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Abstract 24 

An important applicaMon of CRISPR interference (CRISPRi) technology is for idenMfying 25 

chemical-geneMc interacMons (CGIs).  Discovery of genes that interact with exposure to 26 

anMbioMcs can yield insights to drug targets and mechanisms of acMon or resistance.  The 27 

objecMve is to idenMfy CRISPRi mutants whose relaMve abundance is suppressed (or enriched) in 28 

the presence of a drug when the target protein is depleted, reflecMng synergisMc behavior.  29 

Different sgRNAs for a given target can induce a wide range of protein depleMon and differenMal 30 

effects on growth rate.  The effect of sgRNA strength can be parMally predicted based on 31 

sequence features.  However, the actual growth phenotype depends on the sensiMvity of cells to 32 

depleMon of the target protein.  For essenMal genes, sgRNA efficiency can be empirically 33 

measured by quanMfying effects on growth rate.  We observe that the most efficient sgRNAs are 34 

not always opMmal for detecMng synergies with drugs.  sgRNA efficiency interacts in a non-linear 35 

way with drug sensiMvity, producing an effect where the concentraMon-dependence is 36 

maximized for sgRNAs of intermediate strength (and less so for sgRNAs that induce too much or 37 

too lijle target depleMon). To capture this interacMon, we propose a novel staMsMcal method 38 

called CRISPRi-DR (for Dose-Response model) that incorporates both sgRNA efficiencies and 39 

drug concentraMons in a modified dose-response equaMon.  We use CRISPRi-DR to re-analyze 40 

data from a recent CGI experiment in Mycobacterium tuberculosis to idenMfy genes that interact 41 

with anMbioMcs. This approach can be generalized to non-CGI datasets, which we show via an 42 

CRISPRi dataset for E. coli growth on different carbon sources.  The performance is compeMMve 43 

with the best of several related analyMcal methods. However, for noisier datasets, some of these 44 

methods generate far more significant interacMons, likely including many false posiMves, 45 
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whereas CRISPRi-DR maintains higher precision, which we observed in both empirical and 46 

simulated data. 47 

 48 

Author Summary 49 

 CRISPRi technology is revoluMonizing research in various areas of the life sciences, 50 

including microbiology, affording the ability to parMally deplete the expression of target proteins 51 

in a specific and controlled way.  Among the applicaMons of CRISPRi, it can be used to construct 52 

large (even genome-wide) libraries of knock-down mutants for profiling anMbacterial inhibitors 53 

and idenMfying chemical-geneMc interacMons (CGIs), which can yield insights on drug targets and 54 

mechanisms of acMon and resistance.  The data generated by these experiments (i.e., sgRNA 55 

counts from high throughput sequencing) is voluminous and subject to various sources of noise. 56 

The goal of staMsMcal analysis of such data is to idenMfy significant CGIs, which are genes whose 57 

depleMon sensiMzes cells to an inhibitor. In this paper, we show how to incorporate both sgRNA 58 

efficiency and drug concentraMon simultaneously in a model (CRISPRi-DR) based on an 59 

extension of the classic dose-response (Hill) equaMon in enzymology. This model has advantages 60 

over other analyMcal methods for CRISPRi, which we show using empirical and simulated data.  61 

 62 

  63 
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Introduc2on 64 

CRISPR technology is becoming an increasingly important tool for genome-wide 65 

idenMficaMon of gene funcMons in various environmental condiMons [1-3]. For example, several 66 

different approaches have been devised to exploit CRISPR to induce depleMon of target 67 

proteins.  In the earlier CRISPRko approaches, a nuclease-acMve form of CAS9 was used to 68 

deacMvate target genes by cumng the DNA at a target locus and induce DNA repair, which could 69 

introduce indels causing frameshins or inserMng novel elements, abrogaMng their funcMon 70 

completely [1-3]. Another approach, CRISPRa, uMlizes dCAS9 fusions with effectors that acMvely 71 

enhance or suppress transcripMon through direct interacMon with the RNA polymerase (such as 72 

transcripMon factors that can acMvate transcripMon) [4].   73 

In CRISPR interference (CRISPRi), a catalyMcally-dead CAS9 protein (dCAS9) is recruited to 74 

a chromosomal locus by a single guide RNA (sgRNA) with a short (~20 bp) complimentary 75 

sequence and physically blocks transcripMon [5].  dCAS9 nucleases from several different 76 

organisms are available for CRISPRi (e.g. S. pyogenes, S. thermophilus, [6]) and different 77 

promoters and chemicals have been used for dCAS9 inducMon. The degree of CRISPR 78 

interference can be tuned by modulaMng the level of dCAS9 expression [7], varying the sgRNA 79 

sequence with respect to its length, GC-content, targeMng sequence complementarity, posiMon 80 

in the gene, or similarity of targeted PAM (protospacer adjacent moMf)  sequence, to consensus 81 

for opMmal dCAS9 recogniMon,  [5, 6, 8-11]. While in mammalian systems, efficiency of sgRNAs 82 

can vary among mulMple cell types, [9], for simplicity, our focus is on studying single defined 83 

lineages, as in bacterial strains. Tuning CRISPRi allows to deplete the targeted gene product to 84 

intermediate levels [5], which allowed the introducMon of the concept of gene ‘vulnerability’ as 85 
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describing the sensiMvity of cells to parMal depleMon of individual proteins [12].  By this 86 

definiMon, highly vulnerable genes are genes for which even small depleMon of the encoded 87 

protein causes growth impairment, which can be quanMfied efficiently on a genome-wide scale 88 

using high-throughput sequencing [12].  The vulnerability of a gene can be both condiMon 89 

dependent and strain or cell type dependent [12].   90 

One interesMng applicaMon of CRISPRi is to reveal targets of anMbioMcs or mechanisms of 91 

resistance through chemical-geneMc interacMons (CGI) [7, 13]. CRISPRi libraries can be designed 92 

to contain mulMple sgRNAs targeMng each gene, resulMng in a set of thousands of individual 93 

depleMon mutants [12]. In this context, ‘mutant’ refers to a cell line transformed with a 94 

integraMve plasmid capable of expressing the dCAS9 protein and the unique targeMng sgRNA, 95 

even though it contains the wild-type gene sequence.  The abundance of each mutant can be 96 

quanMfied by amplifying the sgRNA targeMng sequence which funcMons as a molecular barcode, 97 

and then performing deep sequencing to count the number of barcodes for each sgRNA in a 98 

treatment [6]. The analysis of such datasets is challenging, due to various sources of noise 99 

which introduce variability in the counts. 100 

There are several previously published methods for staMsMcal analysis of CRISPR 101 

datasets.  One, called MAGeCK [14] (originally intended for CRISPRko screens), calculates a log-102 

fold-change (of mean counts) for each sgRNA between a treatment condiMon and a reference 103 

condiMon (control), and uses a Gaussian distribuMon to esMmate the significance of differences 104 

in mean sgRNA abundance between treatments and controls (based on the implementaMon in 105 

the source code, which differs from the descripMon in the publicaMon).  To evaluate effects at 106 

the gene level, individual sgRNAs are combined in MAGeCK using Robust Rank AggregaMon 107 
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(RRA) to prioriMze genes whose sgRNAs show greater enrichment or depleMon on average than 108 

other genes in the genome. MAGeCK has been used for evaluaMng chemical-geneMc interacMons 109 

(CGI) with anMbioMcs [14].  A variant called MAGeCK-MLE [15] fits a Bayesian model by 110 

Maximum Likelihood that captures changes in mean counts with increasing Mme or 111 

concentraMon, along with effecMveness of each sgRNA through posterior probabiliMes of a 112 

binary variable, to determine the overall probability that a gene interacts. Other approaches 113 

such as CRISPhieRmix [16] use mixture models to separate effecMve from ineffecMve sgRNAs, 114 

and thereby idenMfy interacMng genes as those containing a significant subset of effecMve 115 

sgRNAs.  DrugZ [17] idenMfies significant interacMons by averaging together Z-scores (assuming a 116 

Normal distribuMon) of log-fold-changes of sgRNAs  at the gene level.  DEBRA [18] uMlizes 117 

DeSeq, a method for transcriptomic analysis, which employs the NegaMve Binomial distribuMon 118 

for counts and a more sophisMcated method for modeling variance and using it to discriminate 119 

genes displaying significant changes in mean counts. 120 

However, most of these methods have one of two limitaMons when applied to idenMfy 121 

genes affecMng drug potency. First, CGI experiments are ideally carried out with mulMple drug 122 

concentraMons around the MIC (minimum-inhibitory concentraMon), since it is onen difficult to 123 

anMcipate what concentraMon will sMmulate the right amount of growth inhibiMon in 124 

combinaMon with CRISPRi-induced depleMon of target proteins. However, many of the exisMng 125 

methods analyze the data for each drug concentraMon independently (i.e. comparing each 126 

concentraMon to a no-drug control).  Since knock-down mutants might exhibit depleMon at one 127 

concentraMon but not others, results from mulMple concentraMons must be combined post-hoc.  128 

As an example, the authors in [13] chose to combine results from analyzing different 129 
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concentraMons of a given drug using MAGeCK-RRA by taking the union of significant interacMng 130 

genes at each individual concentraMon.  Due to the noise in these CRISPRi experiments, 131 

analyzing concentraMons independently increases the risk of detecMng false posiMves (in the 132 

sense that non-interacMng genes might be spuriously called as hits at different concentraMons).  133 

Second, many of the analyMcal methods do not explicitly take into account differences in 134 

sgRNA  efficiency (i.e. take sgRNA efficiencies as an input in the model). Different sgRNAs can 135 

induce different degrees of depleMon of their target genes, and this in turn causes different 136 

effects on growth rate, depending on sensiMvity of the cells to protein depleMon [10].  This can 137 

be quanMfied beforehand by evaluaMng the growth rate of individual CRISPRi mutants (with 138 

unique sgRNAs) in a growth experiment and determining the actual fitness defect caused by 139 

target knockdown [11, 12]. In highly vulnerable genes, the effect of protein depleMon by sgRNAs 140 

on cell growth rate (efficiency) can span a range from no effect to severe growth defect. Early 141 

applicaMons of CRISPR were primarily being used to fully inacMvate genes (e.g. CRISPRko), rather 142 

than to produce graded depleMon effects. Therefore, at the Mme some of these methods were 143 

developed, this informaMon was onen not used, as methods to quanMfy sgRNA efficiencies were 144 

not well developed.   Even in MAGeCK, the Robust Rank AggregaMon method treats all sgRNAs 145 

in a gene as “equal” a priori, without differenMaMng them based on the expected effects due to 146 

sgRNA  efficiency. (Efficiency is not an input.)  In contrast, it has been recognized that different 147 

sgRNAs can have different efficiency, and several papers have invesMgated the factors that are 148 

associated with stronger sgRNAs [19], especially sequence-based ajributes such as similarity to 149 

opMmal PAM sequence, length and GC content of targeMng sequence, mismatches, etc. [5, 8, 150 

10].  Mathis, Ojo and Reynolds (11) exploit this to syntheMcally create a diverse set of sgRNAs 151 
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with a range of efficiencies by mutaMng the guide RNA sequences, which they quanMfy by 152 

empirically fimng growth curves for each modified sgRNA with a logisMc equaMon. InteracMng 153 

genes are then found using differences in the fijed parameters that includes the quanMfied 154 

growth rates and the Hill coefficient.  Among all the exisMng CRISPR analyMcal methods, 155 

MAGeCK-MLE [15] is the only other method that explicitly includes sgRNA efficiencies as an 156 

input, which are used to set the prior probabiliMes that each sgRNA is effecMve or not (because 157 

of their focus on CRISPRko) in the joint probability formula, to iniMalize for the ExpectaMon 158 

MaximizaMon iteraMons.   159 

In the applicaMon to CGI data, a regression model can be used to integrate data over 160 

mulMple drug concentraMons [20].  The degree of a gene-drug interacMon is reflected by the 161 

coefficient (or slope) for the dependence of CRISPRi mutant abundance on drug concentraMon. 162 

This regression approach was previously introduced in CGA-LMM for analysis of hypomorph 163 

libraries (where there is typically just one mutant represenMng each gene) [20]. It was based on 164 

the theory that depleMon of the target of a drug should ideally synergize with increasing 165 

concentraMons of the drug.  While exposure to an inhibitory compound will challenge the 166 

growth of all the mutants in a hypomorph library, mutants with depleMon of a gene that 167 

interacts with a drug (e.g. prototypically, an essenMal gene that is the drug target) will exhibit 168 

excess depleMon relaMve to others in the library due to the combined effect of both the growth-169 

inhibiMon due to the drug treatment in conjuncMon with the growth-impairment due to knock-170 

down of an vulnerable gene, making these hypomorphic mutants even more sensiMve to the 171 

drug.   For genes that genuinely interact with a given drug, this depleMon effect should be 172 

exacerbated at higher drug concentraMons (i.e. be dose-dependent); thus, genes of greatest 173 
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relevance would be those that exhibit concentraMon-dependent effects.  While the (log of) 174 

abundance of a depleMon mutant does not have to decrease perfectly linearly with the (log of) 175 

drug concentraMon to obtain a significant negaMve coefficient (slope) in the regression, there 176 

should be a general trend supporMng that relaMve abundance decreases as concentraMon 177 

increases.  178 

One of the challenges in extending this prior regression approach (CGA-LMM) to CRISPRi 179 

screens was incorporaMng informaMon on sgRNA  efficiency.  Even in essenMal genes, some 180 

sgRNAs may produce strong depleMon of the target, while others might be almost completely 181 

ineffecMve.  While sgRNA strength can be parMally predicted (with intermediate accuracy) from 182 

sequence alone [9, 12], the actual growth phenotype depends on vulnerability of the target 183 

gene (sensiMvity of cells to depleMon of the protein product), which is what is meant by sgRNA 184 

efficiency.  Even sgRNAs that are predicted to be strong might not cause a growth defect if they 185 

are in a non-essenMal gene.  sgRNA efficiency must be empirically quanMfied by measuring  186 

growth rates in standard growth media (e.g. by fimng exponenMal growth curves based on 187 

opMcal density, or using a reporter gene) with versus without inducMon of dCAS9, and then 188 

calculaMng relaMve fitness defects [11].  An alternaMve approach is to fit the abundance of 189 

depleMon mutants to a piecewise linear model that allows for a preliminary lag phase, and then 190 

extrapolaMng the model to predicted log-fold-change (LFC) at a fixed number of generaMons 191 

[12].  Any such measure of sgRNA efficiency can be incorporated as a term in the CRISPRi-DR 192 

model we present below.  Although one could contemplate adding the efficiency of each sgRNA 193 

into a simple regression model to predict abundances for each gene, a significant problem 194 
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(expanded upon below) is that sgRNAs of different efficiency can show different concentraMon 195 

dependence, resulMng in non-linear interacMons among variables.   196 

In this paper, we propose a modified regression approach for CRISRPi data (called 197 

CRISPRi-DR) that incorporates both drug concentraMon and sgRNA  efficiency. The approach is 198 

based on the classic dose-response (DR) model for inhibiMon acMvity of drugs; the acMvity of a 199 

target protein typically transiMons from high to low in the shape of an S-curve as concentraMon 200 

increases (on a log scale), which can be modeled with a Hill equaMon. The parameters of the Hill 201 

equaMon for a given drug can be fit by performing a log-sigmoid transformaMon of the mutant 202 

abundance data and then using ordinary least-squares regression. We show how sgRNA 203 

efficiency can be incorporated into this model as a mulMplicaMve term in the Hill equaMon, 204 

which becomes an addiMve effect in the log-sigmoid transformed data. The benefit of this 205 

model is that it decouples the concentraMon-dependence from the sgRNA  efficiency, so they 206 

can be fit as independent (non-interacMng) terms in the regression, which ulMmately amplifies 207 

effects that may be apparent only for a subset of sgRNAs in an opMmal efficiency range.  208 

CRISPRi-DR is applicable to libraries where there are mulMple sgRNAs represenMng each 209 

gene with a range of efficiencies, which can be quanMfied empirically as an effect on growth rate 210 

(fitness defect). The diversity of efficiencies is useful for idenMfying synergisMc effects with 211 

treatments/condiMons.  Thus, the main requirements for CRISPRi-DR are that: a) there are 212 

mulMple sgRNAs for each target in the library, b) the sgRNAs vary in predicted strength, and c) 213 

the actual efficiencies of the sgRNAs (i.e. growth defects due to target depleMon) have been 214 

experimentally quanMfied in control condiMons, as an input to the analysis method.  The 215 

primary use case we focus on is idenMficaMon of chemical-geneMc interacMons, with drug 216 
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concentraMon as a covariate. We demonstrate the value of the CRISPRi-DR analysis method by 217 

re-analyzing the data from a recent paper using CRISPRi for chemical-geneMc interacMons to 218 

idenMfy targets of anMbioMcs in M. tuberculosis.  However, the approach can be generalized to 219 

analyze experiments with other covariates, such as Mme-points of a treatment, where there is a 220 

sigmoidal response in growth.  We illustrate this by using CRISPRi-DR to analyze an E. coli 221 

CRISPRi dataset from an experiment to determine genes differenMally required for growth on 222 

different carbon sources [11]. 223 

 224 

 225 

Methods 226 

The CRISPRi-DR method applies to CRISPRi experiments that involve using high-227 

throughput sequencing to tabulate sgRNA counts represenMng abundance of individual CRISPRi 228 

mutants in a populaMon (pooled culture).  Each mutant has an sgRNA (on a plasmid) mapping to 229 

a target gene that can reduce its expression (e.g. with dCAS9 inducMon).  In CGI applicaMons, the 230 

culture is treated with anMbioMcs or inhibitors at various concentraMons, along with a no-drug 231 

control, and DNA is extracted, PCR-amplified, and sequenced, producing counts represenMng 232 

each sgRNA.  If 𝑌!"# is the abundance (i.e. count) for an sgRNA 𝑖 in a condiMon 𝑗 for replicate 𝑘, 233 

normalized abundance can be calculated by 𝑌!"#$ = %!"#
∑ %$"#%
$&'

, where each count is divided by the 234 

sum of counts of all the sgRNAs observed in a given condiMon and replicate. Let 𝑈′!  be the 235 

normalized abundance of sgRNA 𝑖 in the uninduced condiMon, then the normalized relaMve 236 
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abundances of an sgRNA 𝑖 in all induced samples can be calculated as: 𝐴!"# =
%!"#
(

'$!
 , assuming 237 

that the counts in the uninduced condiMon represents full abundance of each clone (normal 238 

growth without target depleMon).  239 

 240 

CRISPRi Dose-Response Model 241 

The CRISPRi-DR model for analyzing CRISPRi data from CGI experiments is an extension 242 

of the basic dose-response model, extended to incorporate sgRNA efficiencies.  The dose-243 

response effect of an inhibitor on the acMvity of an enzyme is tradiMonally modeled with the 244 

Hill-Langmuir equaMon. 245 

𝜃 =
1

1 + ,𝐾([𝐿]1
) 																																																																															(1) 246 

where 𝜃 is the fracMon of abundance (relaMve to no drug), [L] is the ligand concentraMon, KA is 247 

the concentraMon at which there is 50% acMvity and 𝑛 is the Hill coefficient. 248 

 Applying Eq (1) to the CGI data, the relaMve abundance of sgRNAs 𝐴!"# 	is used as the 249 

predictor variable and [Dj] is the concentraMon of drug j that the kth replicate count of sgRNA i 250 

was extracted from,  251 

𝐴!"# =
1

1 + 6
𝐼𝐶*+(𝐷")
:𝐷";

<
,)
																																																																(2) 252 

The unknown parameters are the IC50 value (inhibitory concentraMon that causes 50% growth 253 

inhibiMon) and the Hill coefficient 𝐻-. The plot of the concentraMon versus relaMve abundance 254 
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of an sgRNA (𝐴!"#) produces a sigmoidal curve, demonstraMng how acMvity decreases as 255 

concentraMon increases, with the IC50, represenMng the mid-point of the transiMon. 256 

The dose-response model seen in Eq 2 can be extended to account for sgRNA efficiency 257 

by incorporaMng a mulMplicaMve factor in the denominator: 258 

𝐴!"# =	
1

1 + 6
𝐼𝐶*+?𝐷"@
[𝐷"]

<
,)

A𝐾.𝑆!
C
,*
																																																									(3) 259 

sgRNA  efficiency, Si, is an empirical measure of the degree of growth impairment resulMng from 260 

target depleMon.  This can be assessed in several ways, such as esMmaMng change in exponenMal 261 

growth rate in a reference condiMon in a growth experiment [21].  AlternaMvely, Bosch et al [12] 262 

use esMmated log-fold change of abundance (induced vs uninduced) at a fixed number of 263 

generaMons of growth in-vitro in the absence of drug, extrapolated from a model fit to empirical 264 

data (passaging experiment) that allows for a lag phase. 𝐾. represents the unknown 265 

intermediate sgRNA efficiency that causes 50% depleMon of mutant abundance (half-way 266 

between no depleMon and full depleMon), and the 𝐻. is the unknown Hill coefficient that 267 

represents how sensiMve mutant abundance is to depleMon of the target protein.  268 

 269 

Rela3onship between drug concentra3on and gene deple3on within 270 

the CRISPRi-DR model 271 

 Abundance of mutants in a CRISPRi CGI experiment can be affected simultaneously by 272 

both presence of an inhibitor and depleMon of an interacMng gene. However, the concentraMon-273 

dependent effect of a drug on mutant abundance can be different for sgRNAs of different  274 
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efficiency.  Fig 1 illustrates the interacMon between these two effects for rpoB (RNA polymerase 275 

beta chain) in an Mtb CRISPRi library treated with rifampicin with 5 days pre-depleMon.  The 276 

lines in Fig 1A are regression fits obtained for each sgRNA in rpoB using regression of log 277 

abundances against log concentraMon of rifampicin, log?𝐴!"#@ = 𝐶 + 𝐵 ∙ log([𝐷"]) , where C is 278 

in the intercept and B is the slope of the regression, represenMng concentraMon dependence, 279 

and log?𝐴!"#@ are log relaMve abundances obtained as described above. The len-most side of 280 

Fig 1A shows the range of abundances in the no-drug control (induced library in media without 281 

rifampicin).  These differences in abundances (dispersion along Y-axis) are due solely to the 282 

growth impairment caused by depleMng RpoB. As concentraMon of RIF increases, some of the 283 

sgRNAs show very negaMve slopes, while other sgRNAs show slopes closer to 0.  A parabolic-284 

type curve emerges in Fig 1B when the slopes 𝐵 from the regressions are plojed against the 285 

sgRNA efficiencies. Both the most efficient sgRNAs (colored red) and the least efficient sgRNAs 286 

(purple) have slopes around 0 (no concentraMon dependence). Highly efficient sgRNAs (red) can 287 

cause excessive depleMon (even without drug), making it difficult to detect addiMonal decreases 288 

due to increasing drug concentraMon. ComparaMvely, sgRNAs with very low efficiency (purple) 289 

might not induce enough depleMon to synergize with the drug. The sgRNAs surrounding the 290 

minimum point of the parabolic curve (dashed line) in Fig 1B reflect those of intermediate 291 

efficiency where the ability to detect synergy with the drug is maximized. These are the sgRNAs 292 

in Fig 1B that show the most negaMve slope with increasing concentraMon (dark green-indigo). 293 

As Fig 1C shows, the efficiency where the slopes reach their extremes (most negaMve; or most 294 

posiMve for those showing enrichment)  can be different for each gene but tend to fall in an 295 

intermediate region of sgRNA efficiency (0 to -5).  The histogram shows that sgRNA efficiency at 296 
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which the most extreme (largest or smallest) concentraMon-dependent slope is achieved over 297 

all interacMng genes (236 for RIF D5).  Hence, the sgRNAs that are opMmal for detecMng CGIs are 298 

not necessarily the strongest (most efficient).  The variability of concentraMon-dependence 299 

(slope) with sgRNA efficiency suggests a possible non-linear interacMon between the variables. 300 

This nonlinearity is captured in the mulMplicaMve terms of the dose-response model (Eq (3)).  301 

 302 

Fig 1. Effect of sgRNA efficiency on concentra7on dependence for sgRNAs in rpoB in a 303 

CRISPRi library treated with RIF (D5).  304 

(A) Regression lines for log(relaMve abundance) against log(concentraMon) for all sgRNAs 305 

in rpoB in a library treated with RIF for 5 days pre-depleMon. The lines that reflect the 306 

extremes of the sgRNA efficiency (red or purple), are flat and do not show much change 307 

in abundance. ComparaMvely, intermediate sgRNA efficiency (dark green to indigo) 308 

shows the most negaMve slopes, reflecMng maximum synergy with drug. (B) Comparison 309 

of sgRNA efficiency and slopes of the regressions seen in Panel A for each sgRNA. Each 310 

point is an sgRNA colored by its efficiency. The most efficient sgRNAs (purple) and the 311 

least efficient sgRNAs (red) show concentraMon slopes around 0. The dojed line reflects 312 

the minimum of the parabolic curve. (C) Histogram of sgRNA efficiencies where the 313 

slopes reach their most extreme (posiMve or negaMve) for 236 interacMng genes in RIF 314 
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D5.  The distribuMon shows that most of the extrema sgRNAs for interacMng genes fall in 315 

the range of -5 to 0 (note: not the strongest sgRNAs, which would have efficiencies 316 

around -25). 317 

 318 

Lineariza2on and parameter es2ma2on 319 

The dose-response model Eq (3) can be linearized through a log-sigmoid transformaMon.  320 

Log6
𝐴!"#

1 − 𝐴!"#
< = 	𝐻- ∙ log?:𝐷";@ +	𝐻. ∙ 𝑆! + 𝐶 321 

𝐶 = 𝐻. ∙ log(𝐾.) − 𝐻- ∙ log A𝐼𝐶*+?𝐷"@C																																													(4)  322 

In this log-sigmoid transformed space, the concentraMon-dependence and effect of sgRNA 323 

efficiency have been decoupled, appearing as independent linear terms with the Hill coefficients 324 

(𝐻. and 𝐻-) as the variables to solve for by a standard regression. The inflecMon parameters of 325 

the sigmoid curve (𝐾. and IC50) are combined in the intercept C in the model. Importantly, this 326 

model implies that the effects of growth impairment due to the depleMon of a vulnerable gene 327 

and growth inhibiMon due to the drug on the overall (relaMve) abundance of a given mutant 328 

become addiMve in this log-sigmoid-transformed space. To illustrate this, the CRISPRi-DR 329 

equaMon is simulated by plomng idealized relaMve abundances (in Fig 2) using parameters 330 

chosen to emulate what is seen in Fig 1A, the plot of slopes over a systemaMc range of sgRNA 331 

efficiencies and drug concentraMons for rpoB.  In Fig 2A, the slopes of the concentraMons are 332 

plojed against abundances calculated using the dose-response model. The slopes vary as a 333 

funcMon of the starMng depleMon (len-hand side), which is due to sgRNA efficiency alone 334 

(colored gradient based on sgRNA efficiency value). The slopes are most negaMve for 335 
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intermediate sgRNA  efficiency, colored with a dark blue-green hue represenMng sgRNA  336 

efficiency around -10. Fig 2B illustrates the result of the linearizaMon (log-sigmoid 337 

transformaMon) of the Hill equaMon. All the individual sgRNA regression lines over concentraMon 338 

become parallel, eliminaMng the dependence on sgRNA  efficiency, and allowing them to be fit 339 

by a single common slope represenMng the concentraMon-dependence averaged over all the 340 

sgRNAs. 341 

 342 

Fig 2. The log-sigmoid transforma7on of abundances allows the CRISPRi-DR model to 343 

factor in the non-linear effect of sgRNA strength on concentra7on dependence. (A) 344 

SimulaMon of sgRNAs abundances for an ideal essenMal gene. Parameters used in 345 

simulaMon: Hs = -4, IC50 = 0.25, Ks = -10 and Hd = -0.5 over a range of sgRNA efficiencies 346 

and drug concentraMons. (B) When the log-sigmoid transformaMon of the abundances is 347 
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applied, we see all the regression fits are parallel to one another, allowing to be fit by a 348 

single common slope, represenMng the concentraMon dependence over all sgRNAs, 349 

regardless of sgRNA  efficiency. 350 

 351 

Experimental data (i.e. counts from sequencing, converted to relaMve abundances for 352 

mutants with each sgRNA) are fit on a gene-by-gene basis using ordinary least-square (OLS) 353 

regression by the following formula: 354 

log , (!"#
/0(!"#

1 = 	𝛽+ + 𝛽1 ∙ log?:𝐷";@ +	𝛽. ∙ 𝑆!                                            (5) 355 

where A (relaMve abundance for each CRISPRi mutant at given drug concentraMon), Si (sgRNA 356 

efficiency ) and [Dj] (concentraMon of drugs) are columns of a melted matrix. To include the 357 

control samples (no-drug, dCAS9-induced controls) in the regression, they are treated as one 358 

two-fold diluMon lower than the lowest available concentraMon tested for the drug (to avoid 359 

taking the log of 0). Since the log-sigmoid transform of the relaMve abundances is taken, they 360 

must be within the range of (0,1). Although relaMve abundances greater than 1.0  are possible in 361 

treated condiMons (relaMve to uninduced, no-drug controls), especially in cases where target 362 

depleMon confers a growth advantage and consequent enrichment, we use a squashing funcMon 363 

to ensure the relaMve abundances range between 0 and 1, which is required to take the log-364 

sigmoid transform.  365 

𝐴!"# = 	𝜏 +
(1 − 𝜏)(1 − 𝑒02(!"#)

(1 + 𝑒02(!"#)
																																																													(6) 366 

where 𝜏=0.01 is a pseudo count needed to make abundances non-zero for taking logarithms.   367 

RelaMve abundances that are greater than 1.0 are mapped to just below 1.0, though the 368 
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mapping is monotonic, so the order among sgRNAs is sMll preserved (higher abundances 369 

become exponenMally closer to 1.0). 370 

 371 

Significance Tes3ng 372 

The staMsMc that indicates the degree of interacMon of each gene with a given drug is the 373 

coefficient for the 𝑙𝑜𝑔([𝐷])	term (i.e. slope) in the model. To determine whether the interacMon 374 

is staMsMcally significant, a Wald test [22] is applied to calculate a P-value reflecMng whether the 375 

coefficient is significantly different than 0, adjusMng for a target FDR (false discovery rate) of 5% 376 

over the whole genome using the Benjamini-Hochberg procedure [23]. However, the Wald test 377 

by itself yields many genes predicted to interact with the drug (onen thousands) with adjusted 378 

P-value < 0.05. The test selects genes with slopes that are technically different than 0, but not 379 

necessarily large enough to be relevant to the drug mechanism. Our assumpMon is that most of 380 

genes in the genome do not interact with a given drug (at least not directly involved in the 381 

mechanism of acMon or resistance). Many genes have small posiMve and negaMve slopes, 382 

possibly due to some source of noise in the experiment or generalized phenotypic interacMons, 383 

which should be filtered out. Therefore, genes are filtered based on the magnitude of the slopes 384 

(analogous to the requirement of |LFC|>1 used by Li, Poulton (13)  to filter significant genes by 385 

MAGeCK). The distribuMon of slopes over all genes is assumed to be a Normal distribuMon, and 386 

Z-scores are computed for every gene	𝑔:	𝑍3 =	
4+,-05(4+)
8(4+)

  , where	𝜎(𝛽1)	is the standard 387 

deviaMon of the slopes of log concentraMon dependence and 𝜇(𝛽1) is the mean of the slopes. 388 

Genes with |𝑍3| < 2.0 are filtered out. This produces hits whose slopes are significant outliers 389 
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(>2𝜎) from the rest of the populaMon (i.e. genes in the genome). There are two groups of hits, 390 

corresponding to the two tails of the distribuMon: enriched hits where 𝑍3	> 2.0, and depleted 391 

hits, 𝑍3	< -2.0.  392 

 393 

Results 394 

CRISPRi Dataset and Pre-processing 395 

A chemical-genomics dataset was obtained from high-throughput sequencing of a 396 

CRISPRi library of M. tuberculosis (Mtb) that had been treated with several anMbioMcs.  The 397 

library consists of 96,700 sgRNAs targeMng all 4019 genes in the Mtb H37Rv genome [13]. This 398 

library was intenMonally constructed to focus on probing essenMal genes (based on prior TnSeq 399 

analysis [24]), with a mean of 83 sgRNAs per essenMal gene, but there are some sgRNAs in each 400 

non-essenMal gene too (mean of 10 sgRNAs per non-essenMal gene).  401 

 The library was individually treated with 9 anM-TB drugs (rifampicin, RIF; isoniazid, INH, 402 

ethambutol, EMB; vancomycin, VAN; levofloxacin, LEVO; linezolid, LZD; streptomycin, STR; 403 

clarithromycin, CLR; bedaquiline, BDQ) to evaluate and validate the CRISPRi system in 404 

preparaMon for target idenMficaMon for novel inhibitors (from high-throughput screens).  These 405 

drugs were selected because certain genes are expected to interact for each (based on known 406 

mechanisms of acMon), although addiMonal genes might also exhibit interacMons, which could 407 

extend our knowledge.  We note that some drug targets are members of a complexes; although 408 

a drug may bind directly to one subunit, other subunits in those complexes onen show similar 409 

CRISPRi phenotypes. RIF binds RpoB (RNA polymerase subunit) inhibiMng transcripMon and 410 
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compensatory mutaMons are onen found in rpoC [25], BDQ binds and inhibits AtpE (subunit of 411 

the ATP synthase) [26] and mmpL5 effluxes the drug [27], GyrA and GyrB (subunits of DNA 412 

gyrase) would be expected to interact with fluoroquinolones like LEVO [28], EMB targets 413 

embABC  in the arabinogalactan pathway [29, 30], CLR, LZD and STR bind to the ribosome and 414 

inhibit translaMon, which can be protected by rRNA methyltransferases [31-33], VAN binds to 415 

pepMdoglycan and is expected to interact with genes in the pepMdoglycan synthesis pathways 416 

[34, 35], and genes such as inhA, katG, ahpC, ndh, mshA and cinA are implicated in the 417 

mechanism of acMon or resistance for isoniazid, an inhibitor of mycolic acid synthesis [36-39]. 418 

These define selected interacMons that would be expected to be observed in a CRISPRi CGI 419 

experiment. 420 

Samples of the library (pooled cultures) were treated with each of the drugs, with 421 

inducMon of the Sth1 dCAS9 by ATC (anhydrotetracycline), and were sequenced in triplicate at 422 

several concentraMons for each drug at 2-fold diluMons around the MIC, along with control 423 

samples represenMng the no-drug samples (0 concentraMon). Three periods of pre-depleMon 424 

were evaluated: 1, 5, and 10 days (D1, D5, and D10), since it was iniMally unknown how many 425 

days would be opMmal for reducing protein expression aner inducMon of CRISPRi. The 426 

measurements reported in this experiment are observed counts of sgRNAs, represenMng the 427 

relaMve proporMon of each mutant in the populaMon (pooled culture of CRISPRi mutants). 428 

Abundance of a mutant increases or decreases if silencing of the targeted gene causes a change 429 

in fitness. Although target proteins are knocked down by inhibiMng transcripMon via CRISPRi, 430 

intracellular protein levels are not directly measured in the experiment.  Instead, unique 431 

nucleoMde barcodes represenMng each sgRNA are amplified from (integrated) plasmids in the 432 
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cells, sequenced, and counted. The counts reflect the relaMve abundance of each CRISPRi 433 

mutant. Samples were normalized by dividing individual counts for each sgRNA by the sample 434 

total (sum over all sgRNAs). 435 

 In this dataset, prior esMmates of sgRNA efficiency were obtained from empirical data by 436 

fimng a piecewise-linear equaMon to fitness over mulMple generaMons, and then using the 437 

model for to extrapolate the predicted log-fold change (LFC) each sgRNA at 25 generaMons [12].  438 

The scale for these efficiencies ranged between -25 (highest depleMon) and 0 (no depleMon).  To 439 

determine the effect of depleMon solely due to the sgRNA (without drug), uninduced samples 440 

(in the absence of dCAS9 inducMon, -ATC) were also sequenced, to provide counts represenMng 441 

mutant abundances in the absence of depleMon of targets as an input to the model. 442 

 443 

 444 

The CRISPRi-DR model accurately predicts sgRNA abundances from 445 

sgRNA strength and drug concentra3on  446 

The CRISPRi-DR model was fijed for all chemical-geneMc interacMon datasets from Li, 447 

Poulton (13) , which included nine drugs tested at three different concentraMon levels (aner 1, 448 

5, and 10-days of pre-depleMon without drug). The analyses by CRISPRi-DR found a range of 449 

tens to hundreds of significant genes for each dataset. Table 1 show a more detailed account of 450 

the significant genes founds in these CRISPRi screens by CRISPRi-DR, categorized into depleted 451 

(mutant abundance decreases with drug concentraMon) and enriched (mutant abundance 452 

increases with drug concentraMon).  453 
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 454 

Table 1. Number of Significant Genes found by CRISPRi-DR across the nine drugs CRISPRi 455 

screen for each of pre-deple7on days. 456 

DRUG 
D1 D5 D10 

Depleted Enriched Depleted Enriched Depleted Enriched 
BDQ 89 99 121 48 116 37 
CLR 182 23 75 89 79 71 
EMB 15 160 6 161 51 130 
INH 33 57 9 93 16 96 

LEVO 80 47 50 50 19 4 
LZD 45 123 44 140 54 65 
RIF 117 65 165 57 146 53 
STR 57 90 44 37 - - 
VAN 193 8 149 26 135 45 

 457 

The significant genes idenMfied by CRISPRi-DR generally have coefficients of 458 

concentraMon dependence that are outliers with respect to the rest of the genes. Fig 3 shows 459 

the distribuMon of the slopes calculated for genes in a library treated with EMB (one day of pre-460 

depleMon, D1). The threshold for this distribuMon where |𝑍3|>2.0 and adjusted P-value < 0.05, 461 

is at slope = -0.37 and slope = 0.26 (verMcal bars). The 164 total genes in the tails outside the 462 

verMcal lines are significant genes. These genes include the targets of EMB: embA, embB and 463 

embC [29, 30], which have slopes -0.45, -0.43 and -0.32, respecMvely. 464 
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 465 

Fig 3. Coefficients of concentra7on-dependence from CRISPRi-DR model fiXed for EMB 466 

D1 (1 day of pre-deple7on).  467 

The distribuMon of the slopes of concentraMon dependence, extracted from the model 468 

fit for each gene. The verMcal lines are at slope = -0.37 and slope = 0.26. These are the 469 

slopes adjusted P-value < 0.05 and the |Z-score|> 2.0. 164 genes have significant slope 470 

values, i.e., 164 genes show a significant change in abundance with increasing EMB 471 

concentraMon while accounMng for sgRNA strength.  472 

 473 

To evaluate the relaMve importance of the sgRNA efficiency and drug concentraMon 474 

features to the CRISPRi-DR model, each gene was fit with two ablated models: Md and Ms. The 475 

Md model contained only log concentraMon as a predictor: log , 	(!"#
/0(!"#

1 = 𝐵 ∙ log?[𝐷"]@ + 𝐶 and 476 

the Ms model only contained sgRNA efficiency as a predictor: log , (!"#
/0(!"#

1 = 𝐵 ∙ 𝑆! + 𝐶. In the 477 
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EMB D1 experiment, the average r2 (% variance explained) across all genes in full CRISPRi-DR 478 

model is 0.43. ComparaMvely, the average r2 is 0.29 for Ms and 0.13 for Md.  embA also appears 479 

as one of the genes in the Md set of significant interactors, but the other targets of the drug, 480 

embB and embC do not appear in the sets of significant interactors for either of these ablated 481 

models. As a measure of the model quality (goodness of fit), the Akaike InformaMon Criterion 482 

(AIC) for the full model in the EMB D1 experiment is 87.6, whereas the AIC of Md is 300.7 and 483 

AIC of Ms is 124.7.  The full model has the lowest AIC, indicaMng it is the best fimng model of 484 

the three. The AIC for the model incorporaMng only drug concentraMons but not sgRNA 485 

efficiency (Md) is highest (worst), suggesMng that sgRNA efficiency encodes criMcal informaMon 486 

needed for predicMng mutant abundance. A Likelihood RaMo Test shows that the differences 487 

between these models is highly significant (P-value << 0.05; 𝜒2 distribuMon using one degree of 488 

freedom, since the ablated models each have one parameter less than full model).  The r2 489 

values and results of the AIC-based likelihood comparison indicate that sgRNA efficiency 490 

contributes strongly to accuracy of the model, and reinforces the importance of including sgRNA 491 

efficiency as a term in the CRISPRi-DR model.  492 

The improved performance of CRISPRi-DR over the reduced models for EMB extends to 493 

the other drugs tested, as seen in Fig. S1.  In all the experiments, the number of genes with fits 494 

with r2 > 0.5 is the greatest in the full CRISPRi-DR model, and the number of genes with fits that 495 

have r2 > 0.5 is greater in model Ms than Md. This demonstrates that in all condiMons, both 496 

concentraMon and sgRNA strength are needed to make accurate esMmates of mutant 497 

abundance. 498 

 499 
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CRISPRi-DR and MAGeCK have a high concordance of predicted gene-500 

drug interac3ons  501 

Most of the significant CGIs idenMfied by the CRISPRi-DR model were also idenMfied by 502 

MAGeCK (MAGeCK-RRA) as reported in Li, Poulton (13), but MAGeCK onen idenMfies many 503 

addiMonal genes that are not detected as significant by the CRISPRi-DR model. Although there 504 

are some datasets where MAGeCK and CRISPRi-DR detect about the same number of significant 505 

interacMons, as shown in Fig 4A and the Extended Figure S2 from Li, Poulton (13), there are 506 

quite a few datasets where MAGeCK finds substanMally more hits than CRISPRi-DR, such as VAN 507 

D1, where MAGeCK finds over 1066 significantly depleted genes (even with the filter of |LFC|>1 508 

applied), whereas CRISPRi-DR finds only 196 significant interactors.  As seen in the Venn 509 

diagrams in Fig 4B, there is high overlap of calls made by the two methodologies (enriched and 510 

depleted combined). Across all the datasets, an average of 62.2% of genes idenMfied as 511 

significant by CRISPRi-DR are also found to be significant by MAGeCK. In the depicted datasets 512 

in Panel B, nearly all the calls made by CRIPSRi-DR overlap with those made by MAGeCK. 513 

However, MAGeCK makes quite a substanMal number of calls (significant interacMng genes) that 514 

are not found by CRISPRi-DR. AddiMonal details of the overlap of significant interacMng genes in 515 

MAGeCK and CRISPRi-DR can be found in Table S3. 516 
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 517 

Fig 4. Comparison of significant interac7ons found by CRISPRi-DR and MAGeCK. (A) The 518 

points in the plots are the analyses of CRISPRi screens by both MAGeCK and CRISPRi-DR, 519 

colored by drug treatment. The len plot compares the depleted hits called by the two 520 

methodologies and the right plot compares the enriched hits called by the two 521 

methodologies. The number of hits (both enriched and depleted) are slightly greater in 522 

MAGeCK than in the CRISPRi-DR model. (B) Venn Diagram of significant genes, both 523 

depleted and enriched, found by CRISPRi-DR and MAGeCK for select drug-treated libraries. 524 

The genes idenMfied by CRISPRi-DR are primarily a subset of the hits found by MAGeCK.  525 

 526 
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CRISPRi-DR model correctly detects genes known to interact with an3-527 

tubercular drugs. 528 

When genes are ordered by coefficients of the slope represenMng the dependence of 529 

abundance on drug concentraMon from the CRISPRi-DR model, genes known to affect the 530 

potency of the anM-mycobacterial drug tested are ranked highly, as expected (Table 2). The 531 

more posiMve a gene’s coefficient is, the higher the gene’s enrichment ranking, and the more 532 

negaMve a gene’s coefficient is, the higher it’s depleMon ranking. 533 

  534 
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Table 2: Ranking of Select Genes using the CRISPRi-DR model in 1 Day pre-deple7on of treated 535 

libraries.   536 

Drug Gene D1 Depletion 
Ranking 

D1 Enrichment 
Ranking 

BDQ atpA 11 4022 
BDQ atpB 6 4027 
BDQ atpC 51 3982 
BDQ atpD 14 4019 
BDQ atpE 25 4008 
BDQ atpF 9 4024 
BDQ atpG 12 4021 
BDQ atpH 8 4025 
BDQ mmpL5 2 4031 

    
CLR RVBD3579c 40 3993 
CLR erm(37) 1 4021 

    
EMB embA 2 4031 
EMB embB 3 4030 
EMB embC 19 4014 

    
INH inhA 3 4030 
INH ahpC 2 4031 
INH cinA 5 4028 
INH katG 4031 2 
INH ndh 4028 5 
INH mshA 4025 8 

    
LEVO gyrA 4012 21 
LEVO gyrB 4021 12 

    
LZD erm(37) 3865 168 
LZD tsnR 4032 1 

    
RIF rpoB 94 3939 
RIF rpoC 147 3886 

    
STR RVBD2477c 4021 12 
STR gidB 4022 11 

 537 
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For each drug, the CRISPRi-DR model is run on each gene (using data from D1). The coefficient 538 

for the slope of concentraMon dependence (𝛽1) is extracted from the fijed regression and used 539 

to rank the genes both in increasing order (for depleMon) and inversely (for enrichment).  Green 540 

reflects results consistent with expectaMons based on knowledge of known gene-drug 541 

interacMons 542 

Genes that encode the target of a drug would typically be expected to have a high depleMon 543 

rank, i.e., show a negaMve slope, indicaMng that as concentraMon increases, abundance for the 544 

given depleMon-mutant decreases. This can be seen in S1 Table, in the ranking for genes using 545 

the CRISPRi-DR model. These genes rank the highest in D1 and not as well in D10. This can be 546 

ajributed to the fact that, aner 10 days of pre-depleMon, these mutants are already quite 547 

depleted, even at concentraMon 0, increasing noise, and making it difficult to pick up on 548 

concentraMon-dependent signals (further depleMon). Therefore, the ranking of relevant genes in 549 

D1 was assessed in this analysis (Table 2). 550 

For isoniazid (INH), there are mulMple relevant genes idenMfied by CRISRPi-DR, including 551 

inhA, ahpC, ndh [40], and katG [41]. inhA (enoyl-ACP reductase) is an essenMal gene in mycolic 552 

acid pathway that is the target of INH, and AhpC (alkyl hydroperoxide reductase) responds to 553 

the oxidaMve effects of isonicoMnic radicals in the cells, MshA  is a protein involved in synthesis 554 

of mycothiol, which helps maintain redox balance [39], and CinA is a NADH metabolizing protein 555 

that can hydrolyze the isoniazid-NAD adduct [38]. Therefore, as dosage of the drug increases, 556 

the abundances of the mutants of these genes should decrease. These genes are in the top 10 557 

highest ranked depleMon genes for INH (see Table 2).  In contrast, katG and ndh are found 558 

among the top 5 enriched hits, exhibiMng increased survival when the proteins are depleted.  559 
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KatG (catalase) is the acMvator of INH, and the most common mutaMons in INH-resistant strains 560 

occur in katG, decreasing acMvity [42]. Ndh (type II NADH reductase) mutants  have also been 561 

shown to decrease sensiMvity to INH by shining intracellular NADH levels (needed for INH-NADH 562 

adduct formaMon), and mutaMons in ndh have been shown to be defecMve in target enzyme 563 

(NdhII) acMvity [40], which is consistent with the observaMon in the CRISPRi data that depleMon 564 

of ndh leads to increase survival in the presence of INH. Similarly, mshA is highly enriched, 565 

consistent with mutaMons found in resistant mutants.  566 

For EMB, embA, embB, and embC (subunits of the arabinosyltransferase, target of 567 

ethambutol, EMB) rank within the top 100 depleted genes for all three pre-depleMon condiMons 568 

[29, 30]. However, interacMons with the other genes in the arabinogalactan pathway, like ubiA 569 

(which someMmes acquires resistance mutaMons [43]), were not observed.  570 

In RIF,  rpoB and rpoC, subunits of the core RNA polymerase, are ranked within the top 150 571 

genes. Significant negaMve interacMng genes for RIF also include many cell wall related genes 572 

such as ponA2, rodA, ripA, aUABCD, embABC, etc., consistent with recent studies that show RIF 573 

exposure (or mutaMons in rpoB) leads to various cell wall phenotypes [44-46]. Similarly, the 574 

target of bedaquiline (BDQ), the F0F1 ATP synthase (which includes 8 subunits encoded by 575 

atpA-atpH, of which AtpE is the one bound by BDQ) [26], and mmpL5, which can efflux the drug 576 

[27], are ranked within the top 40 depleted genes in BDQ.  577 

The significantly interacMng genes in vancomycin (VAN) involve many genes in the cell 578 

wall/membrane/envelope biogenesis pathway (as defined by in COG pathways [47]) (adjusted P-579 

value for pathway enrichment = 0.0004 using Fisher’s Exact Test). This follows previous studies 580 
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that show cell wall genes are targets of vancomycin [48, 49], which binds to pepMdoglycan in 581 

the cell wall.  582 

In levofloxacin (LEVO), CRISPRi mutants of gyrA and gyrB (subunits of the DNA gyrase, the 583 

target of fluoroquinolones) are also observed to be enriched. The reason that depleMon of this 584 

drug target leads to enrichment of mutants (hence a growth advantage, rather than the 585 

expected growth impairment) is likely due to reduced generaMon of double-stranded breaks in 586 

the DNA and other toxic intermediates as a side-effect of inhibiMng the gyrase, an effect that has 587 

been observed in E. coli [50].  588 

For clarithromycin (CLR), an inhibitor of translaMon, Rv3579c and erm(37) are observed as 589 

hits. Erm(37) adds a methyl group on the A2058/G2099 nucleoMde in the 23S component of the 590 

ribosome, the same site in which clarithromycin binds [51]. This naMvely increases tolerance to 591 

CLR in Mtb. As this gene is depleted, CLR has greater opportunity to bind, reducing the cells’ 592 

natural tolerance to the drug. Consistent with this observaMon, erm(37) has a depleMon rank of 593 

#1 in the CLR D1 condiMon. Rv3579c is another methyltransferase with a similar funcMon that 594 

ranks highly (#35) in CLR. 595 

In contrast to methylaMon inhibiMng the binding of CLR, there are ribosome 596 

methyltransferases in Mtb, where methylaMon facilitates binding of a drug. Mutants for these 597 

genes would be expected to show a high enrichment rank in presence of drug. For instance, 598 

streptomycin (STR) interferes with ribosomal pepMde/protein synthesis by binding near the 599 

interacMon of the large and small subunits of the ribosome [52]. Two relevant genes that 600 

influence the binding of STR include gidB and Rv2477c/eYA. GidB is an rRNA methyltransferase 601 

that methylates the ribosome at nucleoMde G518 of the 16S rRNA, the posiMon at which STR 602 
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interacts [33], increasing naMve affinity for STR. This is consistent with the observaMon that one 603 

of the most common mutaMons in STR-resistant clinical isolates is loss of funcMon mutaMons in 604 

gidB [53]. Rv2477c is a ribosome accessory factor, also known as EjA, which is an ATPase that 605 

enhances translaMon efficiency.  It has also recently been shown to bind the ribosome near the 606 

P-site (pepMdyl transfer center), potenMally interfering with binding of aminoglycosides [54], 607 

and loss-of-funcMon mutaMons observed in drug-resistant clinical isolates of M. tuberculosis  608 

have shown to confer resistance to STR [13]. The ranking of both genes using the CRISPRi-DR 609 

model are within the top 12 enriched genes in STR.  For linezolid (LZD), relevant genes idenMfied 610 

are erm(37) and tsnR. TsnR is an rRNA methyltransferase, analogous to GidB, and results in 611 

tolerance to LZD in a similar manner as GidB does for STR [13].  Following this expectaMon, tsnR 612 

has an enrichment ranking of #1 in LZD. Whereas depleMon of Erm(37) gives tolerance to CLR, it 613 

increases sensiMvity to LZD. The nucleoMdes that Erm(37) methylates in the 23S RNA are 614 

proximal in 3D space to where mutaMons conferring LZD-resistance are found, which both lie in 615 

the PTC (pepMdyl-transfer center) of the ribosome [55].   616 

 617 

The CRISPRi-DR model is less sensi3ve to noise than MAGeCK  618 

A reason that the CRISPRi-DR model shows lower consistency with MAGeCK (RRA) in some 619 

datasets could be due to different sensiMvity to noise. There is some noise in these experiments 620 

due to variability in sequencing sgRNA counts across mulMple concentraMons and replicates. 621 

This can differenMally affect the accuracy of predicMons of gene-drug interacMon made by these 622 

models. Three replicate counts were collected for esMmaMng the relaMve abundance of each 623 

CRISPRi mutant (with a unique sgRNA) in the presence of a drug at a given concentraMon. The 624 
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coefficient of variaMon (CV) can be used to measure the relaMve consistency of measurements 625 

across these observaMons, which in turn can be used to evaluate the sensiMviMes of CRISPRi-DR 626 

and MAGeCK to noise in the raw data.  627 

For each sgRNA si the coefficient of variaMon (CV) was calculated across the relaMve 628 

abundances for the 3 replicates for each concentraMon ( C ) in drug (D) (𝐶𝑉:,<,! =	
8(!)
5(!)

), where 629 

𝜎(𝑖) is the standard deviaMon of the 3 relaMve abundances in concentraMon C and 𝜇(𝑖)	is the 630 

mean. In Fig 5A, the 𝐶𝑉:=:>?@,<=+,!  (C of abundances for a random subset of sgRNAs (~5%) in a 631 

dCAS9-induced, no-drug condiMon (concentraMon 0) is compared to the average abundance. For 632 

sgRNAs of medium to high relaMve abundance (i.e., less depleMon), the CV is fairly constant at 633 

approximately 10%. However, at low relaMve (to uninduced) abundances (i.e. higher depleMon), 634 

CV value increases substanMally to over 100%. If a gene contains mulMple such sgRNAs with high 635 

CV values, then the variaMon may be misconstrued as a geneMc interacMon by a methodology 636 

that is suscepMble to noise.  637 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 7, 2024. ; https://doi.org/10.1101/2023.08.03.551759doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.03.551759
http://creativecommons.org/licenses/by/4.0/


35 
 

638 

 639 

Fig 5. CRISPRi-DR model shows less sensi7vity to noise than MAGeCK. (A) Comparison of 640 

average relaMve abundance and average CV across replicates in no-drug control samples  for 641 

a sample of sgRNAs: For each sgRNA, we looked at the average CV of sgRNAs in the 3 control 642 

replicates against the average abundance of the sgRNA across those replicates. The lower 643 

the average abundance, the greater the noise present for the sgRNA.  (B) DistribuMon of 644 

average CV of gene for significant genes in MAGeCK and significant genes in CRISPRi-DR in 645 

RIF D10: The distribuMon of average CV of significant genes in CRISPRi-DR model is more 646 

skewed and has a peak at CV ≈ 	10%. Although most significant genes in MAGeCK show an 647 

average CV around 15%, there are quite a few genes with higher average CVs not found 648 

significant by the CRISPRi-DR model. (C) Coefficient of VariaMon (CV) of each sgRNA in two 649 
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genes with similar number of sgRNAs for a library treated with RIF D10: Rv1410c is 650 

significant in both methodologies and Rv0810c significant in MAGeCK but not in CRISPRi-DR. 651 

The majority of CV values for sgRNAs in Rv1410c is around 20%. Although both genes have 652 

about 20 sgRNAs, Rv0810c shows 8 sgRNAs whose CV values exceed 60.5%, which is the 653 

maximum CV present in Rv1410c. (D) DistribuMon of average CV for enriched and depleted 654 

significant genes in MAGeCK and CRISPRi-DR in a RIF D10 library. This plot shows the 655 

distribuMon plot of Panel B, separated by depleMon, and enriched significant genes. The 656 

average CV values for significant genes in the CRISPRi-DR model are low for both enriched 657 

and depleted genes. As seen in Panel B, significant genes in MAGeCK show low average CV, 658 

but they also show high average CV. Although there is a substanMally lower number of 659 

significantly enriched in MAGeCK, they sMll show a large amount of noise compared the 660 

significantly enriched genes in CRISPRi-DR model.   661 

 662 

The average noise in a gene g for a given drug D can be quanMfied as the average 𝐶𝑉:,<,!, for 663 

all concentraMons C and all sgRNAs in the gene (	𝐶𝑉:[[[[[(𝑔)). Therefore, 𝐶𝑉:[[[[[(𝑔)	reflects the 664 

measure of overall noise present in a gene in a drug D. The distribuMon of 𝐶𝑉:[[[[[(𝑔)	in RIF D10 for 665 

the 215 total significant genes (enriched and depleted combined) in the CRISPRi-DR model and 666 

in 218 total significant genes (enriched and depleted combined over all concentraMons) in 667 

MAGeCK can be seen in Fig 5B. The distribuMons for both methodologies share a peak at about 668 

𝐶𝑉:[[[[[(𝑔) ≈	10%. The distribuMon of 𝐶𝑉:[[[[[(𝑔) for significant genes in MAGeCK has a fajer tail than 669 

the distribuMon of 𝐶𝑉:[[[[[(𝑔) for significant genes in the CRISPRi-DR model. Fig 5D also shows that 670 

the average CV of significant genes found by MAGeCK is much higher than CRISPRi-DR (colored 671 
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by depleted and enriched) for the RIF D10 screen. In addiMon to lower CV for significant genes, 672 

CRISPRi-DR makes more balanced calls between enriched and depleted, whereas MAGeCK calls 673 

are more asymmetric (more depleted than enriched, for this drug). This trend of higher noise in 674 

MAGeCK hits is seen not only in RIF D10, but across all the experiments conducted (See S2 Fig). 675 

This indicates that although MAGeCK is idenMfying genes with low noise (like the CRISPRi-DR 676 

model), it is also detecMng many genes with high noise that the CRISPRi-DR model is not.  677 

An example of such a gene is Rv0810c. The gene has 22 sgRNAs and has a	𝐶𝑉:[[[[[(𝑔)	value 678 

(average CV over sgRNAs in a gene) of 51.4%, one of the highest measures in the RIF D10 679 

experiment. In RIF D10, it is reported to be significantly depleted only in MAGeCK and not in the 680 

CRISPRi-DR model. The dispersion of the CV values of the sgRNAs in Rv0810 are compared to 681 

those of Rv1410c in Fig 5C. Rv1410c has 20 sgRNAs, an	𝐶𝑉:[[[[[(𝑔)	of 16.3% and is reported to be 682 

significantly depleted in both MAGeCK and the CRISPRi-DR model. Although both genes have 683 

some sgRNAs with low CVs (below 40%), Rv0810c shows 8 sgRNAs with CVs of at least 60.5%, 684 

which is the maximum CV of sgRNAs in Rv1410c. The CRISPRi-DR model considers the 685 

abundances at all concentraMons, whereas MAGeCK compares each concentraMon to the 686 

baseline independently. Therefore, if sgRNAs have a high CV value at a parMcular concentraMon, 687 

they can be picked up as a significant geneMc interacMon by MAGeCK. The average relaMve 688 

abundance for the 3 replicates at concentraMon 0 for all sgRNAs in Rv0810c is 0.19, whereas the 689 

average relaMve abundance in Rv1410c for the same is 1.08. As Fig 5A shows, Rv0810c falls in 690 

the low abundance/high noise secMon of the graph, with an average sgRNA no-drug CV of 691 

47.9%, whereas Rv1410c falls in the low noise secMon of the graph, with an average sgRNA no-692 

drug  CV of 11.2%. This demonstrates that MAGeCK reports genes such as Rv0810c with low 693 
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abundances resulMng in a large 𝐶𝑉:[[[[[(𝑔)	, which the CRISPRi-DR model does not, i.e., MAGeCK is 694 

more suspectable to noise than the CRISPRi-DR model. 695 

 696 

Effects of noise on model performance using simulated CRISPRi data 697 

The sensiMvity and accuracy of the CRISPRi-DR model, MAGeCK-RRA and MAGeCK-MLE 698 

was assessed under different sources of noise using simulated sgRNA counts sampled from the 699 

NegaMve Binomial distribuMon [56], with means at different concentraMons determined by the 700 

dose-response model (Eq (3)).  sgRNAs with empirical efficiencies sampled from a uniform 701 

distribuMon from -25 to 0 were used to simulate the combined effects of CRISPRi depleMon and 702 

exposure to a virtual inhibitor at four concentraMons (1µM, 2µM, 4µM, and 8µM), with three 703 

replicates each. The aim was to determine how noise within and between concentraMons 704 

affects the performance of each method. Detailed informaMon on the simulaMon is provided in 705 

the Supplementary File S1. 706 

Nine datasets (LL, LM, LH, ML, MM, MH,  HL, HM and HH) were simulated by varying two 707 

noise parameters: variability of abundances between concentraMons (sC), and variability among 708 

replicates within a concentraMon (Pnb, probability parameter of the NegaMve Binomial 709 

distribuMon), each with low (L), medium (M), and high (H) semng. A total of 1000 genes was 710 

simulated with 20 sgRNAs each. The first 50 genes are chosen as true negaMve interacMons (with 711 

a virtual drug), the second 50 as posiMve interacMons, and the last 50 as negaMve controls (for 712 

MAGeCK-RRA and MAGeCK-MLE). For interacMng genes, slopes are chosen from a Normal 713 

distribuMon around +0.8 or -0.8, with a standard deviaMon of 0.2. For non-interacMng genes, 714 

slopes are chosen from a Normal distribuMon around 0, with a standard deviaMon of 0.2. 715 
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CRISPRi-DR, MAGeCK-RRA and MAGeCL-MLE were run ten Mmes each on these 4 scenarios. 716 

MAGeCK was run independently for each drug concentraMon (2uM, 4uM, 8uM, compared to a 717 

no-drug control) and combined using Fisher’s method post-hoc, while CRISPRi-DR and MAGeCK-718 

MLE were run on all four concentraMons simultaneously.   719 

In lowest noise scenario (LL = low noise between concentraMons and low noise among 720 

replicates), CRISPRi-DR idenMfied 74% of the simulated interacMng genes, MAGeCK-RRA 721 

idenMfies 56.5% and MAGeCK-MLE idenMfies 99.9%. As noise increases, the recall rate of 722 

MAGeCK-MLE remains quite high at 88.3% in the highest noise scenario (HH), and MAGeCK-RRA 723 

increases to 87.5%. The recall rate of CRISPRi-DR drops down to 30.1%. However, the false 724 

posiMve rate of CRISPRi-DR remains low at 2.2% in this HH scenario, and the false posiMve rates 725 

of MAGeCK-MLE and MAGeCK increase substanMally (MLE = 42.5%, RRA = 42.1%), diluMng the 726 

sets of predicted enriched and depleted genes with non-interacMng genes (false posiMves). 727 

Therefore, although CRISPRi-DR idenMfies less of the true interacMng genes in higher noise, it 728 

maintains its ability to keep the set of reported interacMng genes from being diluted with non-729 

interacMng. Across most of the 9 noise scenarios, CRISPRi-DR has higher F1-scores than the 730 

other two methods, where 𝐹1	𝑠𝑐𝑜𝑟𝑒	 = 	2	 ×	 AB1CDD	×		FAB1!.!G)
AB1CDD	H	FAB1!.!G)

	, reflecMng a bejer tradeoff 731 

between recall and precision (see Supplemental for more details). 732 

The effect of noise on the true and false posiMve calls made by the methods can be seen 733 

in Fig 6, where number of significant genes is plojed for each of the adjusted noise parameters.  734 

For MAGeCK-MLE, significant genes were idenMfied as those with adjusted P-value (based on a 735 

Wald test) less than 0.05. For MAGeCK-RRA, significant genes were idenMfied as those with 736 

adjusted combined P-value less than 0.05 and an |LFC| greater than 1. MAGeCK-RRA is more 737 
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affected by noise among replicates than between concentraMons, as evident by the orange bar 738 

for Pnb=0.1. This is likely a result of stochasMc fluctuaMons of counts at individual drug 739 

concentraMons that are not necessarily supported at other concentraMons. This could help 740 

explain the poor performance of MAGeCK-RRA on certain drug-treated screens that may be 741 

especially noisy, resulMng in many hits, such as in the case of VAN at 1 day pre-depleMon; many 742 

of these hits could be false posiMves. ComparaMvely, CRISPRi-DR and MAGeCK-MLE seem to be 743 

more affected by noise between concentraMons than noise between replicates, showing lower 744 

precision as sC increases. Since these methods rely more on increasing or decreasing trends in 745 

abundance that must be (at least somewhat) consistent across concentraMons, noise between 746 

concentraMons may make these trends more difficult to idenMfy.  747 

 748 

Fig 6 Average True Posi7ves (TP) and False Posi7ves (FP) found by CRIPSRi-DR, 749 

MAGeCK-RRA and MAGeCK-MLE as Simulated Noise Increases. The horizonal dashed 750 
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line in both panels is the number of total simulated interacMng genes (100 total). The 751 

parameters in the x-axis are ordered to reflect increasing noise. The lenmost bars of the 752 

two plots are the lowest noise and the rightmost bars are the highest noise. MAGeCK-753 

MLE produces a high false posiMve rate for all scenarios and MAGeCK-RRA is more 754 

sensiMve to noise among replicates as seen by the orange bar for Pnb=0.1. 755 

 756 

To assess the impact of performing a CRISPRi screen at mulMple drug concentraMons on 757 

the performance of CRISPRi-DR, MAGeCK and MAGeCK-RRA, we conducted the simulaMon 758 

above with high-noise semngs (HH) and varying numbers of drug concentraMons (1, 2, or 3) for 759 

10 iteraMons each. The recall of the methods held fairly constant as concentraMons were added.  760 

However, increasing the number of concentraMon points caused a significant increase in false 761 

posiMve calls by MAGeCK-RRA from 200 to 400. While MAGeCK-RRA shows suscepMbility to 762 

false posiMves when evaluaMng only a single concentraMon point, this effect was amplified with 763 

more concentraMons. This accumulaMon of errors explains the decrease in precision with 764 

addiMonal concentraMon points.  In contrast, CRISPRi-DR is more robust with respect to false-765 

posiMve errors. By incorporaMng data from all available concentraMons and idenMfying 766 

significant trends, CRISPRi-DR maintains higher precision that does not diminish with the 767 

addiMon of more concentraMon points. Although MAGeCK-MLE makes many more calls, 768 

including false posiMves, the number of false posiMves did not increase as concentraMons were 769 

added, because, like CRISPRi-DR, MAGeCK-MLE incorporates data from all available 770 

concentraMons.  771 

 772 
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Comparison of CRISPRi-DR to Alterna3ve Methods for CRISPRi 773 

Analysis 774 

To understand how well CRISPRi-DR performs relaMve to other CRISPR analysis methods, 775 

we applied the following methods on the M. tuberculosis CGI data from [13] described above: 776 

CGA-LMM [20], MAGeCK-RRA [14], MAGeCK-MLE [15], DrugZ [17], DEBRA [18], and 777 

CRISPhieRmix [16].  Each method offers a unique approach to analyzing CRISPRi data.  Some of 778 

these methods, such as CGA-LMM do not explicitly incorporate mulMple sgRNAs per gene or 779 

account for differences in sgRNA strength.  Other methods, such as DEBRA, MAGeCK-RRA and 780 

drugZ, do not explicitly account for different drug concentraMons in a CGI experiment, and so 781 

they must be run independently on each concentraMon and the results combined.  Only 782 

CRISPRi-DR and MAGeCK-MLE incorporate both of these factors in their staMsMcal analysis. 783 

The details of applying each method, including parameter semngs, handling of negaMve 784 

controls, and merging of results, are described in the Supplement. Several of the methods, 785 

including MAGeCK-MLE, produced more significant interacMons (in the thousands, in some 786 

cases), whereas other methods, like CRISPRi-DR, produced much more focused lists of 787 

significant hits for each drug (onen less than 100) (see details in the Supplement). 788 

To evaluate the accuracy of the predicMons by each method, we ranked the genes by 789 

significance (usually based on P-value, for most methods) and then generated ROC (Receiver-790 

Operator CharacterisMc) curves.  To define a list of expected hits (i.e. interacMng genes) for 791 

isoniazid (INH D1, with one day of pre-depleMon), we obtained a list of 90 condiMonally essenMal 792 

genes from a previously published TnSeq study of M. tuberculosis H37Rv exposed to sub-MIC 793 
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concentraMons of anMbioMcs [35].  While changes in essenMality due to knock-out of a gene by 794 

transposon inserMon are not technically the same as fitness defects resulMng from CRISPRi 795 

depleMon of a target gene, there is substanMal overlap between essenMality and vulnerability 796 

[12]. Many genes known to play a role in INH resistance (fabG1, katG, ndh, ahpC, cinA, etc.) are 797 

highly interacMng (enriched or depleted) in both experiments.  Thus, the list of TnSeq 798 

condiMonal essenMals serves as a proxy for the genes that are expected to exhibit an interacMon 799 

effect in the CRISPRi screen (even though, admijedly, not all necessarily will). Importantly, 800 

condiMonal essenMality in this context includes genes whose disrupMon causes either a growth 801 

defect or growth advantage (hypotheMcally corresponding to depleMon or enrichment in a 802 

CRISPRi experiment).  Similarly, to define a list of expected hits for rifampicin, we used a list of 803 

75 condiMonally essenMal genes based on exposure of the TnSeq library to rifampicin, which 804 

does not include subunits of the RNA polymerase because they are essenMal, but includes 805 

condiMonally essenMal genes that might play a biological role in toleraMng inhibiMon of 806 

transcripMon [35].  For levofloxacin (LEVO), we used 83 genes in the DNA damage-response 807 

pathway (based on the KEGG annotaMon [57]), plus pafABC (recently shown to be involved in 808 

DNA damage signaling [58]).  Levofloxacin binds to the DNA gyrase (gyrAB), which produces a 809 

variety of types of damage to DNA, including double-stranded breaks, and requires several DNA 810 

replicaMon and repair mechanisms to survive, such as recombinaMon and the SOS response [59, 811 

60]. The genes that will exhibit a chemical-geneMc interacMon with LEVO are likely to overlap 812 

substanMally with some of the genes in this DNA damage-response pathway. 813 

Each of the CRISPR analysis methods was evaluated using these approximate lists of 814 

expected hits for each drug. Since some of the methods were not designed to integrate 815 
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informaMon from mulMple concentraMons, the methods were iniMally evaluated by analyzing 816 

each concentraMon (LOW, MED, HIGH) of a given drug independently.  Unsurprisingly, the ROC 817 

curves showed considerable dispersion of performance (Fig 7A), which was a consequence of 818 

both the method and concentraMon used (expected interacMons were onen not well-detected 819 

at low drug concentraMons).   Therefore, to make fairer comparisons to methods like CRISPRi-820 

DR, CGA-LMM, and MAGeCK-MLE, we combined the results of each of the other methods over 821 

mulMple concentraMons by using Fisher’s method [61] to combine P-values of genes at each 822 

concentraMon (by summing the logs of the P-values, which is similar to taking the geometric 823 

mean) and using this to re-rank the genes.  This strategy for combining results from mulMple 824 

concentraMons produced more uniform ROC curves for all the methods, as illustrated in Fig 7B.  825 

For methods which required a single set of counts per gene, like DEBRA and CGA-LMM, the 826 

most efficient sgRNA was chosen per gene.    827 

When the results for different concentraMons were combined using Fisher’s method, 828 

many of the methods exhibited reasonably good performance, ranking expected hits highly (Figs 829 

8b-d).  For example, for INH, 50% of the expected interacMons were ranked in roughly the top 830 

20% of all genes by most of the methods, and for RIF, the idenMficaMon of expected interacMons 831 

(based on TnSeq) was even bejer (producing higher rankings of expected hits).  For LEVO, the 832 

ROC curves show lower AUCs for all of the methods, probably due to the fact that not all the 833 

genes in the DNA damage response pathway are required to tolerate exposure to 834 

fluoroquinolones.  Though there were some variaMons in performance from drug to drug, 835 

indicaMng that differences in performance were drug-specific, the overall performance was 836 

matched fairly well, as quanMfied by the AUC values in Table 3.  In parMcular, the performance of 837 
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CRISPRi-DR, while not uniformly the best, was comparable to that of the other methods 838 

evaluated. It is notable methods such as CGA-LMM and DEBRA that do account for mulMple 839 

sgRNAs onen had the worst performance (lowest AUC values). The similarity in performance 840 

suggests that genes that exhibited CGIs (enrichment or depleMon, at least at some 841 

concentraMon) in this experiment were easily detected by all the methods evaluated, despite 842 

their different analyMcal frameworks.  Although the AUC values for all the methods were 843 

comparable, the other methods onen reported many more false posiMves than CRISPRi-DR. 844 

CRIPSRi-DR tends to have slightly lower recall but much higher precision than the other 845 

methods (see Supplemental Table S2), suggesMng it makes more conservaMve calls (see 846 

Supplement). However, it has the highest F1-scores in nearly all drug screens evaluated, which 847 

reflects the best tradeoff of recall and precision. 848 

 849 
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850 

 851 

Fig 7 ROC Curves for RIF, INH and LEVO with 1 day pre-deple7on. Using expected 852 

interacMons derived from TnSeq studies [35] (INH and RIF) and the DNA-damage 853 

pathway (for LEVO), ROC Curves are plojed for CRISPRi-DR and 6 other CRISPR analysis 854 

methods. A) For methods that do not take concentraMon into account (MAGeCK, drugZ, 855 

DEBRA and CRISPhieRmix), each concentraMon (LOW, MED, HIGH) was analyzed 856 

independently, producing disMnct ROC curves.  B-D). For methods that do not take 857 

concentraMon into account, results of the 3 concentraMons were combined using Fisher’s 858 

method for combining P-values.  859 

 860 
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Table 3.  AUC values for 7 CRISPR analysis methods, showing compara7ve performance 861 

on 3 datasets (drug treatments, with 1 day of pre-deple7on), based on the ROC curves 862 

in Figure 7.  863 

 864 

 INH D1 
AUCs 

RIF D1 
AUCs 

LEVO D1 
AUCs 

DefiniMon of Hits: 

90 TnSeq condiMonal 

essenMals (Xu et al, 

2017) 

75 TnSeq condiMonal 

essenMals (Xu et al., 

2017) 

83 genes in DNA 

damage response 

pathway (KEGG) 

CRISPRi-DR 0.767 0.850 0.669 

CGA-LMM 0.641 0.765 0.638 

MAGeCK-RRA 0.799 0.855 0.684 

MAGeCK-MLE 0.683 0.865 0.629 

drugZ 0.726 0.866 0.678 

DEBRA 0.665 0.822 0.615 

CRISPhieRmix 0.771 0.844 0.666 

 865 

 866 

Analysis of CRISPRi Data for E. coli Genes Required for Growth on 867 

Different Carbon Sources 868 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 7, 2024. ; https://doi.org/10.1101/2023.08.03.551759doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.03.551759
http://creativecommons.org/licenses/by/4.0/


48 
 

To illustrate the applicaMon of the CRISPRi-DR method to other datasets, we re-analyzed 869 

the data from a CRISPRi library in E. coli that was used to invesMgate differenMal requirements 870 

for growth on glycerol versus glucose as a carbon source [11]. While this is not technically a 871 

chemical-geneMcs experiment, the data included mulMple Mme points.  The growth curves of 872 

CRISPRi knock-down mutants (depleMon over Mme) follows sigmoidal behavior very analogous 873 

to dose-response curves for anMbioMc exposure (depleMon with increasing concentraMon).  874 

Furthermore, while only 88 genes were analyzed instead of a whole-genome screen, this 875 

dataset is suitable for analysis by CRISPRi-DR because mulMple unique sgRNAs were synthesized 876 

for each gene (68 per gene on average), spanning a range of efficiencies (which were quanMfied 877 

by fimng growth data to a logisMc curve).   878 

We ran CRISPRi-DR on this data for each carbon source independently (fimng the model 879 

to 7 Mmepoints for glucose, 5 for glycerol) (see Supplemental Material for addiMonal details).  880 

Many genes exhibited significant depleMon effects (reduced fitness), because many of the 88 881 

genes were essenMal for growth (on either carbon source).  However, when the coefficients of 882 

the Mme parameter from the CRISPRi-DR analysis were plojed as a scajer plot between the 883 

carbon sources, two genes stood out as being preferenMally required for growth on glucose 884 

(highlighted in orange in Fig 8, most divergent from the diagonal): `aA (fructose bisphosphate 885 

aldolase) and paA (phosphofructokinase).  These genes are well-known examples required for 886 

preliminary steps in glycolysis but not for incorporaMon of glycerol, and were idenMfied in the 887 

analysis by [11]. AddiMonal metabolic genes needed for growth on both carbon sources are 888 

observed to lie along the diagonal.  This demonstrates that the CRISPRi-DR method can be 889 

applied to other datasets, including those not explicitly designed for chemical-geneMcs.  The 890 
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modified dose-response model nicely incorporates the simultaneous effects of Mme and the 891 

variable efficiency of sgRNAs on mutant abundance. 892 

 893 

Fig 8 Coefficients of 7me dependence from CRISPRi-DR models fit for glucose and 894 

glycerol E. coli datasets. Each point in the scajerplot represents the coefficients of Mme 895 

dependence of a gene from the fit of the two models (glucose and glycerol). Individually, 896 

the gene show a range of growth defect over Mme, but the coefficients for most genes 897 

are equally negaMve for both condiMons, except for a few outliers. The genes colored 898 

fuchsia are involved in both gluconeogenesis and glycolysis, hence, as expected, have 899 

similar Mme dependence coefficients in both carbon sources. The points farther away 900 

from this line, the orange labeled points (paA and `aA), are genes involved in glycolysis 901 

but not gluconeogenesis and, as expected, they have more negaMve coefficients in 902 

glucose than in glycerol. 903 
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 904 

Discussion 905 

There are a variety of ways to use CRISPRi technology for probing the biological roles of 906 

genes by modulaMng their expression levels in-situ.  While early experiments uMlized the 907 

intrinsic nuclease acMvity of the CAS9 to knock-out genes enMrely [1-3], more recent approaches 908 

have enabled parMal knock-down of targets, generally using an inacMve CAS9 (dCAS9) to bind to 909 

target genes and block transcripMon [5].  One way of controlling the level of depleMon is through 910 

manipulaMng the expression of the dCAS9 itself.  However, a second approach to creaMng 911 

variability in levels of target depleMon is to uMlize mulMple sgRNAs of different efficiency.  The 912 

nucleoMde sequence of both the PAM and target-specific parts of the guide RNA can impact the 913 

hybridizaMon and recruitment of the dCAS9 [9, 10]. This variability can be useful for gauging or 914 

MtraMng phenotypic effects. Rather than all-or-none responses, one can look for genes whose 915 

level of depleMon correlates with the phenotype of interest.   916 

While CRISPRi libraries can be constructed with mulMple sgRNAs per target, most CRISPR 917 

analyMcal methods do not explicitly handle such, and those that do (such as MAGeCK-RRA and 918 

CRISPhieRmix) are essenMally designed to idenMfy significant genes by focusing on a subset of 919 

apparently effecMve sgRNAs (i.e. allowing for ineffecMve sgRNAs, which are filtered out for each 920 

target). However, sgRNA efficiency can be quanMfied a priori, such as by running a growth 921 

experiment to determine the fitness effect of inducing the depleMon of the target gene.  If this 922 

informaMon is available (collected beforehand), then it can be incorporated into the analysis as a 923 

“covariate”, to enable comparison of the impact of treatment condiMons on the expected 924 
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magnitude of the phenotypic effect.  We note that sgRNA efficiency is different than predicted 925 

strength, because it also depends on the vulnerability of the gene.  In an essenMal gene, some 926 

sgRNAs might be more efficient than others. In contrast, typically, all the sgRNAs targeMng a 927 

non-essenMal will turn out to be non-efficient (i.e. have 0 growth defect, or relaMve fitness of 928 

around 1), at least under control condiMons, since the cells are unaffected by depleMon of these 929 

proteins and conMnue to grow at the same rate.  However, they might cause growth impairment 930 

if expressed in certain stress condiMons where they might play a role in survival/tolerance.  In 931 

fact, in chemical-geneMc interacMon experiments, variable sgRNA efficiency can be further 932 

exploited to idenMfy genes whose level of depleMon synergizes with increasing drug 933 

concentraMon.  We developed the CRISPRi-DR model with this use case in mind, extending the 934 

Hill equaMon, which quanMfies dose-response behavior of a growth inhibitor, to incorporate an 935 

extra term represenMng the relaMve efficiency of each of the sgRNAs targeMng a gene.  This 936 

approach, however, is not limited to CGI experiments.  It can be applied to other treatments 937 

that induce a sigmoidal response.  For example, in re-analysis of data from the Mathis, Ojo and 938 

Reynolds (11) paper, we showed the same equaMon could be adapted for modeling the effect of 939 

E. coli cultures grown on medium with different carbon sources; the Mme parameter could be 940 

subsMtuted for the concentraMon, since depleMon of essenMal genes caused a gradual killing 941 

with an S-curve shape over Mme.   942 

Therefore, the CRISPRi-DR approach we developed has 3 main requirements.  First, the 943 

CRISPRi library should contain mulMple sgRNAs per target gene.  Anecdotal evidence suggests 944 

that at least 5 sgRNAs per gene are necessary to maintain overall sensiMvity for detecMng 945 

expected interacMons and maximizing AUC  (based on experiments where we subsampled a 946 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 7, 2024. ; https://doi.org/10.1101/2023.08.03.551759doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.03.551759
http://creativecommons.org/licenses/by/4.0/


52 
 

limited number of sgRNAs per screen; see Supplement). Fewer sgRNAs per gene reduced the 947 

stability of the regression and increased variance of the fijed parameters (specifically the slope 948 

of concentraMon dependence).  Second, ideally, sgRNAs of differing strength should be included.  949 

Strength can be predicted from sequence features using various types of trained models [9, 12].  950 

This covers both essenMal and non-essenMal genes.  For essenMal (or vulnerable) genes, sgRNA 951 

efficiency correlates with predicted strength, so this is equivalent to choosing sgRNAs with a 952 

range of efficiencies (that create varying growth defects).  For non-essenMal genes, one could 953 

choose a set of sgRNAs with a range of predicted strengths, even though they might all turn out 954 

to be non- efficient experimentally in standard growth condiMons.  This diversity could be 955 

created by selecMng sgRNAs that deviate from the opMmal PAM sequence [6], choosing 956 

hybridizing sequences of different length or GC content [5, 8], or adding random nucleoMde 957 

subsMtuMons [10].  Third, the actual efficiency of each sgRNA must be empirically quanMfied a 958 

priori, such as by running a growth experiment and comparing growth rates with and without 959 

inducMon of the dCAS9 (hence, with and without depleMon of target genes).  These quanMMes 960 

become inputs to the model.  The CRISPRi-DR method can be applied to any CRISPRi dataset 961 

that meets these requirements. The methodology works best when treatment produces a 962 

sigmoidal effect on mutant abundances. 963 

Doench, Fusi (9) have proposed several systems for design/optimization of CRISPRi 964 

libraries.  These were more focused on minimizing off-target effects while maximizing 965 

sensitivity for detecting of genuine interactions.  They do not give a specific recommendation 966 

about how many sgRNAs per gene to select.  Their library design guidance is to prefer more 967 

efficient sgRNAs (e.g. Rule Set 1 selects top 20%  of sgRNAs by empirical efficiency and uses 968 
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these to build a model to predict sgRNA strength; Rule Set 2 extends this with a machine 969 

learning model based on additional sequence features to predict sgRNA strength, and prefers 970 

sgRNAs with highest score [9]).  This contrasts with our approach, where we advocate selecting 971 

sgRNAs with a diversity of efficiencies, since we observed that the sgRNAs that exhibited the 972 

most synergy with drug treatments were not always the strongest or weakest, but somewhere 973 

in the middle of the range.    974 

For application to CGI experiments, the availability of CRISPRi data for multiple sgRNAs 975 

of varying strengths for each target gene presents new challenges for statistical analysis.  In 976 

previous work [20], we showed that regressing the relative abundances of mutants in 977 

hypomorph libraries over multiple concentrations of a drug (on log-scale) can be used to 978 

improve detection of CGIs. This regression approach captured dose-dependent behavior, i.e. 979 

genes whose decreased expression caused either suppressed or enhanced fitness that increases 980 

in magnitude with drug concentration (i.e. exhibits a trend, which is important for statistical 981 

robustness).  The CRISPRi-DR method described in this paper extends this previous work by 982 

showing how effects of both drug concentration and sgRNA efficiency can be accommodated in 983 

the same model.  Ideally, interacting genes would be expected to exhibit synergistic behavior 984 

with a drug, where depletion of a target protein induces excess depletion (or enrichment) of 985 

the mutants grown in the presence of an inhibitor, and this effect is concentration-dependent 986 

(exhibits dose-response behavior). 987 

In theory, both CRISPRi depleMon of essenMal genes and exposure to anMbioMcs should 988 

impair growth of CRISPRi mutants (at least for depleMon of essenMal genes).  One might expect 989 

to observe a depleMon effect due to either increasing sgRNA efficiency, or drug concentraMon, 990 
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each producing regression "slopes" (in log-transformed space), with slopes for sgRNAs targeMng 991 

non-essenMal genes being expected to be flat, regardless of predicted sgRNA strength.  992 

However, we observed that sgRNA efficiency and concentraMon effects are not independent - 993 

they interact in a non-linear way.  sgRNAs that are too weak do not produce enough depleMon 994 

of a drug target to cause sensiMzaMon, and sgRNAs that are too strong deplete a mutant to such 995 

low abundances that concentraMon-dependent effects are difficult to quanMfy.  Onen, there is a 996 

"sweet spot", or an intermediate sgRNA strength which maximizes the concentraMon-997 

dependent effect (which could be different for each gene). Our CRISPRi-DR model incorporates 998 

both sgRNA efficiency and drug concentraMon as parameters, and reproduces the non-linear 999 

interacMon between them, where the "slopes" for the effect of drug concentraMon on relaMve 1000 

abundance of mutants can be larger in magnitude for sgRNAs of intermediate strength, while 1001 

being flajer (slopes closer to 0) for sgRNAs of high or low strength.  MAGeCK-MLE is the only 1002 

other analyMcal method that take sgRNA efficiencies as an input; in that method, the empirical 1003 

measures of efficiency are used to iniMalize the prior probability that each sgRNA is effecMve 1004 

(assuming each gene is represented by a subset of sgRNAs that are effecMve and others that are 1005 

not), which is combined with other condiMonal probabiliMes in a Bayesian framework to 1006 

determine the posterior probability of interacMon for each gene.  However, we observed that 1007 

MAGeCK-MLE onen reports far more significant interacMons that CRISPRi-DR or several other 1008 

methods and has lower precision. 1009 

In this paper, we showed that this non-linear interacMon between sgRNA efficiency and 1010 

drug concentraMon can be modeled using an augmented dose-response equaMon, in which 1011 

terms for both effects are included.  By fimng the parameters in this equaMon to CRISPRi data 1012 
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from a CGI experiment (normalized mutant abundances from sgRNA counts), one can esMmate 1013 

the degree to which depleMon of a given gene sensiMzes cells to an inhibitor, and thereby 1014 

idenMfy CGIs.  While various computaMonal methods exist for fimng non-linear equaMons, such 1015 

as the Levenberg–Marquardt algorithm [62], we chose to linearize the modified Hill equaMon by 1016 

applying a log-sigmoid transform. The transformaMon enables us to express the equaMon in a 1017 

linear form, where the parameters (IC50, Hill slopes, etc.) appear as coefficients of linear terms 1018 

or constants. Consequently, we can use ordinary least-squares regression (OLS) to fit the model 1019 

to the CRISPRi dataset.  1020 

SomeMmes posiMve and/or negaMve controls are included in a CRISPRi experiment [8].  1021 

While negaMve controls can be used in methods like MAGeCK-RRA, CRISPRi-DR is not designed 1022 

to use controls explicitly in the staMsMcal analysis of CGIs. HypotheMcally, negaMve controls could 1023 

be used in the final filtering step to calculate Z-scores for each gene.  Instead of basing the Z-1024 

scores on the mean and standard deviaMon of slope coefficients in the whole set of genes, they 1025 

could be based on the distribuMon of slope coefficients from the negaMve controls.  While we 1026 

tested this idea (using 1750 non-targeMng sgRNAs included in the Mtb CRISPRi dataset as 1027 

negaMve controls), it resulted in many more genes being labeled as interacMons (up to half the 1028 

genome).  It appears that unrelated genes (not involved in the mechanism of acMon or 1029 

resistance to a drug) onen have slightly posiMve or negaMve random slopes, due to some source 1030 

of noise in the experiment that is unaccounted for. Some genes could exhibit weak phenotypic 1031 

effects, conferring slight growth defects or advantages under anMbioMc stress, even though they 1032 

do not play any direct role in the mechanism of acMon or resistance to the drug. This is the 1033 

reason that we advocate idenMfying genes that are outliers with respect to the rest of the 1034 
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populaMon of genes, achieved through the filtering step at the end (|Zscore|>2), instead of just 1035 

reporMng all genes with slope coefficient staMsMcally different from 0. 1036 

We compared CRISPRi-DR to several other analyMcal methods, including MAGeCK-RRA, 1037 

MAGeCK-MLE, DEBRA, CRISPhieRMix, CGA-LMM, and drugZ.  Some of these methods 1038 

incorporate mulMple drug concentraMons, while other incorporate sgRNA efficiency as an input 1039 

to their models.  However, only MAGeCK-MLE incorporates both types of input.  The 1040 

importance of incorporaMng both inputs in CRISPRi-DR was demonstrated via an experiment 1041 

with ablated models; the model fits (AICs) for each gene were significantly worse for models 1042 

that regressed abundances against either drug concentraMon or sgRNA efficiency alone.  For 1043 

those methods that do not explicitly combine data from mulMple drug concentraMons and must 1044 

be run on each concentraMon independently, we employed Fisher’s method of combining P-1045 

values to create a merged ranking of genes.  Using ROC curves to comparing ranking of expected 1046 

interacMons, CRISPRi-DR performed comparably to the best of these methods, though method 1047 

with the highest AUC differed depending on the drug.  This evaluaMon was facilitated by using 1048 

lists of condiMonally essenMal genes from TnSeq experiments (exposure to same drugs) to define 1049 

an objecMve list of expected interacMons for each drug for making fair comparisons of 1050 

performance. However, a major difference observed among the methods was in the number of 1051 

significant interacMons detected.  Methods like CRISPRhieRMix, DEBRA, MAGeCK-RRA, and 1052 

MAGeCK-MLE produced hundreds to thousands of hits for each drug, whereas CRISPRi-DR 1053 

reported a more conservaMve list of typically less than a hundred interacMng genes.  It is likely 1054 

that many of the interacMons detected by the former methods could be false posiMves. This was 1055 

borne out in simulaMon experiments, where MAGECK-RRA, and MAGeCK-MLE exhibited 1056 
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substanMally lower precision than CRISPRi-DR. In both the simulated data and real drug screen 1057 

datasets, CRISPRi-DR had the highest F1-scores, reflecMng the best tradeoff between precision 1058 

and recall compared to other methods.  Reducing false posiMves is important because 1059 

experimental validaMon of hits can be expensive, and follow-up is usually only applied to a 1060 

handful of top-ranked genes.   Furthermore, we used simulated datasets to explore how noise 1061 

within or between drug concentraMons could affect both the recall and precision of CRISPRi-DR, 1062 

MAGECK-RRA, and MAGeCK-MLE.  Both types of noise increasingly degrade the recall of all 1063 

methods, but noise within concentraMons (i.e. sgRNA counts among replicates) seemed to cause 1064 

the greatest decrease in precision, especially for MAGeCK-RRA.  The outlier analysis in CRISPRi-1065 

DR (filtering by Z-score in the last step) parMally helps to miMgate this, producing a more focused 1066 

list of candidate interacMons, and hopefully eliminaMng  genes with small random slopes of 1067 

concentraMon dependence that are not genuine interacMons (i.e. false posiMves). 1068 

 1069 

Data and Code Availability 1070 

 1071 

A python-based implementaMon of the CRISPRi-DR method for analyzing CRISPRi data is publicly 1072 

available as part of Transit2: hjps://transit2.readthedocs.io/en/latest/ 1073 

 1074 

The output files from analyses of the Mtb CRISPRi CGI screens from Li, Poulton (13) using 1075 

CRISPRi-DR are available for download at: hjps://orca1.tamu.edu/CRISPRi-DR/ 1076 

 1077 
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 1324 

Suppor2ng Informa2on 1325 

 1326 

Fig S1 Evalua7on sgRNA strength and log concentra7on as predictors of CRISPRi-DR model 1327 

through comparison of distribu7on of r2 values of full (CRISPRi-DR) and ablated (Ms and Md) 1328 

models for each gene in each experiment.  1329 

The horizontal line is where r2   = 0.5. The average r2 Ms model for all genes across all the 1330 

experiments is 0.42, the average r2 for the Md model is 0.07. This alongside the Log-likelihood 1331 

tests indicate sgRNA strength is the more significant predictor. However, the full CRISPRi-DR 1332 
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model outperforms both Md and Ms (average r2 is 0.50) indicaMng the inclusion of both sgRNA 1333 

strength and log concentraMon is needed for accurate assessment of significant sgRNA depleMon 1334 

in a gene in a condiMon.  1335 

 1336 

 1337 

Fig S2 Distribu7on of average CV of sgRNAs in significant genes (depleted and enriched) in the 1338 

CRISPRi-DR model and MAGeCK.  1339 

In this Fig, we see all the noise distribuMons for hits in MAGeCK and the CRISPRi-DR model for 1340 

all experiments. The dashed panel is that of RIF D10. The same distribuMon of noise of hits can 1341 

be seen in Fig 5. The trend seen with RIF D10 is present with all the experiments except LEVO 1342 

D10. We see that the CRISPRi-DR model is unimodal with a low CV as the mode, whereas 1343 

MAGeCK shows significant genes with low average CV values but also a significant amount of 1344 

genes with high average CV values. LEVO D10 was len out of this plot due to the low number of 1345 

hits in either model.   1346 

 1347 
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Table S1. Ranking of Select Genes using the CRISPRi-DR model in 1 Day, 5 day and 10 Day pre-1348 

deple7on of treated libraries.  1349 

An extended version of Table 2, where the CRISPRi-DR model is run on each gene for each drug 1350 

and pre-depleMon day. The coefficient for the slope of concentraMon dependence (𝛽1) is 1351 

extracted from the fijed regressions and used to rank the genes in both increasing order (for 1352 

depleMon) and inversely (for enrichment).  Green reflects results consistent with expectaMons 1353 

based on knowledge of known gene-drug interacMons. 1354 

 1355 

Table S2. Comparison of significant interac7ons Iden7fied by CRISPR analysis methods of 1356 

EMB, INH, LEVO, VAN and RIF CRISPRi screens 1357 

For each drug and pre-depleMon day of the selected datasets, all 7 CRIPSR methods were run. 1358 

For methods that do not account for mulMple concentraMons, they were run separately for each 1359 

concentraMon and the overall significant interacMons are also addressed post-combinaMon of 1360 

the individual runs using Fisher’s method. The comparison of the significant interacMons 1361 

idenMfied by the models was evaluated using an objecMvely defined list of true posiMves. The 1362 

genes idenMfied by Xu, DeJesus (35) were used as the “ground truth” against which the other 1363 

model's results were compared. For LEVO, genes in the DNA Damaging pathway are used. 1364 

Recall, Precision and F1-score columns are colored such that higher values are more green. 1365 

 1366 

Table S3. Matrices for comparison of significant interac7ons Iden7fied by CRISPRi-DR and 1367 

MAGeCK for each drug and pre-deple7on day.  1368 
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The table presents the results of CRISPRi-DR and MAGeCK analyses for different drugs and pre-1369 

depleMon days. Significant interacMons are compared in matrix form. Cells with red font indicate 1370 

low overlaps between the interacMons found by the two models, while cells with green font 1371 

represent high overlaps. 1372 

 1373 

Supplemental File S1  1374 

We expand on the following four topics from the main text in this document: 1) An assessment 1375 

of CRISPRi-DR, MAGeCK and MAGeCK-MLE on datasets with simulated noise, 2) Comparison of 1376 

CRISPRi-DR to other analysis methods using CGI datasets, 3) Analysis of E. coli CRISPRi screens 1377 

using CRISPRi-DR and, 4) The minimum number of sgRNAs recommended per gene in CRISPRi-1378 

DR. 1379 

 1380 
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