 294 

Sample collection and microbial community extraction 295 

On October 27, 2022 about half a pound of organic horizon soil (5-10cm deep) was collected 296 

from six sites at Harvard Forest in Petersham, MA. Two were pine dominated, two were hardwood 297 

dominated, and two were mixed. Samples were collected 15m from the forest edge and kept on ice 298 

until transported back to the laboratory the same day. Fresh soils were sieved through a 2mm mesh 299 

and then stored at 4°C. On November 21, 2022, 20g of each sieved soil was individually combined with 300 

100mL of sodium pyrophosphate to separate cells from soils30 and was blended for three cycles of 10 301 

seconds at ~22,000 RPM (https://www.rosewill.com/rosewill-rhpb-18001-68-ounces-jar-size-302 

1400w/p/9SIA072GJ93074)  and then off for 10 seconds, and then 25mL of the resulting slurry was 303 

transferred to a centrifuge tube. The blender was washed between each sample by blending in 500mL 304 

of diluted bleach. Following the blending of all soils, each slurry was centrifuged for 10 minutes at 305 

20,000xg, resuspended in 30mL of PBS,  and rocked on an orbital shaker for 1 hour16 at 4°C. After 306 

rocking, samples were allowed to settle for 5 minutes and then passed through a 100um cell straining 307 

filter. Optical density (OD) measurements were performed at 600nm at a 1:20 dilution, 500uL of each 308 

sample was stored at -80°C in 20% glycerol, and the remaining volume from each sample used for 309 

inoculating experimental plates. 310 

 311 

Experimental culturing 312 

Community extracts were added to 96-deep well plates in triplicate with all media combinations 313 

(3 replicates of each source community in each condition), generating a total of 162 microcosms (9 314 

media combinations x 6 source communities x 3 replicates). Cycloheximide, an antifungal agent, was 315 

added to each well at 200ug/mL31 to reach a final OD of 0.1 and volume of 400uL per well. Plates were 316 
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then stored in an incubator at 25°C under constant shaking at 200RPM. Communities were passaged 317 

every 72 hours into fresh media at a 1:20 dilution (without cycloheximide) for a final volume of 400uL, 318 

OD600 was measured, and the remaining volume was stored at -80°C for DNA extraction. 319 

 320 

DNA extraction and sequencing 321 

 DNA extraction for the six initial forest soil communities was performed using the PowerSoil 322 

DNA extraction (QIAGEN). After adding lysis buffer, samples underwent three cycles of freezing in 323 

liquid nitrogen, warming at 55°F in a water bath, and bead-beating for 1 minute (PowerLyzer, MoBio), 324 

then following the provided protocol for the remainder of the extraction. DNA was extracted from an 325 

additional 330 lab cultured samples on different days for each forest site and condition on days 3, 6, 9, 326 

12, and 33, where available (Supp. Table 1). DNA extraction from lab cultured samples was performed 327 

using the PureLink Pro 96 Genomic DNA Kit (ThermoFisher) following the provided protocol except for 328 

extending all lysis incubation periods to two hours. DNA extracts were sent to Quintara Biosciences for 329 

library preparation and 16S amplicon sequencing using V4 primers 515F 330 

(GTGYCAGCMGCCGCGGTAA) and 806R (GGACTACNVGGGTWTCTAAT) on a single Illumina 331 

MiSeq run. 332 

 333 

Amplicon sequence processing 334 

 We received raw sequencing data for our study from Quintara Biosciences and downloaded raw 335 

sequencing data from Goldford et al.8 (SRP144982) and Bittleston et al.9 (SRP218147) from NCBI. All 336 

raw 16S sequencing data for each study was separately processed using BU16S 337 

(https://github.com/Boston-University-Microbiome-Initiative/BU16s), a QIIME232 pipeline customized to 338 

run on Boston University’s Shared Computing Cluster. Briefly, BU16S first trims primers and filters out 339 

reads of less than 50 base pairs using cutadapt33, then obtains ASVs using dada234, and finally 340 

classifies ASVs with 95% or greater sequence identity to the SILVA_132_99 database with 341 

VSEARCH35. 342 

 343 

Data analysis 344 

 All data analysis was performed in Python version 3.8.11. Pairwise distances between samples 345 

were computed with the Aitchison distance because it accounts for the compositional nature of 346 

sequencing data, unlike common distance metrics, such as Bray-Curtis, Jenson-Shannon Divergence, 347 

and Unifrac36,37. The Aitchison distance, A, between two compositions x and y is: 348 

A(x, y) = || clr(x) - clr(y) || 349 

clr(x) = log(x/G(x)) 350 

G(x) = x1/|x| 351 
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Where clr is the center-log ratio transform and G is the geometric mean. Divergence was computed by 352 

calculating the Aitchison distance between all pairs of samples within a condition at each timepoint. The 353 

divergence for samples at day 33, where we have up to three replicates for each community, is 354 

reported as the mean pairwise distance between all replicates. The mean divergence for each sample 355 

in a given condition is computed as the mean pairwise distance from each sample to all other samples 356 

in that condition. 357 

Dimensionality reduction of pairwise distances was performed using multidimensional scaling 358 

(MDS) in scikit-learn38. MDS was computed separately for samples from Goldford et al. and Bittleston 359 

et al., while for our data MDS was computed jointly on all samples to allow for ease of comparability 360 

when viewing community trajectories in separate conditions. 361 

 Alpha diversity was computed by first rarefying (subsampling) all samples to 5028 reads and 362 

dropping twelve samples below this sequencing depth from subsequent alpha diversity analyses. The 363 

Shannon Diversity Index was calculated as -Σxlnx and the ecological richness was calculated as Σx>0 364 

for each sample composition, x. 365 

 Condition specificity was calculated for each ASV by calculating the fraction of times each ASV 366 

was present in each condition. ASVs with a condition specificity of 1 were considered “specialists” since 367 

they were only found to occur in a single condition. 368 

 369 

Consumer resource models 370 

 We simulated the growth of 168 microcosms (6 communities x 7 conditions x 4 configurations) 371 

using microbial consumer resource models (CRM). With microbial CRMs, the dynamics of species and 372 

resources can be modeled with the following equations: 373 

 374 

𝑑𝑁!
𝑑𝑡

= 𝑁! %&
"

(1 − 𝑙)𝑐!,"𝑅" −𝑚/ 375 

𝑑𝑅"
𝑑𝑡

= (𝑅"$ − 𝑅") −&
%

𝑁%𝑐%,"𝑅" +&
%,&

𝑁%𝑐%,&𝑅&1𝐷",&𝑙3 376 

Where 𝑁! is the abundance of species i, 𝑅" is the concentration of resource 𝛼, 𝑅"$  is the resource 377 

supply concentration, 𝑙 is the leakage fraction i.e. how much each resource is “leaked” (how much of 𝛼 378 

is converted into 𝛽, were the rest is converted into biomass), 𝑚 is the consumer maintenance cost, 379 

𝑐!," is the consumer preference matrix, and 𝐷",& is the resource transformation matrix describing the 380 

rate that 𝛽 turns into 𝛼 following consumption22. We fixed the leakage (𝑙=0.8), maintenance (𝑚=1), and 381 

uptake rates (𝑐!,"={0, 1}) for all consumers resulting in an “ecologically neutral”.  382 

 In order to study the impacts of trophic structure on divergence, we explored four different CRM 383 

configurations that varied in whether or not resource transformations or consumer preferences were 384 
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trophically structured or random (Supp. Fig. 6). Resources were defined by establishing a resource 385 

pool of four resource types, T0, T1, T2, and T3, where each type consisted of 80, 60, 40, and 20 386 

resources, respectively. Trophic resource transformations were parameterized by defining resources of 387 

one type to subsequently transform into resources of another type in a unidirectional fashion, with some 388 

self-renewal (Supp. Fig. 6a). For example, T0-type resources mostly transform into T1-type resources 389 

and some T0-type resources (Supp. Fig. 6a). Random resource transformations were defined by 390 

allowing each resource transform into any other resource with uniform probability (Supp. Fig. 6b). 391 

Transformation profiles for each resource in both configurations were sampled from Dirichlet 392 

distributions.  393 

Consumers were defined by establishing a metacommunity of four “families”, F0, F1, F2, and G, 394 

where each type consisted of 500, 300, 100, and 100 consumers, respectively. Trophic consumer 395 

preferences were defined by allowing consumers of each family to utilize a total of 35 sampled 396 

resources from their associated type (i.e. F0 consumers could utilize T0 resources) and a common 397 

resource type. The skewed distribution of consumer family size was chosen to model our experimental 398 

results where the number of specialists correlated with metabolite complexity. Consumers belonging to 399 

the G (generalist) family could consume resources of any type (Supp. Fig. 6c). Random consumer 400 

preferences were defined by allowing each consumer to utilize 35 random resources from any type 401 

(Supp. Fig. 6d). Code for sampling trophic resource transformations and trophic consumer preferences 402 

can be found at: https://github.com/michaelsilverstein/ms_tools/blob/main/ms_tools/crm.py. 403 

Initial conditions and source communities were defined to mimic our experimental design. 404 

Seven conditions were defined by sampling 20 resources from each resource type for single-metabolite 405 

conditions (T0, T1, T2, and T3) and from mixtures of resource types for mixed-metabolite conditions 406 

(T3+T2, T3+T2+T1, T3+T2+T1+T0; Supp. Fig. 6e). Six source communities were defined by sampling 407 

200 consumers from the metacommunity (Supp. Fig. 6f).  408 

The dynamics of each source community was then simulated in each condition using all four 409 

parameter configurations (trophic transformations and preferences, trophic transformations and random 410 

preferences, random transformations and trophic preferences, and random transformations and 411 

preferences) and the divergence was computed for each condition and configuration. Simulations of 412 

community assembly were performed by passing model parameters (D matrix, c matrix, and initial 413 

conditions) to the Community Simulator package39, which provides utility functions for constructing and 414 

solving the system of ordinary differential equations. In order to appropriately compare our simulation 415 

results, which simulates actual abundances of each consumer, to our experimental results, which 416 

reports relative abundance of each ASV, we rescaled the abundance of all communities to the same 417 

range to simulate the process of sequencing. Divergence was then calculated on the rescaled 418 

simulated community composition profiles in the same way as with our experimental data (using the 419 

Aitchison distance). 420 
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