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Abstract 22 

An important application of CRISPR interference (CRISPRi) technology is for identifying chemical-23 

genetic interactions (CGIs).  Discovery of genes that interact with exposure to antibiotics can yield 24 

insights to drug targets and mechanisms of action or resistance.  The premise is to look for CRISPRi 25 

mutants whose relative abundance is suppressed (or enriched) in the presence of a drug when the 26 

target protein is depleted, reflecting synergistic behavior.  One thing that is unique about CRISPRi 27 

experiments is that sgRNAs for a given target can induce a wide range of protein depletion.  The effect 28 

of sgRNA strength can be partially predicted based on sequence features or empirically quantified by a 29 

passaging experiment.  sgRNA strength interacts in a non-linear way with drug sensitivity, producing an 30 

effect where the concentration-dependence is maximized for sgRNAs of intermediate strength (and less 31 

so for sgRNAs that induce too much or too little target depletion).  sgRNA strength has not been 32 

explicitly accounted for in previous analytical methods for CRISPRi.  We propose a novel method for 33 

statistical analysis of CRISPRi CGI data called CRISPRi-DR (for Dose-Response model).  CRISPRi-DR 34 

incorporates data points from measurements of abundance at multiple inhibitor concentrations using a 35 

classic dose-response equation.  Importantly, the effect of sgRNA strength can be incorporated into this 36 

model in a way that mimics the non-linear interaction between the two covariates on mutant 37 

abundance. We use CRISPRi-DR to re-analyze data from a recent CGI experiment in Mycobacterium 38 

tuberculosis and show that genes known to interact with various anti-tubercular drugs are ranked highly. 39 

We observe similar results in MAGeCK, a related analytical method, for datasets of low variance. 40 

However, for noisier datasets, MAGeCK is more susceptible to false positives whereas CRISPRi-DR 41 

maintains higher precision, which we observed in both empirical and simulated data, due to CRISPRi-42 

DR’s integration of data over multiple concentrations and sgRNA strengths. 43 

 44 
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Author Summary 45 

 CRISPRi technology is revolutionizing research in various areas of the life sciences, including 46 

microbiology, affording the ability to partially deplete the expression of target proteins in a specific and 47 

controlled way.  Among the applications of CRISPRi, it can be used to construct large (even genome-48 

wide) libraries of knock-down mutants for profiling antibacterial inhibitors and identifying chemical-49 

genetic interactions (CGIs), which can yield insights on drug targets and mechanisms of action and 50 

resistance.  The data generated by these experiments (i.e., nucleotide barcode counts from high 51 

throughput sequencing) is voluminous and subject to various sources of noise. The goal of statistical 52 

analysis of such data is to identify significant CGIs, which are genes whose depletion sensitizes cells to an 53 

inhibitor. In this paper, we show how to incorporate both sgRNA strength and drug concentration 54 

simultaneously in a model (CRISPRi-DR) based on an extension of the classic dose-response (Hill) 55 

equation in enzymology. This model has advantages over other analytical methods for CRISPRi, which 56 

we show using empirical and simulated data.  57 

 58 

Introduction 59 

CRISPR interference (CRISPRi) has become popular for genome-wide profiling of the biological 60 

roles of genes in various growth conditions. By detecting growth defects caused by depletion of 61 

individual genes or operons, genes may be associated with responses to different stress conditions.  The 62 

concept of gene ‘vulnerability’ has recently been introduced to describe the sensitivity of cells to partial 63 

depletion of individual proteins.  By this definition, highly vulnerable genes are genes for which minimal 64 

depletion of protein levels causes growth impairment, which can be quantified efficiently on a genome-65 

wide scale using high-throughput sequencing [1].  The vulnerability of a gene can be condition 66 

dependent, or strain dependent [1].  CRISPRi can be used to reveal targets of antibiotics or mechanisms 67 
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of resistance through chemical-genetic interactions [2, 3]. CRISPRi libraries are often designed to contain 68 

multiple small guide RNAs (sgRNAs) targeting each gene, resulting in a population of thousands of 69 

individual depletion mutants [1]. The abundance of each sgRNA can be quantified by amplifying the 70 

sgRNA targeting sequence which functions as a molecular barcode, and then performing deep 71 

sequencing to count the number of barcodes for each sgRNA in a treatment. The analysis of such 72 

datasets is challenging, due to various sources of noise, which introduces variability in the counts. 73 

A previously published method for analyzing CRISPRi datasets, called MAGeCK [4], fits the data 74 

to a negative binomial distribution, calculates a log-fold-change (of mean counts) for each gene between 75 

a treatment condition and a reference condition (control, e.g. buffer with 5% DMSO as solvent), and 76 

uses a negative binomial (NB) mass function to test the differences in significance of sgRNA abundance 77 

between treatments and controls.  To evaluate effects at the gene level, individual sgRNAs are 78 

combined in MAGeCK using Robust Rank Aggregation (RRA) to prioritize genes whose sgRNAs show 79 

greater enrichment or depletion on average than other genes in the genome. MAGeCK has been used 80 

for evaluating chemical-genetic interactions (CGI) with antibiotics [4].  81 

However, MAGeCK has two limitations for this application. First, gene-drug interaction studies 82 

are usually carried out over several drug concentrations around the MIC (minimum-inhibitory 83 

concentration), since it is often difficult to anticipate what concentration will stimulate 50% growth 84 

inhibition of mutants in combination with CRISPRi-induced depletion of target proteins. However, 85 

MAGeCK analyzes the data for each drug concentration independently (each concentration compared to 86 

a no-drug control).  Knock-down mutants might exhibit depletion at one concentration but not others.  87 

Results from multiple concentrations must be combined post-hoc, such as by taking the union of 88 

MAGeCK hits at any concentration.  Due to the noise in these CRISPRi experiments, this increases the 89 

risk of detecting false positives (in the sense that non-interacting genes that might be mistakenly called 90 

as hits independently at different concentrations are combined). In practice, for some datasets, 91 
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MAGeCK reports an unreasonably large set of significant interactions, not all of which may be 92 

biologically genuine. Second, MAGeCK does not explicitly take into account differences in sgRNA 93 

strength. Different sgRNAs are known to induce different degrees of depletion of their target genes.  94 

This can be quantified beforehand by evaluating the growth rate of individual mutants in a passaging 95 

experiment and determining how fitness correlates with target knockdown [1]. In highly vulnerable 96 

genes, the strength or effectiveness of depletion by sgRNAs can span a range from no effect to severe 97 

growth defect.  This information was not anticipated at the time MAGeCK was developed (as the early 98 

applications of CRISPRi were primarily being used to fully inactivate genes, rather than to produce 99 

graded effects), and the Robust Rank Aggregation method treats all sgRNAs in a gene as "equal", 100 

without differentiating them based on the expected effects due to sgRNA strength. 101 

In this paper, we propose a new methodology for statistical analysis of CRISPRi libraries and 102 

identification of chemical-genetic interactions. A regression model is used to integrate data over 103 

multiple drug concentrations.  The degree of a gene-drug interaction is reflected by the coefficient (or 104 

slope) for the dependence of sgRNA abundance on drug concentration. This regression approach was 105 

previously introduced for analysis of hypomorph libraries (where there is just one to three mutants 106 

representing each gene) [5]. It was based on the theory that depletion of the target of a drug should 107 

synergize with increasing concentrations of the drug.  While exposure to sub-MIC levels of an inhibitory 108 

compound will challenge the growth of all the mutants in a population (hypomorph library), mutants 109 

with depletion of a gene that interacts with a drug (e.g. prototypically, an essential gene that is the drug 110 

target) will exhibit excess depletion relative to others in the population due to the combined effect of 111 

both the growth-inhibition due to the drug treatment in conjunction with the growth-impairment due to 112 

knock-down of an essential gene, making these mutants even more sensitive to the drug.   For genes 113 

that genuinely interact with a given drug, this depletion effect should be exacerbated at higher drug 114 

concentrations (i.e. be dose-dependent); genes of greatest relevance are those that exhibit 115 
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concentration-dependent effects.  While the (log of) abundance of an sgRNA does not have to decrease 116 

perfectly linearly with the (log of) concentration to obtain a significant negative coefficient (slope) in the 117 

regression, there should be a general trend supporting that abundance decreases as concentration 118 

increases. Other researchers have exploited CRISPRi in different ways to detect this synergistic behavior 119 

for identifying chemical-genetic interactions.  For example, the expression of an active form of dCAS9 120 

was titrated to produce different levels of expression of essential proteins in S. pyrogenes, looking for 121 

genes whose depletion shifted the MIC to inhibitors [3].  122 

One of the challenges in extending this prior regression approach to CRISRPi libraries was 123 

incorporating information on sgRNA strengths.  Even in essential genes, some sgRNAs may produce 124 

strong depletion of the target, while others might be almost completely ineffective, generally depending 125 

on sequence attributes (similarity to optimal PAM sequence (protospacer-adjacent motif), length, GC 126 

content, etc.) [6]. While sgRNA strength can be partially predicted (with intermediate accuracy) from 127 

sequence alone, sgRNA strength can also be empirically quantified by measuring or extrapolating log2-128 

fold-changes of abundance (LFCs) in standard growth media with versus without induction of CRISPRi at 129 

a fixed number of generations [1]. Although one could contemplate adding the strength of each sgRNA 130 

(predicted, or empirically measured) into the regression model to predict abundances for each gene, a 131 

significant problem (expanded upon below) is that sgRNAs of different strength can show different 132 

concentration dependence.   133 

In this paper, we propose a modified regression approach for CRISRPi data (called CRISPRi-DR) 134 

that incorporates both drug concentration and sgRNA strength. The approach is based on the classic 135 

dose-response (DR) model for inhibition activity of drugs; the activity of a target protein typically 136 

transitions from high to low in shape of an S-curve as concentration increases (on a log scale), which can 137 

be modeled with a Hill equation. The parameters of the Hill equation for a given drug can be fit by 138 

performing a log-sigmoid transformation of the enzyme activity data and then using ordinary least-139 
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squares regression. We show how sgRNA strength can be incorporated into this model as a 140 

multiplicative effect in the Hill equation, which becomes an additive effect in the log-sigmoid 141 

transformed data. The important consequence of this model is that it decouples the concentration-142 

dependence from the sgRNA strength, so they can be fit as independent (non-interacting) terms in the 143 

regression. We demonstrate the value of the CRISPRi-DR analysis method by re-analyzing the data from 144 

a recent paper using CRISPRi for chemical-genetic interactions to identify targets of antibiotics in M. 145 

tuberculosis. 146 

 147 

Methods 148 

CRISPRi experiments involve using high-throughput sequencing to tabulate counts of nucleotide 149 

barcodes representing abundance of individual mutants in a population (or library).  Each mutant has an 150 

sgRNA mapping to a target gene that can reduce its expression (when induced with ATC, 151 

anhydrotetracycline).  In CGI applications, the library is sequenced in the presence of antibiotics or 152 

inhibitors at various concentrations, along with a no-drug control.  If 𝑌!"# is the abundance (i.e. count) 153 

for an sgRNA 𝑖 in a condition 𝑗 for replicate 𝑘, normalized abundance can be given by 𝑌!"#$ = %!"#
∑ %$"#%
$&'

, 154 

where each count is divided by the sum of counts of the n sgRNAs observed in a given condition and 155 

replicate. Let 𝑈′!  be the  normalized abundance of sgRNA 𝑖 in the uninduced (-ATC) library, then the 156 

normalized relative abundances of an sgRNA 𝑖 in all induced (+ATC) samples can be calculated as: 𝐴!"# =157 

%!"#
(

'$!
 , assuming that the abundance in –ATC represents no depletion (100% full abundance). Although 158 

increases greater than 1 are possible in treated conditions, these relative abundances ideally range 159 

between 0 and 1 (i.e., 100% as a percentage).  This absolute scale is required for the dose-response 160 

model.  161 
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 162 

CRISPRi dose-response model 163 

The CRISPRi-DR model for analyzing CRISPRi data from CGI experiments is an extension of the 164 

basic dose-response model, extended to incorporate sgRNA strengths.  The dose-response effect of an 165 

inhibitor on the activity of an enzyme is traditionally modeled with the Hill-Langmuir equation. 166 

𝜃 =
1

1 + ,𝐾([𝐿]1
) 																																																																															[1] 167 

where 𝜃 is the fraction of abundance (relative to no drug), [L] is the ligand concentration, KA is the 168 

concentration at which there is 50% activity and 𝑛 is the Hill coefficient. 169 

 Applying [1] to the CGI data, the relative abundance of sgRNAs  𝐴!"# 	is used as the predictor 170 

variable and [Dj] is the concentration of drug j that the kth replicate count of sgRNA i was extracted 171 

from,  172 

𝐴!"# =
1

1 + 4
𝐸𝐶*+(𝐷")
:𝐷";

<
,) 																																																																[2] 173 

The unknown parameters are the EC50 value (effective concentration that causes 50% growth inhibition) 174 

and the Hill coefficient 𝐻-. The plot of the concentration versus relative abundance of an sgRNA (𝐴!"#) 175 

produces a sigmoidal curve, demonstrating how activity decreases as concentration increases, with the 176 

EC50, representing the mid-point of the transition. 177 

The dose-response model seen in [2] can be extended to account for sgRNA strength by 178 

incorporating a multiplicative factor in the denominator: 179 

𝐴!"# =	
1

1 + 4
𝐸𝐶*+?𝐷"@
[𝐷"]

<
,)

A𝐾.𝑆!
C
,*
																																																									[3] 180 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2023. ; https://doi.org/10.1101/2023.08.03.551759doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.03.551759
http://creativecommons.org/licenses/by/4.0/


9 
 

sgRNA strength, Si, is quantified by the estimate degree of growth impairment at 25 generations of 181 

growth in-vitro (log2-fold-change of abundance with ATC vs without, 𝐿𝐹𝐶 = 	𝑙𝑜𝑔2(/(01	
3(01

) in the absence 182 

of drug, extrapolated from a model fit to empirical data from passaging for each sgRNA  [1]. 𝐾. 183 

represents the unknown intermediate sgRNA strength that causes 50% depletion of mutant abundance 184 

(half-way between no depletion and full depletion), and the 𝐻. is the unknown Hill coefficient that 185 

represents how sensitive mutant abundance is to depletion of the target protein.  186 

 187 

Relationship between drug concentration and gene depletion within 188 

the CRISPRi-DR model 189 

 Abundance of mutants in a CRISPRi CGI experiment can be affected simultaneously by both 190 

presence of an inhibitor and depletion of a vulnerable gene. However, the concentration-dependent 191 

effect of a drug on mutant abundance can be different for sgRNAs of different strength. For example, a 192 

strong sgRNA can cause excessive depletion, making it difficult to detect additional decreases due to 193 

increasing drug concentration; weak sgRNAs might not induce enough depletion to synergize with the 194 

drug; sgRNAs of intermediate strength can provide just the right amount of depletion to maximize the 195 

interaction with the drug, producing the most pronounced concentration-dependent effects 196 

(sensitization). Fig 1 illustrates this with sgRNAs, spanning a range of strengths, in rpoB (RNA polymerase 197 

beta subunit, target of rifampicin) treated with rifampicin (RIF) over a range of concentrations. In Fig 1A , 198 

the sgRNA strength (extrapolated LFCs at 25 generations) is plotted versus observed depletion (log of 199 

+ATC/-ATC) in the absence of any drug for each sgRNA in rpoB in a log-log space. Since strength is 200 

measured as extrapolated LFC, the more negative the LFC, the greater the depletion and hence stronger 201 

the sgRNA. The points follow the linear dashed line, demonstrating that, as sgRNA strength increases, 202 

abundance decreases. The lines in Fig 1B are regression fits obtained for each sgRNA in rpoB in RIF (5 203 
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days of pre-depletion, D5) using regression of log abundances with log concentration, log?𝐴!"#@ = 𝐶 +204 

𝐵 ∙ log([𝐷"]) , where C is in the intercept and B is the slope of the regression, representing concentration 205 

dependence, and log?𝐴!"#@ are log relative abundances obtained as described above. The left-most side 206 

of Fig 1B (log concentration = 0) shows the range of abundances with no drug concentration (ATC-207 

induced library in buffer). Regression lines have starting points at various abundances (relative to -ATC), 208 

due solely to the growth impairment cause by depleting rpoB. As concentration of RIF increases, some of 209 

the sgRNAs show very negative slopes, while other sgRNAs show slopes closer to 0. This illustrates that 210 

sgRNAs within a gene in a particular condition can show vastly different concentration dependencies. A 211 

parabolic-type curve emerges in Fig 1C when the slopes from the regressions performed on each sgRNA 212 

seen in Fig 1B are plotted against the sgRNA strengths. The strongest sgRNAs (left on the plot) and the 213 

weakest sgRNAs (right side on the plot) show slopes around 0. These regressions represent the flat lines 214 

in at the top and the bottom of the graph in Fig 1B . As seen in Fig 1A, strong sgRNAs (left of plots Fig 1A 215 

and Fig 1C) already have a low starting abundance, so with increasing concentration, there is little 216 

depletion. With weak sgRNAs (right of plots in Fig 1A and Fig 1C), starting abundances are high, but the 217 

sgRNAs are too weak to show depletion with increasing concentration. The sgRNAs surrounding the 218 

minimum point of this parabolic curve (dashed line) reflect those of intermediate strength, where the 219 

ability to detect synergy with the drug is maximized. Similar behavior is observed for many other genes 220 

in the presence of other drug treatments. The strength where the slopes reach their extrema points can 221 

be different for each gene. The variability of concentration-dependence (slope) with sgRNA strength 222 

suggests a possible non-linear interaction between the variables. However, this nonlinearity is captured 223 

in the multiplicative terms of the dose-response model (Eqn. 3). 224 
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 225 

Fig 1. Effect of sgRNA strength and drug concentration on abundance of mutants in rpoB in a CRISPRi 226 

library treated with RIF (D5).  227 

(A) Comparison of fractional abundances of sgRNAs in rpoB (+ATC / -ATC) to their strengths (in the form 228 

of extrapolated LFCs 25 generations in the future).  There is a strong correlation of depletion and sgRNA 229 

strength in rpoB (RNA polymerase beta subunit, target of rifampicin). There is a linear relationship 230 

between these two values, evident by the line of best fit (R2 = 0.82). Since strength is measured as 231 

extrapolated LFC, the more negative the LFC, the stronger the sgRNA. Here we see that almost linearly, 232 

as sgRNA strength increases, abundance decreases.  (B) Regression lines for log(relative abundance) 233 

against log(concentration) for all sgRNAs in rpoB in a library treated with RIF D5. Although the starting 234 

abundance varies, the majority of the regression lines show a negative slope, demonstrating that as 235 

concentration of RIF increases, the abundance of sgRNAs in rpoB decrease. The lines that reflect the 236 

extremes of the sgRNA strength (orange or blue), are flat and do not show much change in abundance. 237 

Comparatively, the middle of sgRNA strength range (navy blue) show the greatest negative slopes 238 

reflecting this is the region of ideal sgRNA strength. (C) Comparison of sgRNA strength and slopes of a 239 

regression of log(relative abundance) against log(concentration) for each sgRNA in rpoB in a library 240 

treated with RIF D5. Each slope (one for each sgRNA) seen in Panel B versus its strength show a 241 

parabolic curve. The strongest sgRNAs (left on the plot) and the weakest sgRNAs (right side on the plot) 242 

show slopes around 0. These regressions are the flat lines in at the top and the bottom of the graph in 243 

Panel B. As seen in Panel A, with strong sgRNAs (left of plot), we already have a low starting abundance, 244 
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so with increasing concentration, there is little depletion. With weak sgRNAs (right of the plot), starting 245 

abundances are high, but the sgRNA is too weak to show depletion with increasing concentration. The 246 

minimum of the parabolic curve (dotted line) are sgRNAs of intermediate strength where the ability to 247 

detect synergy with the drug is maximized 248 

 249 

Linearization and parameter estimation 250 

The dose-response model [3] can be linearized through a log-sigmoid transformation.  251 

log 4
𝐴!"#

1 − 𝐴!"#
< = 	𝐻- ∙ log?:𝐷";@ +	𝐻. ∙ 𝑆! + 𝐶 252 

𝐶 = 𝐻. ∙ log(𝐾.) − 𝐻- ∙ log A𝐸𝐶*+?𝐷"@C																																													[4]  253 

In this log-sigmoid transformed space, the concentration-dependence and effect of sgRNA strength have 254 

been decoupled (non-interacting), and thus are independent linear terms with the Hill coefficients (𝐻. 255 

and 𝐻-) as the variables to solve for by a standard regression. The inflection parameters of the sigmoid 256 

curve (𝐾. and EC50) are combined as the intercept C in the model. Importantly, this model implies that 257 

the effect of growth impairment due to the depletion of a vulnerable gene and growth inhibition due to 258 

the drug on the overall (relative) abundance of a given mutant are independent, because the effects are 259 

an “additive” in log-space. To illustrate this, the CRISPRi-DR equation is simulated by plotting idealized 260 

relative abundances (in Fig 2) using parameters chosen to emulate what is seen in Fig 1B; the rpoB plot 261 

of slopes over a systematic range of sgRNA strengths and drug concentrations.  In Fig 2A, the slopes of 262 

the concentrations are plotted against abundances calculated using the dose-response model. The 263 

slopes change as a function of the starting depletion (left-hand side), which varies due to sgRNA 264 

strength alone (colored by blue-orange gradient based on strength value). The slopes are most negative 265 

for intermediate sgRNA strength, colored with a dark blue-green hue representing sgRNA strength 266 

(extrapolated LFCs) around -10. Fig 2B shows the result of the linearization of the Hill equation. All the 267 
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individual sgRNA regression lines over concentration become parallel, eliminating the dependence on 268 

sgRNA strength, and allowing them to be fit by a single common slope representing the concentration-269 

dependence averaged over all the sgRNAs. 270 

 271 

Fig 2. The log-sigmoid transformation of abundances allows the CRISPRi-DR model to factor in the 272 

non-linear effect of sgRNA strength on concentration dependence.  273 

(A) Simulation of sgRNAs abundances for an ideal essential gene. Parameters used in simulation: Hs = -4, 274 

EC50 = 0.25, Ks = -10 and Hd = -0.5 over a range of sgRNA strengths and drug concentrations. (B) When 275 

the log-sigmoid transformation of the abundances is applied, we see all the regression fits are parallel to 276 

one another, allowing to be fit by a single common slope, representing the concentration dependence 277 

over all sgRNAs, regardless of sgRNA strength. 278 

 279 
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The data (sgRNA relative abundances from sequencing) are fit on a gene-by-gene basis using 280 

ordinary least-square (OLS) regression by the following formula: 281 

log ,
(!"#

43(!"#
1 = 	𝛽+ + 𝛽5 ∙ log?:𝐷";@ +	𝛽. ∙ 𝑆!                                            [5] 282 

where A (relative abundance for each sgRNA at given drug concentration), Si (sgRNA strength estimated 283 

by predicted log fold depletion at 25 generations based on passaging) and [Dj] (concentration of drugs) 284 

are columns of a melted matrix. To include the control samples (no-drug ATC-induced controls, 285 

concentration 0) in the regression, they are treated as one two-fold dilution lower than the lowest 286 

available concentration tested for the drug (to avoid taking the log of 0). Since the log-sigmoid transform 287 

of the relative abundances is taken, they must be within the range of (0,1) but not equal to either 288 

extremum. While relative abundances are generally non-negative, they can be greater than 1.0, 289 

reflecting sgRNAs that increase in abundance with drug concentration relative to the uninduced (-ATC) 290 

condition.  To account for this, the following squashing function is applied to adjust outlying values to be 291 

within the desired range, while retaining monotonicity: 292 

𝐴!"# = 	𝜏 +
(1 − 𝜏)(1 − 𝑒36(!"#)

(1 + 𝑒36(!"#)
																																																													[6] 293 

where 𝜏=0.01 is a pseudo count needed to make abundances non-zero for taking logarithms. 294 

 295 

Significance Testing 296 

The statistic that indicates the degree of interaction of each gene with a given drug is the 297 

coefficient for the 𝑙𝑜𝑔([𝐷])	term (i.e. slope) in the model. To determine whether the interaction is 298 

statistically significant, a Wald test [7] is applied to calculate a p-value reflecting whether the coefficient 299 

is significantly different than 0, adjusting for a target FDR (false discovery rate) of 5% over the whole 300 

genome using the Benjamini-Hochberg procedure [8]. However, the Wald test by itself yields too many 301 

hits (i.e., the genes predicted to have the greatest interaction with the drug, with adjusted p-value < 302 
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0.05). The test selects genes with slopes that are technically different than 0, but not necessarily large 303 

enough to be biologically meaningful. Therefore, genes are filtered based on the magnitude of the 304 

slopes, analogous to the criterion of |LFC|>1, used by Li et al. [2],  to filter significant genes by MAGeCK. 305 

The distribution of slopes over all genes is assumed to be a normal distribution, and the Z-scores are 306 

computed for every gene	𝑔:	𝑍7 =	
8+,-39(8+)
<(8+)

  , where	𝜎(𝛽5)	is the standard deviation of the slopes of log 307 

concentration dependence and 𝜇(𝛽5) is the mean of the slopes. Genes with |𝑍7| < 2.0 are filtered out. 308 

This produces hits whose slopes are significant outliers (>2𝜎) from the rest of the population (genes in 309 

the genome). There are two groups of hits, corresponding to the two tails of the distribution: enriched 310 

hits where 𝑍7	> 2.0, and depleted hits, 𝑍7	< -2.0. Fig 3 shows the distribution of the slopes calculated for 311 

genes in a library treated with RIF (one day of pre-depletion, D1). The threshold for this distribution 312 

where |𝑍7|>2.0 and adjusted p-value < 0.05, is at slope = -0.28 and slope = 0.28 (vertical bars). The 195 313 

total genes in the tails outside the vertical lines are identified as significant genes. These genes include 314 

the target of RIF, rpoB.  315 

 316 
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Fig 3. Coefficient of log-dependence from CRISPRi-DR model fitted for RIF D1 (1 day of pre-depletion).  317 

The distribution of the slopes of concentration dependence, extracted from the model fit for each gene. 318 

The vertical lines are at slope = -0.28 and slope = 0.28. These are the slopes adjusted p-value < 0.05 and 319 

the |Z-score|> 2.0. 195 genes have significant slope values, i.e., 195 genes show a significant change in 320 

abundance with increasing RIF concentration while accounting for sgRNA strength. rpoB is significant 321 

with a slope of -0.29.  322 

 323 

 324 

Results 325 

CRISPRi data and pre-processing 326 

The data was obtained from high-throughput sequencing of a CRISPRi library of M. tuberculosis 327 

(Mtb) of 96,700 sgRNAs [2]. For all 4019 genes in the Mtb H37Rv genome, there is an average of 24 328 

sgRNAs per gene (range: 4-711). This library was intentionally constructed to focus on probing essential 329 

genes (based on prior TnSeq analysis [9]), with a mean of 83 sgRNAs per essential gene but there are 330 

some sgRNAs in each non-essential gene (mean of 10 sgRNAs per non-essential gene).  331 

 Samples of the library induced with ATC, in the presence of a drug were sequenced in triplicate 332 

at several concentrations for each drug at 2-fold dilutions around the MIC, along with control samples 333 

representing the no-drug ATC-induced samples (0 concentration). Three periods of pre-depletion (+ATC, 334 

prior to antibiotic exposure) were evaluated: 1, 5, and 10 days (D1, D5, and D10). The measurements 335 

reported in this library are observed barcodes counts of mutants in a culture, each with a different 336 

sgRNA, representing the relative proportion of each mutant in the population (i.e., abundance). 337 

However, abundance can increase or decrease if a vulnerable gene is depleted through CRISPRi 338 

interference, causing a change in fitness. Although levels of a target protein are knocked down by 339 
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transcription interference via CRISPRi, protein levels are not directly measured. The barcodes that are 340 

being counted are nucleotides amplified from plasmids in the cells. This indirectly reflects the growth 341 

defect caused by depletion of a vulnerable gene.  Each individual sample consisted of a vector of 96,700 342 

barcode counts. Samples were normalized by dividing individual counts for each sgRNA by the sample 343 

total (sum over all sgRNAs). 344 

 Prior estimates of sgRNA strengths are also required. These were obtained from empirical data 345 

by fitting a piecewise-linear equation to fitness over multiple generations, and then inferring the 346 

predicted log-fold change at 25 generations [1].  As the absolute effect of depletion solely due to the 347 

sgRNA induction plays an important role in the CRISPRi-DR model (below), the analysis also requires 348 

samples representing abundance of mutants in the absence of -ATC (no dCAS9 expression, and hence no 349 

depletion of target transcripts by sgRNAs). 350 

 351 

sgRNA strength shows a strong correlation with abundance 352 

sgRNA strength shows a linear trend with log (abundances) in essential genes.  For example, Fig 353 

1 illustrates a strong relationship between sgRNA strength and mutant growth suppression for rpoB 354 

(RNA polymerase). This can be quantified as the slope of the regression: log4+ 𝐴!# = 𝐵 ∙ 𝑆! + 𝐶, where 355 

𝐴!# is the relative log abundance of an sgRNA in replicate k (counts in +ATC culture divided by counts in -356 

ATC), 𝑆!  is the strength of sgRNA i in the form of extrapolated LFCs (calculated for the library grown in -357 

ATC in buffer ), and C is the intercept. This regression was run on essential genes with at least 20 358 

sgRNAs. Non-essential genes were excluded in this analysis since they have fewer sgRNAs in the library 359 

and tend not to deplete regardless of concentration or sgRNA strength. As seen in the distribution in Fig 360 

4, most of genes show slope greater than 0 (though not all as large as rpoB), and nearly all are significant 361 

(Wald test, adjusted p-value < 0.05). In all the genes, as sgRNA strength increases (i.e. extrapolated LFCs 362 

become more negative), abundances decrease. This demonstrates that there is a direct relationship 363 
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between sgRNA strength and mutant depletion extending to all essential genes in the genome. 364 

Therefore, strength of the sgRNAs is an important covariate of predicting abundances and should be 365 

incorporated in the model to accurately identify genes showing depletion in a condition. 366 

 367 

Fig 4. Distribution of slopes from regression of log10 (abundances) with respect to sgRNA strength, fit 368 

for the RIF D5 dataset.  369 

For essential genes in the RIF (D5) experiment with at least 20 sgRNAs, we regressed the average log 370 

normalized relative abundance at no-drug control samples against the sgRNA strengths (extrapolated 371 

LFCs at 25 generations) and plotted a histogram of the coefficients. sgRNAs that are significant are those 372 

with slope >= 0.024 (adjusted p-value < 0.05). Most of the slopes are greater than 0 and marked as 373 

significant. As sgRNA strength increases for a mutant, abundance decreases, indicating a direct 374 

relationship between sgRNA strength and mutant depletion. 375 

 376 
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The CRISPRi-DR model accurately predicts sgRNA abundances from 377 

sgRNA strength and drug concentration  378 

For all experiments, the CRISPRi-DR model with both sgRNA strength and concentration as 379 

predictors outperforms reduced models. When the model is run on each gene in the ethambutol (EMB 380 

D5) experiment, 59.2 % of the 4032 genes show r2 values (correlation of predicted and observed 381 

abundances) of at least 0.5. As expected, these genes include targets of EMB, embA, embB and embC as 382 

well as other cell wall related genes such as the aft (arabinofuranosyltransferase) genes.  383 

To evaluate the relative importance of the sgRNA strength and drug concentration features to 384 

the CRISPRi-DR model, each gene was run through two ablated models: Md and Ms. The Md model 385 

contained only log concentration as a predictor: log ,
	(!"#
43(!"#

1 = 𝐵 ∙ log?[𝐷"]@ + 𝐶 and the Ms model only 386 

contained sgRNA strength as a predictor: log ,
(!"#

43(!"#
1 = 𝐵 ∙ 𝑆! + 𝐶. In the EMB D5 experiment, only 387 

33.4% of genes fitted with Ms and 8.0% of genes fitted with Md show r2 values at least 0.5. embA, embB 388 

and embC do not appear in the either of these sets of significant interactors. The average log-likelihood 389 

(LL) of the full model in the EMB D5 experiment is -99.5, whereas the average log-likelihood of Md is -390 

245.1 and average log-likelihood of Ms is -131.4 (higher LL values represent better fit). When the log-391 

likelihood ratio (LR) test is performed, the LR-statistics show that Ms is an improvement over Md, and the 392 

full model is a greater improvement over both Md than Ms. In all three models, most of the insignificant 393 

genes (adjusted p-value of LR statistic ≥ 0.05) were non-essential genes that do show much depletion 394 

regardless of concentration or sgRNA strength. For targets of EMB, embA, embB and embC, the LR 395 

statistic for Ms is higher than Md and is the highest in the full CRISPRi-DR model.  The r2 values and 396 

results of the log-likelihood ratio test indicate the sgRNA strength contributes more strongly to the 397 

CRISPRi-DR model than the drug concentration and is the dominant feature for most genes. Additionally, 398 
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the full CRISPRi-DR model not only provides better fits for a greater quantity of genes than the ablated 399 

models, but it also provides betters fits for targets of the drug.  400 

The CRISPRi-DR model’s improved performance over the reduced models for EMB extends to all 401 

drugs tested, as seen in S1 Fig. The dashed line in the plot indicates r2 = 0.5. In all the experiments, the 402 

number of genes with fits that have r2 > 0.5 is greater in the Ms model than Md. The number of genes 403 

with fits with r2 > 0.5 is the greatest in the full CRISPRi-DR model. This demonstrates that in all 404 

conditions, both concentration and sgRNA strength are needed to make accurate estimates of sgRNA 405 

depletion. 406 

Some users may not have the resources to run passaging experiments for all sgRNAs in their 407 

CRISPRi library to determine sgRNAs strengths empirically, and thus may want to rely on the predicted 408 

strengths based on sequence features. To evaluate how much of a difference the predicted strength in 409 

place of empirical strength, we fitted the CRISPRi-DR model on all the datasets with predicted strength 410 

in place of empirical strength and compared the results. The significant genes reported by the CRISPRi-411 

DR model using predicted strength (based of sequence features) were nearly identical to the significant 412 

genes reported by the CRISPRi-DR model using empirical strength (based on passaging). The average 413 

overlap of interacting genes detected is 93.3%, with 24 out of 26 datasets having an overlap greater 414 

than 90%.  Thus, using predicted sgRNA strengths is almost as good as using empirical estimates from 415 

passaging. 416 

 417 

CRISPRi-DR and MAGeCK have a high concordance of predicted gene-418 

drug interactions  419 

The overall number of significant genes identified by the CRISPRi-DR model is comparable to those 420 

reported by MAGeCK, but MAGeCK identifies additional genes that are not detected as significant by the 421 
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CRISPRi-DR model. MAGeCK and CRISPRi-DR detect about the same number of significantly enriched and 422 

depleted genes, typically on the order of tens to a few hundred for any given drug, as shown in Fig 5A. 423 

The number of false negatives (significant in MAGeCK but not in CRISPRi-DR) are balanced with the 424 

number of false positives (significant in CRISPRi-DR but not in MAGeCK); they are both on similar scales. 425 

On average, 57.5% of significant genes in CRISPRi-DR are also significant genes in MAGeCK. However, for 426 

some drugs, MAGeCK predicts substantially more hits. For example, MAGeCK finds over 1066 427 

significantly depleted genes for VAN (even with the filter of |LFC|>1 applied), whereas CRISPRi-DR finds 428 

only 196 significant interactors. 429 

 430 

Fig 5. Comparison of significant interactions in CRISPRi-DR and MAGeCK.  431 

(A) The number of hits (both enriched and depleted) are slightly greater in MAGeCK than in the CRISPRi-432 

DR model. However, both models produce comparable number of significant genes. The outlier point 433 
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seen in for the scatterplot comparing depleted genes (top) is for VAN D1. The number of genes reported 434 

in the CRISPRi-DR model span a shorter range than the number of genes reported in MAGeCK. (B) 435 

Precision of significant genes reported by the CRISPRi-DR model. Overall, the precision of both enriched 436 

and depleted hits in the CRISPRi-DR model (compared to MAGeCK) are high. There is a greater overlap in 437 

depletion hits than enriched hits. The LEVO D10 and LZD datasets had almost no hits in MAGeCK [see 438 

Extended Data Fig 2 in (Li, Poulton et al. 2022)].  As a result, they were excluded from the precision 439 

analysis. 440 

 441 

The ranking of genes using the CRISPRi-DR model (using coefficient of concentration dependence, as 442 

described above) correlates well with ranking of genes in MAGeCK.  For each of the 9 drugs tested, 443 

Receiver Operator Characteristic (ROC) curves were calculated for the D1 (1 day) pre-depletion datasets, 444 

seen in Fig 6. The average areas under curves (AUC) in Fig 6A is 0.95, indicating that the genes reported 445 

in MAGeCK across all concentrations are ranked highly in the CRISPRi-DR model. For instance, 70.0% of 446 

the top-100 ranked depletion genes in MAGeCK appear in the top-100 ranked depletion genes in the 447 

CRISPRi-DR model. The areas under the curves in Fig 6B for enriched hits are lower than of Fig 6A , with 448 

an average of 0.83. 449 

 450 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2023. ; https://doi.org/10.1101/2023.08.03.551759doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.03.551759
http://creativecommons.org/licenses/by/4.0/


23 
 

Fig 6. ROC curves comparing gene rankings in MAGeCK and CRISPRi-DR for enriched hits (A) and 451 

depleted hits (B) in 1 day pre-depletion experiments.  452 

The recovery of the depleted hits outperforms the recovery of enriched hits, showing that MAGeCK and 453 

the CRISPRi-DR model rank depleted genes similarly. EMB and STR are excluded in the ROC analysis of 454 

depleted genes and CLR and VAN are excluded in the analysis of enriched genes. These libraries had too 455 

few significant genes reported by MAGeCK in their respective categories to yield meaningful ROC curves. 456 

The lower performance of the enrichment gene rankings may be due to a few reasons, including noise.  457 

 458 

The discrepancy between interactions detected by MAGeCK and CRISPRi-DR for enriched hits can be 459 

observed as an imbalance between false negatives and false positives in the confusion matrices (see S2 460 

Table).  Many genes with significant enrichment by MAGeCK are not called significant by CRISPRi-DR. 461 

This imbalance can be quantified as precision (calculated as TP/(TP+FP), or fraction of true positives 462 

(defined by MAGeCK) vs all positives (predicted by CRISPRi-DR).  The precision of these CRISPRi-DR calls 463 

can be seen in Fig 5B. The average overlap of significantly depleted genes is 73.3%, whereas the average 464 

of significantly enriched genes is nearly half that, at 41.7%. The significant genes reported using the 465 

CRISPRi-DR model are largely a subset of the genes reported by MAGeCK, with a smaller overlap of 466 

significant enriched genes than significant depleted genes. This lower concordance of the two models 467 

for enriched hits shows that MAGeCK may be selecting genes with large variations, deceptively seeming 468 

to be significant interactions, that the CRISPRi-DR model does not.  This might be attributable to the 469 

greater susceptibility of MAGeCK to noise in barcode counts, which is higher for some enriched genes 470 

(discussed below).   471 

 472 
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CRISPRi-DR model correctly detects genes known to interact with anti-473 

tubercular drugs. 474 

When genes are ordered by coefficients of the slope representing the dependence of abundance on 475 

drug concentration from the CRISPRi-DR model, genes for existing anti-mycobacterial drugs are ranked 476 

highly, as expected (Table 1). The more positive a gene’s coefficient is, the higher the gene’s enrichment 477 

ranking, and the more negative a gene’s coefficient is, the higher it’s depletion ranking. 478 

  479 
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Table 1 : Ranking of Select Genes using the CRISPRi-DR model in 1 Day pre-depletion of treated 480 

libraries.   481 

Drug Gene D1 Depletion Ranking D1 Enrichment Ranking 
BDQ atpA 11 4022 
BDQ atpB 6 4027 
BDQ atpC 35 3998 
BDQ atpD 12 4021 
BDQ atpE 23 4010 
BDQ atpF 7 4026 
BDQ atpG 9 4024 
BDQ atpH 8 4025 
BDQ mmpL5 2 4031     
CLR RVBD3579c 35 3998 
CLR erm(37) 1 4032     
INH inhA 6 4027 
INH ahpC 2 4031 
INH katG 4031 2 
INH ndh 4029 4     
EMB embA 4 4029 
EMB embB 5 4028 
EMB embC 12 4021     
LEVO gyrA 3834 199 
LEVO gyrB 3967 66 

    
LZD erm(37) 3994 39 
LZD tsnR 4032 1     
RIF rpoB 108 3925 
RIF rpoC 148 3885     
STR ettA 4023 10 
STR gidB 4022 11 

For each drug, the CRISPRi-DR model is run on each gene (using data from D1). The coefficient for the 482 

slope of concentration dependence (𝛽5) is extracted from the fitted regression and used to rank the 483 

genes in both increasing order (for depletion) and inversely (for enrichment).  Green reflects results 484 

consistent with expectations based on knowledge of known gene-drug interactions 485 

 486 
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Genes that are known to be involved in the target mechanism of a drug should have a high 487 

depletion rank, i.e., show a negative slope, indicating that as concentration increases, abundance for the 488 

given depletion-mutant decreases. This can be seen in S1 Table, in the ranking for genes using the 489 

CRISPRi-DR model. embA, embB, and embC (subunits of the arabinosyltransferase, target of ethambutol, 490 

EMB) rank within the top 100 depleted genes for all three pre-depletion conditions for EMB. They rank 491 

the highest in D1 and the lowest in D10. This can be attributed to the fact that by D10 genes are already 492 

quite depleted, even at concentration 0, increasing noise, and making it difficult to pick up on depletion 493 

signals over increasing concentration. Therefore, the ranking of relevant genes in D1 was assessed in this 494 

analysis (Table 1). In RIF, target genes rpoB, rpoC are ranked within the top 150 genes. Significant 495 

negative interacting genes for RIF also include many cell wall related genes such as ponA2, rodA, ripA, 496 

aftABCD, embABC, etc., consistent with recent studies that show RIF exposure (or mutations in rpoB) 497 

leads to various cell wall phenotypes [10-12]. Similarly, the targets of bedaquiline (BDQ), the 8 ATP 498 

synthase genes (atpA-atpH, subunits of F0F1 ATP synthase), along with efflux pump mmpL5, are ranked 499 

within the top 40 depleted genes in BDQ. In levofloxacin (LEVO), gyrA and gyrB (subunits of the DNA 500 

gyrase, the target of fluoroquinolones) are observed to be enriched. The reason that depletion of this 501 

drug target leads to enrichment of mutants (hence a growth advantage, rather than the expected 502 

growth impairment) is likely due to reduced generation of double-stranded breaks in the DNA and other 503 

toxic intermediates as a side-effect of inhibiting the gyrase, an effect that has been observed in E. coli 504 

[13]. The significantly depleted genes in vancomycin (VAN) show significant enrichment for the cell 505 

wall/membrane/envelope biogenesis pathway (as defined by in COG pathways [14]) using Fischer’s 506 

Exact Test This follows previous studies that show cell wall genes are targets of vancomycin [15, 16], 507 

which binds to peptidoglycan in the cell wall. For clarithromycin (CLR), an inhibitor of translation, 508 

Rv3579c and erm(37) are observed as hits. Erm(37) adds a methyl group on the A2058/G2099 nucleotide 509 

in the 23S component of the ribosome, the same position to which CLR attempts to bind [17]. This 510 
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natively increases tolerance to CLR in Mtb. As this gene is depleted, CLR has greater opportunity to bind, 511 

reducing the bacillus’ natural tolerance to the drug. Following this observation, erm(37) has a depletion 512 

rank of #1 in the CLR D1 condition. Rv3579c is another methyltransferase with a similar function that 513 

ranks highly (#35) in CLR. 514 

In contrast to methylation inhibiting the binding of CLR, there are ribosome methyltransferases 515 

where methylation facilitates binding of a drug. Mutants for these genes would be expected to show a 516 

high enrichment rank in presence of drug. For instance, streptomycin (STR) interferes with ribosomal 517 

peptide/protein synthesis by binding near the interaction of the large and small subunits of the 518 

ribosome [18]. Two relevant genes that influence the binding of STR include gidB and Rv2477c/ettA. 519 

gidB is an rRNA methyltransferase that methylates the ribosome at nucleotide G518 of the 16S rRNA, 520 

the position at which STR interacts [19], increasing native affinity for STR. This is consistent with the 521 

observation that one of the most common mutations in STR-resistant clinical isolates is loss of function 522 

mutations in gidB [20]. Rv2477c is a ribosome accessory factor, also known as ettA, which is an ATPase 523 

that enhances translation efficiency.  It has also recently been shown to bind the ribosome near the P-524 

site (peptidyl transfer center), potentially interfering with binding of aminoglycosides [21], and loss-of-525 

function mutations observed in drug-resistant clinical isolates of M. tuberculosis  have shown to confer 526 

resistance to STR [2]. The ranking of both genes using the CRISPRi-DR model are within the top 12 527 

enriched genes in STR.  For linezolid (LZD), relevant genes identified are erm(37) and tsnR. tsnR is an 528 

rRNA methyltransferase, analogous to gidB and results in tolerance to LZD in a similar manner as gidB 529 

does for STR [2].  Following this expectation, tsnR has an enrichment ranking of #1 in LZD. Whereas 530 

depletion of erm(37) gives tolerance to CLR, it increases sensitivity to LZD. The nucleotides that erm(37) 531 

methylates in the 23S RNA are proximal in 3D space to where mutations conferring LZD-resistance are 532 

found, which both lie in the PTC (peptidyl-transfer center) of the ribosome [22].   533 
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For isoniazid (INH), there are multiple relevant genes identified by CRISRPi-DR, including inhA, ahpC, 534 

ndh [23], and katG [24]. inhA (enoyl-ACP reductase, in mycolic acid pathway) is an essential gene that is 535 

the target of INH, and ahpC (alkyl hydroperoxide reductase) responds to the oxidative effects of 536 

isonicotinic radicals in the cells. Therefore, as dosage of the drug increases, the abundances of the 537 

mutants of these genes should decrease. These genes are in the top 10 highest ranked depletion genes 538 

for INH (see Table 1).  In contrast, katG and ndh are found among the top 5 enriched hits, exhibiting 539 

increased survival when the proteins are depleted.  KatG (catalase) is the activator of INH, and the most 540 

common mutations in INH-resistant strains occur in katG, decreasing activity [25]. Ndh (type II NADH 541 

reductase) mutants  have also been shown to decrease sensitivity to INH by shifting intracellular NADH 542 

levels (needed for INH-NADH adduct formation), and mutations in ndh have been shown to be defective 543 

in target enzyme (NdhII) activity [23], which is consistent with the observation in the CRISPRi data that 544 

depletion of ndh leads to increase survival in the presence of INH. 545 

 546 

The CRISPRi-DR model is less sensitive to noise than MAGeCK  547 

MAGeCK’s greater sensitivity to noise could be a reason that the CRISPRi-DR model shows lower 548 

consistency with MAGeCK for enriched hits (e.g. lower AUC in Fig 6B than Fig 6A). There is some noise in 549 

these experiments due to variability in sequencing barcode counts across replicates. This can 550 

differentially affect the accuracy of predictions of gene-drug interaction made by these models. Three 551 

replicates were available for each measurement, i.e., 3 different counts estimating the relative 552 

abundance of each sgRNA in the presence of a drug at a given concentration. Coefficient of variation 553 

(CV) can be used to measure relative consistency across these observations for each measurement, 554 

which in turn can be used to evaluate MAGeCK and the CRISPRi-DR model’s sensitivity to noise in the 555 

raw data.  556 
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For each sgRNA si the coefficient of variation (CV) was calculated across the relative abundances for 557 

the 3 replicates for each concentration © in drug (D) (𝐶𝑉=,1,! =	
<(!)
9(!)

), where 𝜎(𝑖) is the standard 558 

deviation of the 3 relative abundances in concentration C and 𝜇(𝑖)	is the mean. In Fig 7A, the 559 

𝐶𝑉=?=@AB,1?+,!  (CV of abundances in concentration 0) for a random subset of sgRNAs (~5%) in an ATC-560 

induced no-drug condition is compared to the average abundance. For sgRNAs of medium to high 561 

abundance, the CV is fairly constant at approximately 10%. However, as the average abundance 562 

decreases (below relative abundance of 0.1), CV value increases substantially to 140%. If a gene contains 563 

multiple such sgRNAs with high CV values, then the variation may be misconstrued as a genetic 564 

interaction by a noise-susceptible methodology.  565 

 566 

Fig 7. CRISPRi-DR model shows less sensitivity to noise than MAGeCK. (A) Comparison of average 567 

relative abundance and average CV across replicates in no-drug control samples (+ ATC)  for a sample of 568 
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sgRNAs : For each sgRNA, we looked at the average CV of sgRNAs in the 3 control replicates against the 569 

average abundance of the sgRNA across those replicates. The lower the average abundance, the greater 570 

the noise present for the sgRNA.  (B) Distribution of average CV of gene for significant genes in MAGeCK 571 

and significant genes in CRISPRi-DR in RIF D10 : The distribution of average CV of significant genes in 572 

CRISPRi-DR model is more skewed and has a peak at CV ≈ 	10%. Although most significant genes in 573 

MAGeCK show an average CV around 15%, there are quite a few genes with higher average CVs not 574 

found significant by the CRISPRi-DR model. (C) Coefficient of Variation (CV) of each sgRNA in two genes 575 

with similar number of sgRNAs for a library treated with RIF D10 : Rv1410c is significant in both 576 

methodologies and Rv0810c significant in MAGeCK but not in CRISPRi-DR. The majority of CV values for 577 

sgRNAs in Rv1410c is around 20%. Although both genes have about 20 sgRNAs, Rv0810c shows 8 sgRNAs 578 

whose CV values exceed 60.5%, which is the maximum CV present in Rv1410c. (D) Distribution of 579 

average CV for enriched and depleted significant genes in MAGeCK and CRISPRi-DR in a RIF D10 library. 580 

This plot shows the distribution plot of Panel B, separated by depletion and enriched significant genes. 581 

The average CV values for significant genes in the CRISPRi-DR model are low for both enriched and 582 

depleted genes. As seen in Panel B, significant genes in MAGeCK show low average CV, but they also 583 

show high average CV. Although there is a substantially lower number of significantly enriched in 584 

MAGeCK, they still show a large amount of noise compared the significantly enriched genes in CRISPRi-585 

DR model.   586 

 587 

The average noise in a gene g for a given drug D can be quantified as the average 𝐶𝑉=,1,!, for all 588 

concentrations C and all sgRNAs in the gene (	𝐶𝑉=\\\\\(𝑔)). Therefore, 𝐶𝑉=\\\\\(𝑔)	reflects the measure of 589 

overall noise present in a gene in a drug D. The distribution of 𝐶𝑉=\\\\\(𝑔)	in RIF D10 for the 215 total 590 

significant genes (enriched and depleted combined) in the CRISPRi-DR model and in 218 total significant 591 

genes (enriched and depleted combined over all concentrations) in MAGeCK can be seen in Fig 7B. The 592 
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distributions for both methodologies share a mode at about 𝐶𝑉=\\\\\(𝑔) ≈	10%. The distribution of 𝐶𝑉=\\\\\(𝑔) 593 

for significant genes in MAGeCK has a fatter tail than the distribution of 𝐶𝑉=\\\\\(𝑔) for significant genes in 594 

the CRISPRi-DR model. This trend is seen not only in RIF D10, but across all the experiments conducted 595 

(See S2 Fig). This indicates that although MAGeCK is identifying genes with low noise (like the CRISPRi-596 

DR model), it is also detecting many genes with high noise that the CRISPRi-DR model is not.  597 

An example of such a gene is Rv0810c. The gene has 22 sgRNAs and has a	𝐶𝑉=\\\\\(𝑔)	value (average CV 598 

over sgRNAs in a gene) of 51.4%, one of the highest measures in the RIF D10 experiment. In RIF D10, it is 599 

reported to be significantly depleted only in MAGeCK and not in the CRISPRi-DR model. The distributions 600 

of the CV values for each sgRNA are compared to those of Rv1410c in Fig 7C. Rv1410c has 20 sgRNAs, an	601 

𝐶𝑉=\\\\\(𝑔)	of 16.3% and is reported to be significantly depleted in both MAGeCK and the CRISPRi-DR 602 

model. Although both genes have some sgRNAs with low CVs (below 40%), Rv0810c shows 8 sgRNAs 603 

with CVs of at least 60.5%, which is the maximum CV of sgRNAs in Rv1410c. The CRISPRi-DR model 604 

considers the abundances at all concentrations, whereas MAGeCK compares each concentration to the 605 

baseline independently. Therefore, if sgRNAs have a high CV value at a particular concentration, they 606 

can be picked up as a significant genetic interaction by MAGeCK. The average relative abundance for the 607 

3 replicates at concentration 0 for all sgRNAs in Rv0810c is 0.19, whereas the average relative 608 

abundance in Rv1410c for the same is 1.08. As Fig 7A shows, Rv0810c falls in the low abundance/high 609 

noise section of the graph, with an average sgRNA no-drug  CV of 47.9%, whereas Rv1410c falls in the 610 

low noise section of the graph, with an average sgRNA no-drug  CV of 11.2%. This demonstrates that 611 

MAGeCK reports genes such as Rv0810c with low abundances resulting in large 𝐶𝑉=\\\\\(𝑔)	, which the 612 

CRISPRi-DR model does not, i.e., MAGeCK is more suspectable to noise than the CRISPRi-DR model. 613 

Furthermore, the 𝐶𝑉=\\\\\(𝑔) for significantly enriched genes in MAGeCK is higher than the 𝐶𝑉=\\\\\(𝑔) for 614 

significantly depleted genes. As seen in Fig 7B, both methodologies detect genes with 𝐶𝑉=\\\\\(𝑔) 	≈ 10% in 615 

RIF D10. The 𝐶𝑉=\\\\\(𝑔)	values for both significantly depleted and enriched genes in the CRISPRi-DR model 616 
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are close to this value (Fig 7D). MAGeCK detects significantly depleted genes at around this value, but 617 

also detects genes with much larger 𝐶𝑉=\\\\\(𝑔)	values. Although there are fewer significantly enriched 618 

genes reported in MAGeCK than CRISPRi-DR, they show a larger amount of noise compared the 619 

significantly enriched genes detected by CRISPRi-DR. Since the significantly enriched genes in MAGeCK 620 

show higher noise than either significantly enriched or significantly depleted genes in the CRISPRi-DR 621 

model, it might partially explain the lower levels of overlap (AUC) seen in the ROC curves for enriched 622 

genes in Fig 6B. 623 

 624 

Simulation 625 

The sensitivity and accuracy of the CRISPRi-DR model and MAGeCK was assessed under different 626 

sources of noise using simulated barcode counts sampled from the negative binomial distribution [26], 627 

with means at different concentrations determined by the dose-response model (Eqn. 3). sgRNAs and 628 

their empirical strength estimates from a previous study [2] were used to simulate the combined effects 629 

of CRISPRi depletion and exposure to a virtual inhibitor at four concentrations (1uM, 2uM, 4uM, and 630 

8uM), with three replicates each. The aim was to determine how noise within and between 631 

concentrations affects the performance of each method. Detailed information on the simulation is 632 

provided in the S1 File. 633 

Four datasets (LL, LH, HL, and HH) were simulated by varying two noise parameters: 𝜎C 634 

(variability of abundances between concentrations) and p (variability of replicates within a 635 

concentration, parameter of the negative binomial distribution). 50 genes were randomly selected for 636 

negative interactions (consistent depletion effects) and another set of 50 genes for positive interactions 637 

(positive biased trend). The negative interactions were simulated using the dose-response formula (Eqn. 638 

3) above, whereas the positive interactions and non-interacting sgRNAs were simulated using small 639 

random slopes to reflect concentration dependent effects. CRISPRi-DR and MAGeCK were run ten times 640 
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each on these 4 scenarios. MAGeCK was run independently for each drug concentration (2uM, 4uM, 641 

8uM, compared to a no-drug control), while CRISPRi-DR was performed on all four concentrations 642 

simultaneously.   643 

Both methods displayed high recall in the LL scenario (lowest noise) (CRISPRi-DR : 95.4%, 644 

MAGeCK : 84.6%) but their recall rates are slightly degraded in the HH scenario (highest noise) (CRISPRi-645 

DR : 59.7%, MAGeCK : 70.5%). The difference in sensitivity to noise is more apparent in the precision of 646 

the two methods. In the HH scenario, MAGeCK generates nearly four times as many false-positive 647 

predictions (463.3), leading to a very low precision of approximately 13.3%, whereas CRISPRi-DR’s 648 

precision is 36.5%, with 104.2 false positives. This indicates that MAGeCK is prone to classifying non-649 

interacting genes as hits when noise is high, likely due to stochastic count fluctuations at individual drug 650 

concentrations that may not be observed at other concentrations.  Comparatively, CRISPRi-DR relies 651 

more on consistent trends in abundance across concentrations, and thus makes less erroneous false 652 

positive predictions. Notably, the consistent trends in abundance detected by this regression-based 653 

model are not required to change perfectly linearly with increasing log2 drug concentration. Rather, as 654 

long as, there is a general trend (increasing or decreasing) across concentrations, then the gene’s slope 655 

coefficient (concentration dependence) can still be significant. For example, abundances for some 656 

sgRNAs may drop off sharply at either end of the concentration range. Several examples of sgRNAs with 657 

these patterns are shown in S1 File. 658 

To assess the impact of profiling a CRISPRi library at multiple concentrations on the performance 659 

of CRISPRi-DR and MAGeCK, we conducted the simulation above with high-noise settings (HH) and 660 

varying numbers of drug concentrations (1, 2, or 3) for 10 iterations each. The recall of both methods 661 

held fairly constant as concentrations were added.  However, increasing the number of concentration 662 

points caused a significant decrease in the precision of MAGeCK from 21.2% to 13.2%. While MAGeCK 663 

shows susceptibility to false positives when evaluating only a single concentration point, this effect was 664 
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amplified with more concentrations. This accumulation of errors explains the decrease in precision with 665 

additional concentration points.  In contrast, CRISPRi-DR is more robust with respect to false-positive 666 

errors. By incorporating data from all available concentrations and identifying significant trends, 667 

CRISPRi-DR maintained higher precision that did not diminish with the addition of more concentration 668 

points. 669 

 670 

Discussion 671 

CRISPRi can be used to conduct CGI experiments through several approaches.  One approach is 672 

to modulate expression of dCAS9 (with an active nuclease function) to control expression of the target 673 

gene at various levels.  This allows for the quantification of phenotype (e.g. growth rate in presence of 674 

inhibitor) as a function of expression level of a target gene.  Typically, sgRNAs are selected that are 675 

validated to strongly bind their target genes and provide strong depletion [3].  Another strategy to 676 

generate mutants with graded phenotypes is by using parent sgRNAs that are progressively weakened 677 

through mutations [27]. Mutants with knock-down of a particular gene that exhibit a statistically 678 

significant depletion-dependent shift in MIC are deemed interactions.  Alternatively, one can use a 679 

catalytically-dead dCAS9 (since binding to gene targets is sufficient to block transcription), and rely 680 

instead on a range of sgRNAs with varying strength (which can be barcoded separately and quantified 681 

independently) to evaluate depletion-dependent fitness effects [1].  In these CRISPRi libraries, stronger 682 

sgRNAs better inhibit expression of targets genes and cause greater protein depletion, which can better 683 

reveal interactions with drug treatment (through synergies). Inclusion of multiple sgRNAs with different 684 

strengths for each target gene can be used to test for expression-dependent sensitization to inhibitors. 685 

The availability of CRISPRi data for multiple sgRNAs of different strengths for each target gene 686 

presents new challenges for statistical analysis for CGI experiments.  In previous work [5], we showed 687 
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that regressing the relative abundances of mutants in hypomorph libraries over concentrations (on log-688 

scale) can be used to improve detection of CGIs. This regression approach captured dose-dependent 689 

behavior, i.e. genes whose decreased expression caused either suppressed or enhanced fitness that 690 

increases in magnitude with drug concentration (i.e. exhibits a trend, which is important for statistical 691 

robustness).  The CRISPRi-DR method described in this paper extends this previous work by showing 692 

how effects of both drug concentration and sgRNA strength can be accommodated in the same model.  693 

What we are looking for, ideally, is genes that exhibit synergistic behavior with a drug, where depletion 694 

of a target protein induces excess depletion (or enrichment) of the mutants grown in the presence of an 695 

inhibitor, and this effect is concentration-dependent (exhibits dose-response behavior). 696 

In theory, both CRISPRi depletion of essential genes and exposure to antibiotics should impair 697 

growth of CRISPRi mutants (at least for depletion of essential genes).  One might expect to observe a 698 

depletion effect due to either increasing sgRNA strength, or drug concentration, each producing 699 

regression "slopes" (in log-transformed space), with slopes for sgRNAs targeting non-essential genes 700 

being expected to be flat, regardless of sgRNA strength.  However, we observed that sgRNA strength 701 

and concentration effects are not independent - they interact in a non-linear way.  sgRNAs that are too 702 

weak do not produce enough depletion of a drug target to cause sensitization (MIC shift), and sgRNAs 703 

that are too strong deplete a mutant to such low abundances that concentration-dependent effects are 704 

difficult to quantify.  Often, there is a "sweet spot", or an intermediate sgRNA strength which maximizes 705 

the concentration-dependent effect (which could be different for each gene). Mathis et al. [27] 706 

suggested that dose-response behavior could be modeled with a classic Hill equation, where the 707 

number of mutations between the sgRNA sequence and target gene was used as a proxy for strength in 708 

a logistic function fitted to growth rate. However, this covariate was not explicitly combined with 709 

environmental variables (such as drug concentration) in their model. Our CRISPRi-DR model 710 

incorporates both sgRNA strength and drug concentration as parameters, and reproduces the non-linear 711 
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interaction between them, where the "slopes" for the effect of drug concentration on relative 712 

abundance of mutants can be larger in magnitude for sgRNAs of intermediate strength, while being 713 

flatter (slopes closer to 0) for sgRNAs of high or low strength. 714 

The strength with which different sgRNAs cause a growth phenotype depends on various factors 715 

affecting how well they bind to and suppress transcription of their genomic targets.  First, the strength 716 

depends on how well the guide RNA matches the optimal PAM sequence, in order to be recognized by 717 

and recruit the dCAS9 nuclease [6].  Second, it depends on the length (typically 17-24 bp) and GC 718 

content of the complementary region that hybridizes with the chromosome.  These sequence factors 719 

can be combined to make a predictive model of the effect on expression of target proteins, which has 720 

been shown to predict sgRNA strength with moderate accuracy (R2=0.74) (see Fig 2C in [1]).  For greater 721 

accuracy, sgRNA strength can also be empirically quantified by conducting a passaging experiment.  By 722 

inducing expression of the dCAS9 and measuring growth-rate over several generations, the strength of 723 

each sgRNA can be fit using a piecewise linear model and extrapolated to an implied depletion at a 724 

constant number of generations (e.g. estimated log2-fold-change of abundance in +ATC vs -ATC at 25 725 

generations) [1]. However, for some labs that might prefer to use predicted strengths instead of running 726 

passaging experiments, we showed that using predicted strengths from sequence features with CRISPRi-727 

DR in place of empirical strength produces results that are nearly as good. 728 

In this paper, we showed that this non-linear interaction between sgRNA strength and drug 729 

concentration can be modeled using an augmented Dose-Response equation, in which terms for both 730 

effects are included.  By fitting the parameters in this equation to CRISPRi data from a CGI experiment 731 

(normalized barcode counts), one can estimate the degree to which depletion of a given gene sensitizes 732 

cells to an inhibitor, and thereby identify CGIs.  While various computational methods exist for fitting 733 

non-linear equations, such as the Levenberg–Marquardt algorithm [28], we chose to linearize the 734 

modified Hill equation by applying a log-sigmoid transform. The transformation enables us to express 735 
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the equation in a linear form, where the parameters (EC50, Hill slopes, etc.) appear as coefficients of 736 

linear terms or constants. Consequently, we can use ordinary least-squares regression (OLS) to fit the 737 

model to the CRISPRi dataset.  738 

 An alternative approach for analyzing CRISPRi data is MAGeCK, which is a based on the DeSeq2 739 

method for analyzing RNA-seq data [29].  It calculates LFCs for each sgRNA at each individual drug 740 

concentration and combines them using RRA (robust rank aggregation) to identify significant CGIs.  741 

When MAGeCK was developed, exploiting the spectrum of sgRNA strengths was not anticipated, so the 742 

sgRNAs in a gene are not treated differentially, and the RRA relies on the expectation that at least a 743 

subset of sgRNAs will be strong enough to elicit suppression of the target gene and produce a consistent 744 

effect on fitness (enrichment or depletion of mutant abundance), which will be detected as a signal 745 

through rank aggregation, i.e. several sgRNAs for a gene having exceptionally high or low LFCs. 746 

In principle, one could imagine incorporating the number of days of pre-depletion into the 747 

regression approach of CRISPRi-DR. It is often observed that a longer pre-depletion period increases the 748 

sensitivity of the experiment and synergy with drug.  However, we elected to treat the days of pre-749 

depletion independently, to facilitate the comparison with the analysis in Li, et al [2].  In retrospect, a 750 

single day of pre-depletion (D1) has proven adequate for detecting known interactions in most CGI 751 

experiments conducted thus far. MAGeCK-MLE is an extension of MAGeCK that can incorporate 752 

additional covariates such as days of pre-depletion into the generalized linear model [30]. However, the 753 

maximum likelihood parameter estimation process used by MAGeCK-MLE can be time-consuming. 754 

CRISPRi-DR provides several advantages over MAGeCK.  First, it explicitly incorporates sgRNA strengths 755 

as a covariate in the model, taking advantage of this useful information.  Second, CRISPRi-DR integrates 756 

data over multiple concentrations via regression.  This provides enhanced statistical robustness.  In 757 

contrast, MAGeCK analyzes each drug concentration independently, comparing them to a no-drug 758 

control to compute LFCs.  But with any single concentration point, there is a risk of detecting false 759 
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positives (due to noise), which could cause spurious fluctuations in barcode counts, making LFCs possibly 760 

appear significant.  The susceptibility to noise was evident in the experimental data as predictions made 761 

by CRISPRi-DR differed from MAGeCK more on datasets with higher coefficients of variation (S2 Fig).  762 

Ideally, it is better to collect data over multiple concentrations for CGI experiments, because it is difficult 763 

to know ahead of time what concentration will be optimal to test for each drug.  While choosing the MIC 764 

for single-point assays might sound reasonable, the actual potency in the CRISPRi experiment could shift 765 

due to expression of the dCAS9, inoculation effects, etc.  Hence, CGI data is usually collected over a 766 

range of concentrations, with the hope that one or more of them will be near the inhibition-transition 767 

point.  Furthermore, it is not always the case that the highest concentration should be the most 768 

informative one for detecting CGIs, as it might cause too much growth inhibition, making it difficult to 769 

assess dose-dependent behavior. 770 

A simplistic way to use MAGeCK with CGI data collected over multiple drug concentrations is to 771 

evaluate each concentration independently, and then combine selected hits (significant genes) using a 772 

policy such as taking the union [2].  However, our simulation results showed that this strategy is 773 

susceptible to accumulating false positive hits (i.e. non-interacting genes that achieve statistical 774 

significance), resulting in low precision.  In fact, in previous experiments with a CRISPRi library in Mtb, 775 

MAGeCK often identified hundreds of genes (and in some cases, up to one-quarter of the genome) as 776 

potential interactions for certain antibiotics.  While it is true that a variety of genes could interact with a 777 

drug directly or indirectly (not just the drug target), revealing multiple complex drug-tolerance and 778 

stress-response pathways, it is implausible that there will be hundreds of genuine interactions for most 779 

inhibitors.  The CRISPRi-DR approach addresses this issue by requiring that apparent interactions 780 

(depletion or enrichment) at one concentration be consistent with trends in abundance at other 781 

concentrations.  The abundance does not have to change in a perfectly linear way over the 782 

concentration range (which is helpful, because sometimes the largest effect occurs at the edge of the 783 
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range, like dropping off a cliff, due to uncertainty about the optimal concentration), but large 784 

fluctuations in abundance in the middle of the range, or in opposite directions at different 785 

concentrations, will generally get filtered out as insignificant by CRISPRi-DR.  Thus, incorporating data 786 

from sgRNAs of different strength over multiple concentrations via the modified Dose-Response model 787 

make CRISPRi-DR more noise-tolerant and robust for detecting chemical-genetic interactions. 788 
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Supporting Information 895 

 896 

S1 Fig. Evaluation sgRNA strength and log concentration as predictors of CRISPRi-DR model through 897 

comparison of distribution of r2 values of full (CRISPRi-DR) and ablated (Ms and Md) models for each 898 

gene in each experiment.  899 

The horizontal line is where r2   = 0.5. The average r2 Ms model for all genes across all the experiments is 900 

0.42, the average r2 for the Md model is 0.07. This alongside the Log-likelihood tests indicate sgRNA 901 

strength is the more significant predictor. However, the full CRISPRi-DR model outperforms both Md and 902 

Ms (average r2 is 0.50) indicating the inclusion of both sgRNA strength and log concentration is needed 903 

for accurate assessment of significant sgRNA depletion in a gene in a condition.  904 

 905 
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 906 

S2 Fig. Distribution of average CV of sgRNAs in significant genes (depleted and enriched) in the 907 

CRISPRi-DR model and MAGeCK.  908 

In this Fig, we see all the noise distributions for hits in MAGeCK and the CRISPRi-DR model for all 909 

experiments. The dashed panel is that of RIF D10. The same distribution of noise of hits can be seen in 910 

Fig 7. The trend seen with RIF D10 is present with all the experiments except LEVO D10. We see that the 911 

CRISPRi-DR model is unimodal with a low CV as the mode, whereas MAGeCK shows significant genes 912 

with low average CV values but also a significant amount of genes with high average CV values. LEVO 913 

D10 was left out of this plot due to the low number of hits in either model.   914 

 915 

S1 Table. Ranking of Select Genes using the CRISPRi-DR model in 1 Day, 5 day and 10 Day pre-916 

depletion of treated libraries.  917 

An extended version of Table 1, where the CRISPRi-DR model is run on each gene for each drug and pre-918 

depletion day. The coefficient for the slope of concentration dependence (𝛽5) is extracted from the 919 

fitted regressions and used to rank the genes in both increasing order (for depletion) and inversely (for 920 

enrichment).  Green reflects results consistent with expectations based on knowledge of known gene-921 

drug interactions. 922 

 923 
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S2 Table. Comparison of significant interactions Identified by CRISPRi-DR and MAGeCK for each drug 924 

and pre-depletion day.  925 

For each drug and pre-depletion day, both CRISPRi-DR and MAGeCK are run on data. MAGeCK is run 926 

separately for each concentration and the overall significant interactions are determined as the union of 927 

the individual runs. CRISPRi-DR is run is run once using data from all three concentrations (and sgRNA 928 

strengths) together. The comparison of the significant interactions identified by the models is evaluated 929 

using true positives, true negatives, false positives and false negatives. The results from MAGeCK are 930 

used as the “ground truth” against which the other model's results are compared. Cells with red font in 931 

the “tp” column represent low overlaps between the interactions found by the two models, and cell 932 

with red font in the “Number of …” columns highlight low number of interactions found in the relative 933 

model. 934 

 935 

S3 Table. Matrices for comparison of significant interactions Identified by CRISPRi-DR and MAGeCK for 936 

each drug and pre-depletion day.  937 

The table presents the results of CRISPRi-DR and MAGeCK analyses for different drugs and pre-depletion 938 

days. Significant interactions are compared in matrix form. Cells with red font indicate low overlaps 939 

between the interactions found by the two models, while cells with green font represent high overlaps. 940 

 941 

S1 File. Evaluating performance differences between CRISPRi-DR and MAGeCK using a simulated 942 

sgRNA barcodes.  943 

To better understand the differences in performance between CRISPRi-DR and MAGeCK, and to evaluate 944 

the sensitivity of these methods to different sources of noise, we developed a simulation model to 945 

generate artificial datasets of sgRNA barcode counts.  In this experiment, we used the same set of 946 

~99,000 sgRNAs and empirical measurements of sgRNA strengths for genes in the Mtb genome as in the 947 
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CRISPRi library in the paper by (Li, Poulton et al. 2022), and simulated exposure to a virtual inhibitor over 948 

4 concentrations (1µM, 2µM, 4µM, and 8µM), 3 replicates each.  Our objective was to quantify how 949 

much noise in the counts, both within concentrations and between concentrations, affects the precision 950 

and recall of each method. 951 
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