
 1 

Regulatory features aid  

interpretation of 3’UTR Variants  

August 1, 2023 

 

Lindsay Romo,*1 Scott D. Findlay,2 and Christopher B. Burge*2 

 

1Harvard Medical Genetics Training Program 

Boston Children’s Hospital 

Boston, MA 02115 

 

2Department of Biology 

Massachusetts Institute of Technology 

Cambridge, MA, 02142 

 

 

 

 

 

 

 

*Address correspondence to: cburge@mit.edu and lindsay.romo@childrens.harvard.edu 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2023. ; https://doi.org/10.1101/2023.08.01.551549doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.01.551549
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

 

ABSTRACT 

Our ability to determine the clinical impact of variants in 3' untranslated regions (UTRs) of genes 

remains poor. We provide a thorough analysis of 3'UTR variants from several datasets.  Variants in 

putative regulatory elements including RNA-binding protein motifs, eCLIP peaks, and microRNA 

sites are up to 16 times more likely than other variants to have gene expression and phenotype 

associations. Heterozygous variants in regulatory motifs result in allele-specific protein binding in 

cell lines and allele-specific gene expression differences in population studies. In addition, variants 

in shared regions of alternatively polyadenylated isoforms and those proximal to polyA sites are 

more likely to affect gene expression and phenotype. Finally, pathogenic 3'UTR variants in ClinVar 

are 20 times more likely than benign variants to fall in a regulatory site. We incorporated these 

findings into RegVar, a software tool that interprets regulatory elements and annotations for any 

3'UTR variant, and predicts whether the variant is likely to affect gene expression or phenotype. 

This tool will help prioritize variants for experimental studies and identify pathogenic variants in 

patients. 

 

 

Keywords:  Genetic variants, 3ʹ UTR, RNA-binding proteins, polyadenylation, miRNA, variant 
interpretation, regulatory motifs  
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INTRODUCTION 

Despite the ubiquity of exome sequencing in modern human genetics, our ability to determine the 

clinical impact of genetic variants remains limited. The average patient has 20,000 variants in their 

exome, most of which are rare in the population1. The effect of rare variants in coding regions can be 

predicted by their impact on protein amino acid composition2–4. However, many variants in the ClinVar 

variant database are noncoding variants of uncertain significance5. The impact of these variants is 

difficult to predict due to our incomplete knowledge of the function of noncoding regions.  

 

The 3' untranslated region (3'UTR) comprises the bulk of noncoding sequences present in exomes, 

and is important for regulation of messenger RNA (mRNA) processing, stability, translation and 

localization. Sequence-specific RNA-binding proteins (RBPs) interact with cognate RNA motifs at 

specific 3’UTR positions6. Such RBPs often recruit effector proteins to the mRNA that can alter 

transcript stability, translational efficiency, and intracellular mRNA localization7. Altered transcript 

stability and translation impact protein abundance, while altered transcript localization can impact 

protein function7. Recognition of polyadenylation signals (PAS) within 3’UTRs directs cleavage and 

polyadenylation of the mRNA transcript. Many 3’UTRs contain more than one functional PAS, and 

alternative polyadenylation (APA) yields transcripts of different lengths containing different sets of RBP 

and microRNA (miRNA) target sites8. miRNAs are small noncoding RNAs that bind to 3’UTRs when 

complexed with proteins in miRNPs9. Binding is mediated primarily by complementarity between the 

3’UTR target and nucleotides 2-7 or 2-8 of the miRNA, called the seed sequence. miRNA binding 

decreases transcript stability or represses translation10.  

 

RBP motifs in the 3’UTR can be predicted from in vitro binding studies using RNA Bind-n-Seq (RBNS), 

RNACompete or other assays, or identified in cells via enhanced crosslinking and immunoprecipitation 

(eCLIP)11,12. miRNA sites can be predicted in silico from base complementarity and sequence 
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conservation, or identified in cells using crosslinking and sequencing13,14. Variants in the 3’UTR, 

especially those that disrupt RBP interactions, miRNA binding, or cleavage and polyadenylation, are 

likely to impact mRNA function and may be deleterious, potentially contributing to disease.  

 

Several metrics have been developed to predict the pathogenicity of noncoding variants15–20. However, 

these metrics don’t take into account the unique regulatory features of 3’UTRs, such as alternative 

polyadenylation, RBP interactions, or miRNA binding. More general methods that may implicate 3'UTR 

variants include expression quantitative trait loci (eQTLs), which link variants to gene expression 

changes, and genome wide association studies (GWAS), which link variants to phenotypes21–24. 

However, these methods don’t suggest mechanisms, detect association rather than causality, and can 

only interrogate common variants. Experimental methods such as massively parallel 3’UTR reporter 

assays can address molecular functions of variants, with the caveats that variants are assayed in 

artificial genomic contexts and are over-expressed25,26. Saturation genome editing can generate 

possible genomic variants in clinically-important regions, with clonal cell lines used to assess 

phenotypes27. Though effective in identifying pathogenic variants, this method is laborious and 

expensive.  

 

Exome and genome sequencing are becoming less expensive and more rapid, but data interpretation 

remains the limiting step. For many patients, exome or genome sequencing results in a diagnosis that 

alters clinical management and can be life-saving28,29. More general and accessible methods of variant 

characterization could therefore be highly impactful. We propose that 3’UTR variants that disrupt (or 

create) specific types of regulatory elements are more likely to alter function and contribute to disease, 

aiding in the  identification and interpretation of pathogenic 3’UTR variants.  
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Here, we show that single nucleotide variants (SNVs) in locations that overlap RBP motifs, eCLIP 

peaks, and miRNA sites are both more evolutionarily conserved and more likely than other variants to 

be associated with phenotypic or gene expression changes. Many of these variants are causal, as they 

are enriched for allele-specific RBP binding in cell lines, and allele-specific gene expression differences 

in population studies. eQTL variants in potential regulatory elements are more likely to be GWAS hits, 

and pathogenic 3'UTR variants in ClinVar are more likely to fall in a regulatory element than benign 

variants. We also show that variants in certain 3’UTR regions, e.g., proximal to polyA sites, are more 

likely to be linked to gene expression changes or phenotypes. Finally, we provide a high-throughput R 

package, RegVar, which assesses regulatory elements and annotations associated with any 3’UTR 

variant of interest, and predicts whether the variant is likely to affect gene expression or phenotype. To 

our knowledge, this is the first program to specifically characterize 3’UTR variants. We expect the 

program will help prioritize variants for experimental studies and identify thousands of pathogenic 

variants. 

 

MATERIALS AND METHODS 

eQTL processing: DAGP fine-mapped eQTL variant call files were downloaded from the GTex project 

(https://gtexportal.org/home/datasets) and intersected with terminal 3'UTRs using BEDTools, as 

defined by the region from the GENCODE stop codon to the most distal polyA Database peak24,30–32. 

Because many variants in 3’UTRs (and elsewhere) are in linkage disequilibrium, it can be difficult to 

discern causal variants. Fine-mapping is a statistical method to distinguish the effects of variants in 

linkage disequilibrium blocks33. Fine-mapping eQTLs or GWAS hits results in a posterior inclusion 

probability (PIP) for each variant that represents the likelihood each is causal of expression differences 

or phenotypes34. For each variant-tissue combination, only the tissue with the highest PIP was used, 

except for the transcript expression analysis (see below). 
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GWAS processing: SUSIE fine-mapped UK BioBank GWAS variant call files were downloaded from 

the Finucane lab website (https://www.finucanelab.org/data) and intersected with 3'UTRs, as above35. 

All variant-phenotype combinations were considered in analysis. 

  

Identifying variants in putative 3'UTR regulatory elements: 3'UTRs were defined as above. To 

identify variants in putative RBP motifs, reference/alternative variants and their surrounding genomic 

sequence were processed with RBPamp (ref). Variants overlapping an RBNS motif with an affinity of 

>0.33 of the ideal motif were considered to be in RBP motifs. Alternate variants overlapping a motif 

with an affinity of 0.66 or more compared to the ideal motif were considered preserving, and alternate 

variants that caused the motif affinity to drop below 0.33 compared to the ideal were considered 

disrupting. To identify variants in eCLIP peaks, variants were intersected with eCLIP coordinates 

downloaded from ENCODE (https://www.encodeproject.org/)12. For Figure 3A, we considered RBPs 

with at least fifty variants in peaks to allow sufficient power to detect PIP differences. RBPamp eCLIP-

Proximal (ReP) sites were defined as motifs matching the highest affinity RBPamp motif in the vicinity 

of each of the eCLIP peaks. Variants in possible conserved family miRNA sites and their seed types 

and site conservation were defined by TargetScan13. 

 

Annotation of 3'UTR variants: PolyA signals/sites and 3'UTR isoforms were identified from aggregate 

3Pseq data generated from multiple tissues and cell lines36. Calling of polyA sites and removal of peaks 

from genomic polyA priming was performed on 3PSeq data as described previously37. We considered 

variants proximal to polyA sites if they fell within 50 nucleotides of a 3Pseq peak. The relationship 

between distance to polyA site and PIP becomes nonsignificant in regression models for variants more 

than 50 nucleotides away. Shared regions of APA isoforms were regions proximal to the first polyA site. 

Partially-shared regions were between the first and penultimate polyA site, whereas unique regions 

were distal to the penultimate polyA site. 
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Conservation: Variants were merged with conservation information from PhastCons 100-way scores 

to identify conserved (PhastCons>0.5) or non-conserved (PhastCons<0.5) variants38. For miRNA sites, 

the TargetScan conservation designation was used13. 

  

Statistical analysis: The proportion of causal variants in an element (the fraction with a PIP of greater 

than 0.25) was calculated using pairwise proportion z-tests. The proportions causal for variants in 

elements was compared to that for variants not in elements using a Fischer exact test. When comparing 

PIPs, a paired Wilcoxon rank sum test was used. For odds ratios, a Fischer exact test was used to 

determine confidence intervals and significance. For the generalized linear model, we used a binomial 

distribution to model a binary score (GWAS or eQTL PIP greater or less than/equal to 0.5).  Goodness 

of fit was assessed via Hosmer-Lemeshow Test. All p-values were corrected using the false discovery 

rate method. 

  

Expression analysis: The relative expression of transcripts with the alternate versus reference allele 

was determined by the transcript normalized effect size (NES) from GTex24.  The NES is the slope of 

the eQTL regression line comparing expression of transcripts with the alternative and reference alleles; 

more positive NES values indicate higher gene expression in individuals with the alternative allele, and 

vice versa24. Each PIP-tissue combination was considered for every eQTL. 

  

BEAPR analysis: All heterozygous variants in eCLIP peaks in K562 and HepG2 cells, as well as their 

predicted eCLIP allele-specificity as defined by BEAPR analysis, were kindly provided by the Xiao lab39. 

Only 3'UTR variants were considered, and variants in RBP motifs (with reference allele affinity >0.05 

of alternate allele) matching the eCLIP RBPs (defined as above) were compared to variants only in 

eCLIP peaks but not in motifs. 
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ClinVar analysis: Variant call files were downloaded from ClinVar 

(https://www.ncbi.nlm.nih.gov/clinvar/) and intersected with 3'UTR coordinates/annotations and 

putative regulatory elements as above5. Only variants with known clinical impact (pathogenic or benign) 

were considered.  

 

CADD scores: Raw as well as scaled CADD scores for all gnomAD variants were downloaded from 

the CADD website (https://cadd.gs.washington.edu/) and intersected with eQTL variants15,40. The raw 

CADD scores of variants in putative regulatory elements were compared to those for controls.  

 

RegVar:  The development version of the RegVar R package is available for download on github at 

https://github.com/RomoL2/RegVar. The RegVar tool characterizes user-provided 3'UTR variants by 

their regulatory features as described. A variant is predicted to be an eQTL or GWAS hit if its log-odds 

is greater than 0.01 (eQTL) or 0.0075 (GWAS) using our logistic regression model (see ‘statistical 

analysis’). These thresholds maximize sensitivity and specificity. 

 

RESULTS 

Identification of causal 3'UTR variants 

We developed an analysis pipeline to identify features that might differentiate 3’UTR variants that 

impact gene expression or phenotype (Figure 1). We used three sources of 3’UTR variants: fine-

mapped eQTLs identified by GTEx (82,903 variants), fine-mapped GWAS hits from the UK Biobank 

(174,065 variants), and heterozygous variants in eCLIP peaks (2,856 variants)22,24,39. Fine-mapping is 

a statistical method that yields a posterior inclusion probability (PIP) for each eQTL or GWAS hit 

representing the likelihood that each is causal for the observed association33,34. 
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Variants were first annotated by APA isoform location, and then intersected with putative regulatory 

elements. The specific categories of elements studied included RBP binding motifs from in vitro studies, 

eCLIP peaks, “ReP” sites, and miRNA sites (see methods)11–13,36. Here, we defined “ReP” (RBPamp 

eCLIP-Proximal) sites for RBPs with both in vitro and in vivo binding data as the highest-affinity motif 

for the RBP in the vicinity of each of its eCLIP peaks11,12. To determine whether variants in specific 

regulatory element or annotation categories preferentially impact gene expression or phenotype, we 

compared the PIP for variants located in these elements versus controls. Allele-specific eCLIP binding 

events39 were used to assess whether variants in motifs altered RBP binding. 

 
 

 

Figure 1: Variant processing pipeline schematic. We compared the probability that eQTLs and GWAS 

hits affect gene expression (eQTLs) or phenotype (GWAS hits) for variants in eCLIP peaks, RBP motifs, 

and various 3’UTR annotation categories. We compared the likelihood of overlapping an RBP motif for 

heterozygous variants with and without allele-specific eCLIP binding. 

 

3’UTR variants in putative regulatory elements are associated with altered gene expression 

We hypothesized that variants in RBP motifs and/or eCLIP peaks often impact transcript expression by 

altering binding of regulatory RBPs. Overall, most eQTL variants have low fine-mapped PIP values 

(Figure S1). However, we found that high-PIP eQTLs are slightly more likely than non-eQTLs to be 
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located in an in vitro-derived RBP motif, over four times more likely to be in an eCLIP peak, and over 

nine times more likely to be in a ReP site (Figure 2A). These observations support our hypothesis that 

each of these classes of elements is enriched for variants that alter expression. Variants located in 

eCLIP peaks and ReP sites also have significantly higher PhastCons 100-way conservation scores 

than controls, even after matching for gene expression level, providing further evidence that these 

classes are enriched for regulatory function (Figure 2B)41.  

 

We considered the proportion of eQTL variants with PIP > 0.25 (i.e. variants at least 25% likely to alter 

expression) as a summary statistic, which we call “proportion causal”. Although the precise PIP cutoff 

used is somewhat arbitrary, repeating our key analyses using different PIP thresholds yielded similar 

results (Figure S2). We found that eQTLs in RBP motifs and those in eCLIP peaks had a higher 

proportion causal than variants outside of these elements, and that variants in RBP motifs were more 

likely to be causal if conserved (Figure 2C). Unfortunately, the number of eQTL variants in ReP sites 

was too low to perform a similar analysis.  

 

We hypothesized that variants in miRNA target sites typically disrupt miRNA binding, resulting in 

increased mRNA levels. Indeed, high-PIP eQTLs are over twice as likely to fall in conserved miRNA 

sites than non-eQTL variants (Figure 2D). miRNAs with greater complementarity to target transcripts 

(longer seed matches: 8mer > 7mer-m8 > 7mer-a1) exert stronger regulatory effects13. We found that 

eQTLs in conserved 8mer sites of miRNAs in broadly conserved families have three times higher 

proportion causal than controls (Figure 2E). 
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Figure 2: 3'UTR variants in RBP motifs, eCLIP peaks, and miRNA sites are associated with gene expression 

changes. A Odds of an eQTL variant being in predicted RBP sites versus control variants (PIP<0.001) as minimum PIP 

increases; odds ratio is shown with 95% confidence intervals; *p<0.01. B Comparison of PhastCons score distributions 

for eQTL variants in ReP sites (green), eCLIP peaks (purple), RBP motifs (orange), or outside of known regulatory 

elements (black). C Proportion causal (PIP>0.25) for eQTL variants not in RBP motifs or eCLIP peaks compared to 
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variants in RBP motifs or eCLIP peaks. D Odds of an eQTL variant being in predicted miRNA site versus control variants 

(PIP<0.001) as minimum PIP increases, as in A. E Proportion causal for variants not in miRNA sites compared to variants 

in miRNA sites of different seed types. F Variant NES (from GTEx) on gene expression for high-confidence (PIP>0.9) 

eQTLs disrupting miR motifs (green), or not in RBP/miR motifs or eCLIP peaks (gray). G Proportion causal (left) for 

variants not in RBP motifs or eCLIP peaks compared to variants in ReP sites or eCLIP peaks, matched for raw CADD 

score (right). H Odds of heterozygous variants in HepG2 and K562 cells being in an RBP motif for decreasing allele-

specific eCLIP binding p-values, with 95% confidence intervals. 

 

3’UTR variants in putative regulatory elements likely cause expression changes 

To determine whether variants in miRNA sites increase gene expression, as expected, we compared 

the normalized effect size (NES) of causal (PIP>0.25) eQTLs that disrupt miRNA motifs to those outside 

of predicted regulatory elements. The NES measures the magnitude and direction in which eQTLs 

change gene expression24. Variants predicted to disrupt conserved miRNA motifs predominantly have 

positive NES (P < 0.001, Wilcoxon rank-sum test), suggesting a direct relationship between disrupted 

miRNA binding and increased expression (Figure 2F). 

 

If variants in RBP motifs and eCLIP peaks commonly alter gene expression, we would expect some to 

be pathogenic. The Combined Annotation Dependent Depletion (CADD) score is a metric that 

discriminates between benign and pathogenic variants based on their evolutionary deleteriousness. 

We found that variants in eCLIP peaks and RBP motifs have significantly higher CADD scores (Figure 

S3). As CADD score does not incorporate RBP motif or eCLIP information, higher scores reflect other 

features of RBP motifs such as conservation and base composition. We found that variants in eCLIP 

peaks, conserved miRNA sites, or ReP sites are more likely to cause gene expression changes than 

controls, even when comparing sets with matched CADD scores (Figure 2G). Thus, considering eCLIP, 

miRNA, and ReP information can add substantially to the information in CADD scores for identification 

of functional variants.   
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To test the idea that expression differences associated with eQTLs in RBP motifs result from differential 

binding of RBPs, we analyzed allele-specific eCLIP binding39. Heterozygous variants that exhibit allele-

specific eCLIP enrichment are up to four times more likely to be located in a motif for the corresponding 

RBP than variants that do not (Figure 2H). This observation supports that the gene expression changes 

associated with variants in eCLIP peaks noted above commonly result from changes in RBP binding. 

 

Enrichment for RBP motifs and eCLIP peaks amongst eQTLs is driven by a subset of RBPs 

We next examined which RBPs are responsible for increased PIPs among eQTLs in eCLIP peaks. 

RBPs with high-PIP eQTLs in eCLIP peaks included those known to bind the 3'UTR to alter mRNA 

stability, such as PABC4 and LARP442,43. In contrast, RBPs with fewer high-PIP eQTLs in eCLIP peaks 

included transcription factors or repressors such as BCLAF1 as well as primarily nuclear proteins such 

as HNRPL, KHSRP, and QKI (Figure 3A). Mean PIP values were positively correlated across RBPs for 

variants in RBP motifs and those in eCLIP peaks (Figure 3B), suggesting that these two subsets of 

variants function similarly, with some RBPs impacting expression more often than others. 

 

To further explore which RBPs may most commonly impact expression, we examined ReP sites 

amongst high-PIP eQTLs and found that several motifs, including those for HNRNPK, are highly 

represented (Figure 3C). HNRNPK is a multifunctional RBP involved in both transcriptional and post-

transcriptional mRNA processing that binds 3’UTRs at C-rich motifs to alter stability of target mRNAs44–

46. We found that high-confidence eQTLs that disrupt HNRNPK motifs are associated with higher 

transcript expression than those that preserve motifs or are located outside of HNRNPK motifs (Figure 

3D). This observation suggests that most HNRNPK binding tends to destabilize mRNAs in tissues 

assessed for eQTLs.  
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Figure 3: Certain RBP motifs and eCLIP peaks are enriched amongst eQTLs and alter expression. A Proportion 

causal (with 95% confidence interval) for variants in eCLIP peaks for different RBPs, for all RBPs with ≥ 50 variants 

in eCLIP peaks). The proportion causal for variants not in any eCLIP peak was 0.05 (dashed line). * Indicates P<0.05. 
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B Mean PIP for eQTLs in eCLIP peaks but not RBP motifs (y-axis) versus mean PIP for eQTLs in RBP motifs but not 

eCLIP peaks, for all RBPs in both datasets. Shown is the regression line with Pearson correlation coefficient. C 

Distribution of RBPs amongst ReP sites at different minimum eQTL PIP cutoffs. Shown are RBPs representing at 

least 0.1% of all ReP sites. D Variant normalized effect size (NES, from GTEx) on gene expression for high-

confidence (PIP>0.9) eQTLs not in RBP motifs or eCLIP peaks (gray), and for high-confidence eQTLs predicted to 

disrupt (red) or preserve (green) HNRNPK motifs. 

 

3'UTR variants in putative regulatory elements likely result in phenotypic changes 

Recent studies have demonstrated limited overlap between GWAS hits and eQTLs, and found that 

many genes with eQTLs are under weak selective constraint and are likely less functionally important 

than genes with GWAS hits47. Therefore, it was of interest to explore the extent to which eQTL variants 

that change gene expression by disruption of RBP motifs have phenotypes. To assess the effect of 

3'UTR variants on phenotypes, we analyzed GWAS data generated by the UK BioBank22. Overall, 

GWAS variants have lower PIPs than eQTL variants after fine-mapping. Otherwise, the distribution of 

GWAS and eQTL variants along the 3'UTR was similar and uniform (Figure S1). 

 

GWAS hits in eCLIP peaks had much higher conservation scores than those outside of eCLIP peaks, 

even those in an RBP motif (Figure 4A). To determine whether variants in regulatory elements result in 

phenotype changes, we compared PIPs for variants in RBP motifs, eCLIP peaks, and controls. GWAS 

hits in these elements have higher PIPs compared to variants outside of these sites (Figure 4B). (Too 

few ReP sites overlapped to permit similar analyses of this class.) Conservation has a larger impact on 

GWAS variant PIP than on eQTL PIP (Figure 4B), likely because variants that affect phenotype are 

under stronger selection than those that merely affect gene expression, consistent with recent studies 

comparing GWAS hits and eQTL variants47. Also potentially contributing to observed differences in PIP 

is the fact that most GWAS traits are categorical whereas eQTLs are continuous.  
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Figure 4: 3'UTR variants in RBP motifs, eCLIP peaks, and miRNA sites are associated with phenotypes. A. 

Comparison of PhastCons score distributions for GWAS variants in eCLIP peaks, RBP motifs, or no known regulatory 

elements. B Fraction causal (proportion of GWAS hits with PIP>0.25) for variants not in RBP motifs or eCLIP peaks 

compared to variants in RBP motifs or eCLIP peaks. * Indicates P<0.05. C As in B, but for variants in a single motif or 

CLIP peak compared to variants in more than one motif or peak in genes matched by gene expression. D Odds of a 

GWAS variant being in predicted miRNA site versus control variants (PIP<0.001) as minimum PIP increases; shown is 

odds ratio with 95% confidence intervals. E Fraction causal for variants not in miRNA sites compared to variants in miRNA 

sites with increasing predicted seed strength. F Proportion causal (left) for variants not in RBP motifs or eCLIP peaks 

compared to variants in ReP sites or eCLIP peaks, matched for raw CADD score (right). 

 

Recent research has suggested that variants in “RBP hubs” – locations where multiple RBPs bind – 

have lower allele frequencies compared to variants in single eCLIP peaks. However, these studies did 
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not control for the bias in eCLIP data toward genes with higher expression, a property which is 

associated with higher conservation48. Regardless, we found that variants located in multiple 

overlapping eCLIP peaks or RBP motifs are slightly more likely to be causal of phenotypes than those 

in single peaks/motifs, even after controlling for gene expression (Figure 4C), supporting that such 

variants are enriched for function. Binding of multiple RBPs to a region may increase the likelihood that 

the variant alters binding of at least one protein, or may enrich for sites that have multiple or important 

functions. 

 

Variants in miRNA sites are also enriched for association with GWAS phenotypes. As PIP increases, 

GWAS variants are up to sixteen times more likely to be located in conserved miRNA target sites. 

However, GWAS variants are actually mildly depleted from non-conserved miRNA sites, suggesting 

that such sites rarely impact phenotype (Figure 4D). Similar to eQTLs, GWAS hits in miRNA sites have 

higher PIPs, especially those in 8mer seeds, which have up to 15-fold higher proportion of causal 

variants than variants outside of regulatory elements (Figure 4E). We did not see a significant 

association between the number of distinct miRNA family targets overlapping a variant and the 

proportion of high-PIP GWAS variants, but statistical power was limited (Figure S4). Concerns have 

been raised regarding the accuracy of computational methods for predicting miRNA sites, and the ability 

of these predicted sites to impact phenotype49. Our results suggest that computationally predicted 

miRNA sites, especially conserved targets for conserved miRNA families, are strongly enriched for 

causal variants affecting both gene expression and phenotype. 

 

As observed for eQTLs, we found that GWAS hits in eCLIP peaks and RBP motifs have significantly 

higher CADD scores (Figure S3). Variants in eCLIP peaks, conserved miRNA sites, or ReP sites are 

more likely to be causal, even when CADD scores are matched, again supporting the argument for 
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supplementing CADD scoring with regulatory information to improve discrimination of pathogenic 

variants (Figure 4F). 

 

Effects of 3'UTR variants on expression and phenotype depend on APA isoforms 

APA impacts post-transcriptional regulation and steady-state transcript expression8. We found that the 

proportion causal was two-fold higher for eQTLs proximal to polyA sites (within 50 nt) than for eQTLs 

further from the PAS, for major PAS categories (Figure 5A). This enrichment in a region where core 

PAS motifs are located likely impacts expression via changing the location or efficiency of cleavage 

and polyadenylation8. 

 

We also observed that the PIPs of eQTLs are higher in genes with single 3'UTR isoforms and in 

common regions of 3'UTRs from APA genes than in “partially shared” (alternative) UTR regions of the 

same genes (Figure 5A). The likely explanation is that presence in all transcripts from a gene versus 

only some transcripts increases the magnitude of the impact on gene expression for common types of 

variants. Considering the relationship between eQTL PIP and the number of APA isoforms, we found 

that variants in genes with fewer APA isoforms have a higher proportion of causal variants, likely for 

similar reasons (Figure 5B). These findings persisted after controlling for 3'UTR length and distance to 

the stop codon, and the number of eQTL variants per gene did not vary substantially with APA isoform 

number (Figure S5). Unlike eQTLs, GWAS hits did not have higher PIPs near polyA sites; however, we 

do see a trend towards higher PIP for GWAS variants in common regions or in 3'UTRs with a single 

PAS (Figure 5C). Variants in genes with fewer APA isoforms also have higher GWAS PIPs, as seen 

for eQTLs (Figure 5D).  
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Figure 5: Variants in single or common 3'UTR regions more often impact gene 

expression and phenotype. A Fraction causal (proportion of eQTL variants with PIP greater 

than 0.25) for variants in various 3'UTR regions and proximal (<50 nucleotides) or distal to polyA 

sites. * indicates P<0.05 compared to left-most group. B Proportion causal for eQTL variants in 

genes with various numbers of canonical APA isoforms. C Proportion causal for GWAS variants 

in various 3'UTR regions, as in A. D Proportion causal for GWAS variants in genes with various 

numbers of APA isoforms, as in B. 

 

Regulatory features help to identify pathogenic 3'UTR variants 

Here, we have shown that conserved variants in RBP and miRNA sites within common 3'UTR regions 

of genes with fewer APA isoforms are more likely to impact gene expression and phenotype. These 

features can be incorporated into a generalized linear model to predict whether a variant is an eQTL or 
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GWAS hit based on its regulatory features (Figure S6). The model coefficients for each feature 

represent the increase in the odds of a variant being a causal GWAS hit or causal eQTL (with PIP>0.5) 

if the variant overlaps the feature. As expected, conservation score has the largest predictive value for 

GWAS hits, whereas eCLIP peak overlap is most predictive for eQTLs (Figure 6A). Similar to recent 

studies, we found limited overlap between eQTLs and GWAS hits47. For our variants, only 41% of 

eQTLs were GWAS hits, suggesting that most eQTLs do not impact assayed phenotypes. However, 

we found that 47% of eQTLs in eCLIP peaks or conserved miRNA sites were GWAS hits, versus 39% 

of eQTLs located outside of predicted regulatory elements (Figure 6B, P<0.005). Thus, the 3'UTR 

regulatory features considered here can help to predict which eQTLs are likely to affect phenotype. 

 

We show that regulatory analysis of noncoding variants using several orthogonal methods aids in 

identification of causal eQTLs and GWAS hits, many of which are expected to be pathogenic. Of 

conserved 3'UTR variants with known clinical significance in the ClinVar database, variants in RBP 

motifs are 3 times more likely and variants in eCLIP peaks are over 20 times more likely than variants 

not in regulatory elements to be pathogenic (Figure 6C). (Too few ClinVar variants were located in 

conserved miRNA sites to permit analysis.) Conservation had little if any impact on these findings as 

the degree of conservation between these ClinVar variant subsets was similar (Figure S7).  

 

Our results indicate that regulatory analysis of 3'UTR variants can aid in prioritization of variants for 

functional analysis and detection of pathogenic variants in patients. To this end, we developed a 

program, RegVar, that characterizes 3'UTR variants by their annotations, conservation, and predicted 

regulatory elements (Figure 6D, left). This tool will enable prioritization of 3'UTR variants for functional 

analysis, potentially contributing to improved patient diagnosis and treatment. Many variants in ClinVar 

are located in untranslated regions, and most of these variants are of uncertain significance5. 
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Prioritization of specific variants for experimental analysis will be beneficial to the many patients who 

have no genetic diagnosis despite whole exome or whole genome sequencing.  

 

Variants causing disease typically have low allele frequency in the general population as a result of 

natural selection, whereas the GWAS and eQTL analyses have statistical power only to detect variants 

of high frequency. As expected, we found little to no overlap between eQTL and GWAS 3'UTR variants 

and ClinVar variants. However, as a sample application, we identified several GWAS and eQTL variants 

with potential regulatory impact that also occur at the same base position as the rarer ClinVar variants 

(Figure 6D), which we suggest are ideal candidates for functional analysis. We highlight a few examples 

(Figure 6D) to illustrate this potential. In one case, a G>A substitution at chr21:44,886,223 in the 

CD18/ITGB2 gene is a GWAS variant associated with neutrophil count. ITGB2 is an integrin important 

for cell surface adhesion, and biallelic mutations in this gene result in leukocyte adhesion deficiency, 

and increased neutrophil count50. A G>T in the same position is a VUS for a patient with leukocyte 

adhesion deficiency in ClinVar. These variants are in a FUS motif as well as a UPF1 eCLIP peak in 

HepG2 cells (Fig. 3A), suggesting potential regulatory impact. Another variant, a C>A at 

chr11:124,921,026 in the HEPACAM gene is an eQTL in nervous tissue, and is also located in EIF4G2 

and FUS motifs, as well as a 7mer-m8 site for miR-6840-5p. A C>T in the same position is a VUS in 

ClinVar for megalencephalic leukoencephalopathy, which results from biallelic mutations in 

HEPACAM51. These variants should be investigated as potentially pathogenic for these patients, as 

GWAS or eQTL data support their causality, and RegVar supports the regulatory activity of these 

variants, suggesting possible mechanisms of action. 
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Figure 6: Characterization of 3'UTR variants into their annotations and regulatory elements helps prioritize 

variants for functional analysis and disease classification. A Exponential of logistic regression model coefficients 

with 95% confidence intervals. The model independent variable is binary (PIP greater or less than/equal to 0.5). * indicates 

P<0.05. BIntersection of eQTL variants in different putative regulatory elements with GWAS hits. C Odds of a ClinVar 

3'UTR variant in RBP motifs or eCLIP peaks being pathogenic versus variants not in a predicted regulatory element; 

shown is odds ratio with 95% confidence intervals. D RegVar workflow and example output for two ClinVar 3'UTR variants 

of uncertain clinical significance (genomic coordinates are in hg38).  
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DISCUSSION 

Characterization of noncoding variants is required to expand the impact of exome and genome 

sequencing on the clinical sphere. Here, we show that 3'UTR variants in eCLIP peaks, RBP motifs, 

miRNA seed sites, and common APA isoform regions proximal to polyA sites are associated (often 

strongly) with gene expression changes, phenotypes, and pathology. We provide a tool, RegVar, to 

help researchers and clinicians prioritize noncoding variants for functional analysis based on their 

location in regulatory elements. RegVar can process many variants in parallel and can be readily 

integrated into bioinformatic pipelines for systematic variant annotation. We anticipate that this program 

will be used to interpret the over 10,000 ClinVar variants of uncertain significance in putative 3'UTR 

regulatory elements. 

 

New models are being developed to predict whether variants have cis-regulatory effects on gene 

expression or phenotype52–55. These models incorporate many variant annotations, but have not 

incorporated RBP motif, miRNA target, or eCLIP peak data. Our general linearized model suggests 

that up to 10% more high-confidence GWAS hits or eQTL variants can be explained with incorporation 

of these features. Our findings will improve discrimination of pathogenic variants, as we show that 

3'UTR variants with the same CADD score are more likely to affect gene expression or phenotype if 

they fall in these regulatory elements. In addition, our tool, RegVar, fills an important unmet need in 

noncoding variant interpretation, providing variant effect prediction.  

 

Recent findings show that eQTLs are mostly found in less constrained genes with simple regulatory 

architecture, compared to GWAS hits, which are more likely to be found in functionally-important 

genes47. This could suggest that predicting variants that impact gene expression has limited clinical 

utility. However, we found that eQTL variants in regulatory elements are more likely to be GWAS hits, 
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indicating that including regulatory features into eQTL models will help distinguish phenotypically-

important eQTLs.  

 

Most patients with undiagnosed rare diseases have exome rather than genome sequencing performed 

despite the increased power of genome sequencing56. This is largely due to limitations on interpretation 

of noncoding variants57. Our findings argue that clinical sequencing should extend further into the 3'UTR 

to improve pathogenic variant detection. This could be done by extending exome capture slightly 

without significantly increasing the cost of sequencing. Recently published guidelines for interpretation 

of noncoding variants require querying multiple databases58. We propose noncoding variants should 

be systematically assessed using RegVar and reported with sequencing results. RegVar will decrease 

the workload for noncoding variant interpretation by incorporating multiple datasets into one user-

friendly tool.  

 

Despite the advances our study makes into interpretation of noncoding variants, there remain some 

limitations. Our findings are based on GWAS and eQTL variants, which are more common in the 

population than disease-causing variants. In addition, GWAS hits and eQTL variants are mostly of low 

PIP after fine-mapping, suggesting that most variants in these datasets are not truly causal. However, 

we found that pathogenic ClinVar variants, like eQTLs and GWAS hits, are more likely to be in RBP 

motifs and eCLIP peaks, suggesting our results are generalizable to rare, pathogenic variants. We 

anticipate that our work will result in targeted experimental studies of patient variants that will aid in 

disease diagnosis.  

 

Our data provide a thorough analysis of 3'UTR variants from several computational and population-

wide datasets. We found variants that exhibit allele-specific binding in cells are more likely to be in 

predicted motifs, suggesting these computational methods predict in vivo regulation. We limited our 
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study to the 3'UTR because this is an important regulatory region ignored by current methods of variant 

effect prediction; however, RBPs, and to a more limited extent miRNAs, also bind other noncoding 

regions such as introns or 5'UTR. Our results may extend to these areas as well, and these will be 

important future areas of study as variants in these regions also remain difficult to interpret.  
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SUPPLEMENTAL FIGURES 

 
 
Figure S1: Comparison of eQTL variant and GWAS hit distribution along 3'UTR (A), proximity to nearest 
polyA signal (B), and PIPs (C).  
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Figure S2: eQTL findings are robust even with a more stringent summary statistic PIP threshold. A. 
Proportion of eQTLs with PIP greater than a minimum cutoff for variants not in RBP motifs or eCLIP peaks 
compared to variants in RBP motifs, eCLIP peaks, and ReP sites, with 95% confidence intervals. B. Fraction 
causal (proportion of eQTLs with PIP>0.5) for variants not in RBP motifs or eCLIP peaks compared to variants 
in RBP motifs or eCLIP peaks. C. Fraction causal for variants not in miRNA sites compared to variants in miRNA 
sites with increasing predicted seed strength. D. Fraction causal for eQTL variants in genes with various 
numbers of canonical alternatively polyadenylated (APA) isoforms. 
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Figure S3: Variants in putative regulatory elements have higher 
CADD scores. Comparison of raw combined annotation dependent 
depletion (CADD) score distributions for eQTLs (A) or GWAS hits (B) in 
various putative regulatory elements versus controls.  

 
 

 
 
Figure S4: Trend towards higher PIP for 
variants predicted to disrupt more than one 
miRNA site.  Fraction causal for GWAS variants 
not in miRNA sites compared to variants in 
increasing number of sites. 
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Figure S5: eQTL findings are not due to stop proximity, 3'UTR length, or number of eQTLs per gene. A. Fraction 
causal (proportion of eQTL variants with PIP greater than 0.25) for variants in various 3'UTR regions (left), after matching 
distance to canonical stop codon (right). B. Fraction causal for eQTL variants in genes with various numbers of canonical 
alternatively polyadenylated (APA) isoforms (left) after matching gene 3'UTR length (middle). On right is the distribution 
of number of eQTLs per gene for genes with varying isoform numbers. 
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Figure S6: Performance of generalized linear models. 
Logistic regression analysis was performed to predict GWAS 
and eQTL variants (PIP>0.5). A variant was predicted to be 
an eQTL or GWAS hit if its log-odds was greater than 0.01 
(eQTL) or 0.0075 (GWAS). These thresholds maximized 
sensitivity and specificity. Goodness of fit was assessed via 
Hosmer-Lemeshow Test with a chi squared of 1.0204 and p-
value of 0.9981 for the eQTL model and a chi squared of 
13.262 and p-value of 0.1032 for the GWAS model. 

 

 
 
Figure S7: enrichment for pathogenic 
variants in regulatory elements is not 
solely due to conservation. Shown is mean 
phastCons score with standard deviation for 
variants in each category. 
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