
Distinct pulmonary and systemic effects of
dexamethasone in severe COVID-19
Gabriela Fragiadakis  (  Gabriela.Fragiadakis@ucsf.edu )

University of California, San Francisco
Lucile Neyton 

University of California, San Francisco
Ravi Patel 

University of California, San Francisco
Aartik Sarma 

University of California, San Francisco https://orcid.org/0000-0002-7508-7345
UCSF COMET Consortium 

University of California, San Francisco
Andrew Willmore 

University of California, San Francisco
Sidney Carrillo Haller 

University of California, San Francisco
Kristen Kangelaris 

University of California, San Francisco
Walter Eckalbar 

University of California, San Francisco
David Erle 

UCSF https://orcid.org/0000-0002-2171-0648
Matthew Krummel 

University of California, San Francisco https://orcid.org/0000-0001-7915-3533
Carolyn Hendrickson 

University of California, San Francisco
Prescott Woodruff 

UCSF
Charles Langelier 

University of California, San Francisco https://orcid.org/0000-0002-6708-4646
Carolyn Calfee 

University of California San Francisco

Biological Sciences - Article

https://doi.org/10.21203/rs.3.rs-3168149/v1
mailto:Gabriela.Fragiadakis@ucsf.edu
https://orcid.org/0000-0002-7508-7345
https://orcid.org/0000-0002-2171-0648
https://orcid.org/0000-0001-7915-3533
https://orcid.org/0000-0002-6708-4646


Keywords:

Posted Date: August 3rd, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3168149/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

Additional Declarations: There is NO Competing Interest.

https://doi.org/10.21203/rs.3.rs-3168149/v1
https://creativecommons.org/licenses/by/4.0/


Distinct pulmonary and systemic effects of dexamethasone in severe 1 

COVID-19 2 

 3 

Lucile P. A. Neyton*1, Ravi K. Patel*2, Aartik Sarma*1, UCSF COMET Consortium, 4 

Andrew Willmore 1, Sidney C. Haller 1, Kirsten N. Kangelaris3, Walter L. Eckalbar1,2, 5 

David J. Erle 1, 2,4,5, Matthew F. Krummel6, Carolyn M. Hendrickson1, Prescott G. 6 

Woodruff 1, Charles R. Langelier7,8, Carolyn S. Calfee1,4,9, Gabriela K. Fragiadakis2,10 7 

 8 

1. Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of 9 

California, San Francisco, CA, USA 10 

2. UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA 11 

3. Division of Hospital Medicine, University of California, San Francisco, CA, USA 12 

4. Department of Medicine, University of California, San Francisco, CA, USA 13 

5. Lung Biology Center, University of California, San Francisco, CA, USA 14 

6. Department of Pathology, University of California, San Francisco, CA, USA 15 

7. Chan Zuckerberg Biohub, San Francisco, CA, USA 16 

8. Division of Infectious Diseases, University of California, San Francisco, CA, USA 17 

9. Department of Anesthesia, University of California, San Francisco, CA, USA 18 

10. Division of Rheumatology, University of California, San Francisco, CA, USA 19 

 20 

*these authors contributed equally to this work 21 

 22 

Summary 23 

Dexamethasone is the standard of care for critically ill patients with COVID-19, 24 

but the mechanisms by which it decreases mortality and its immunological effects in this 25 

setting are not understood. We performed bulk and single-cell RNA sequencing of the 26 

lower respiratory tract and blood, and plasma cytokine profiling to study the effect of 27 

dexamethasone on systemic and pulmonary immune cells. We find decreased 28 

signatures of antigen presentation, T cell recruitment, and viral injury in patients treated 29 

with dexamethasone. We identify compartment- and cell- specific differences in the 30 

effect of dexamethasone in patients with severe COVID-19 that are reproducible in 31 

publicly available datasets. Our results highlight the importance of studying 32 

compartmentalized inflammation in critically ill patients.  33 

 34 

 35 

 36 



Main 37 

Moderate doses of corticosteroids, including dexamethasone, decrease mortality 38 

in patients with severe COVID-19 in clinical trials1. Conversely, steroids may increase 39 

mortality in COVID-19 patients without hypoxemia2, and higher doses of 40 

dexamethasone may increase mortality in hypoxemic, non-ventilated patients3. While 41 

randomized controlled trials of steroids in patients with COVID-19 have transformed 42 

clinical practice, the cell- and compartment-specific effects of corticosteroids in these 43 

patients are not well understood. Dexamethasone is classically considered a non-44 

specific and potent systemic anti-inflammatory medication, but it has pleiotropic effects 45 

on inflammatory signaling, wound healing, and metabolism in experimental models4. In 46 

experimental studies in animal models and human volunteers, dexamethasone and 47 

other corticosteroids have distinct effects on systemic versus pulmonary inflammation5, 48 

and several studies have identified cell-specific effects of glucocorticoids.6 While a small 49 

number of studies have described the effects of corticosteroids on blood and lung gene 50 

expression in COVID-197,8, no work has yet comprehensively evaluated effects across 51 

gene, protein, and cellular levels in both systemic circulation and respiratory tract. 52 

Further understanding the cell- and compartment-specific effects of dexamethasone in 53 

severe COVID-19 may elucidate the therapeutic effects of steroids in these patients and 54 

further our understanding of the role of steroids in other viral infections and/or the acute 55 

respiratory distress syndrome (ARDS) more generally.  56 

Here, we use single-cell RNA sequencing to study peripheral blood and tracheal 57 

aspirate (TA) from a multi-center observational cohort of patients with COVID-19 before 58 

and after dexamethasone became standard of care, using data generated as part of the 59 

COMET and IMPACC studies.9,10 We integrate this data with cytokine and gene 60 

expression data from blood and compare it to two publicly available datasets. We 61 

identify several cell-specific differences in the pulmonary and systemic effects of 62 

dexamethasone in mechanically ventilated patients with COVID-19 ARDS, many of 63 

which were reproducible in the external datasets. Through receptor-ligand analysis we 64 

also detect signatures of injury resolution and reduced antigen presentation and T cell 65 

recruitment in dexamethasone-treated patients, returning to levels observed in healthy 66 

controls. This work highlights the importance of studying both local and systemic 67 

inflammatory signaling in acute respiratory disease and identifying biological pathways 68 

that may represent future therapeutic targets.  69 

 70 



Results 71 

 We conducted a prospective case-control study of mechanically ventilated adults 72 

(age ≥ 18) with COVID-19 acute respiratory distress syndrome (ARDS) at two academic 73 

hospitals: the University of California, San Francisco Medical Center (UCSFMC), and 74 

the Zuckerberg San Francisco General Hospital (ZSFG). Patients were enrolled into an 75 

observational cohort starting in April 2020. At both sites, patients did not routinely 76 

receive corticosteroids for COVID-19 ARDS prior to the publication of the RECOVERY 77 

trial in July 2020, at which time dexamethasone was promptly introduced as a treatment 78 

for patients hospitalized with severe COVID-19. We studied patients enrolled before and 79 

after this rapid change in the standard of care, which enabled a multi-omic 80 

characterization of the effects of dexamethasone in patients with COVID-19 ARDS.  81 

 For this study, we included patients admitted to the ICU with at least one 82 

biospecimen (TA, blood, or plasma) collected (Figure 1A) while they were mechanically 83 

ventilated. We excluded patients who received steroids for an indication other than 84 

COVID-19 and those who received other immunosuppressive drugs (e.g. tocilizumab, 85 

baricitinib), leaving a final sample size of 27 patients who received at least one dose of 86 

6mg dexamethasone at the time of initial biosampling (Dex) and 16 patients who did not 87 

receive dexamethasone (NoDex) prior to specimen collection. (Extended Data Figure 88 

1, Extended Data Table 1). An overview of patients included in the different analyses is 89 

provided (Figure 1B). All included patients were recruited between April 2020 and 90 

March 2021. 91 

 92 

Dexamethasone modulates cytokine and immune cell gene expression in blood 93 

samples from patients with severe COVID-19 94 

 We first profiled a panel of 18 plasma cytokines (Extended Data Table 2) 95 

previously associated with COVID-19 and ARDS pathophysiology11 in Dex (N=15) as 96 

compared to NoDex (N=23) subjects at the time of study enrollment. After adjusting for 97 

multiple hypothesis testing, we observed significantly lower plasma IL-6 and IFN-98 

gamma in Dex patients compared to NoDex patients (Figure 1C). Conversely, we 99 

observed significantly higher levels of IL-10, a cytokine that suppresses inflammatory 100 

responses12, in Dex patients treated with dexamethasone (Figure 1C). Other cytokines 101 

did not present significantly different levels across treatment groups (Extended Data 102 

Figure 2A). Examination of times between first dexamethasone dose and sample 103 



collection demonstrated that these changes in cytokine levels persisted for at least 24 104 

hours after starting steroid treatment (Extended Data Figure 2B). 105 

 106 

Figure 1: Dexamethasone modulates cytokine and immune cell gene expression 107 

in the blood of patients with COVID-19 108 

 109 

a, The introduction of dexamethasone (Dex) as standard of care for critically ill patients 110 

hospitalized with COVID-19 based on the results of the RECOVERY trial. Blood and 111 

tracheal aspirate (TA) samples were collected from intubated patients enrolled either 112 

before or after this change. b, Included patients and time points per analysis. A single 113 

sample was used per patient. Each patient was either treated with Dex (orange) or not 114 

(blue). Samples used in DIABLO analysis (Figure 2) are the overlap in PBMC bulk RNA 115 

sequencing and plasma cytokine rows. c, Individual plots of log-transformed significant 116 

cytokines IL-6, IL-10, and interferon gamma (IFN-gamma) (Wilcoxon test, adjusted p-117 

value < .1). N = 23 Dex, N = 15 NoDex. d, Volcano plot of differential gene expression 118 

of PBMC RNA-seq data. N = 10 Dex, N = 11 NoDex. 119 
 120 

 We then compared peripheral blood gene expression between the Dex (N = 10) 121 

and NoDex (N =11) groups and found 4,050 differentially expressed genes (20% of 122 

protein coding genes tested) after adjusting for age and sex (adjusted p-value < 0.1) 123 

(Figure 1D). Immune genes such as TNFRSF4, involved in T cell co-stimulation, and 124 

IL21R, involved in T-/B- and NK-cell activation, as well as several genes involved in 125 

allergic responses (MS4A2, PTGDR2) were downregulated in Dex patients. Genes 126 



upregulated in the Dex patients included ADAMTS2, a procollagen N-endopeptidase 127 

upregulated by TGF-beta that has been reported to be upregulated by glucocorticoids,13 128 

and RLN3, involved response to DNA damage and repair.14 Gene set enrichment 129 

analysis (GSEA) of results of the differential gene expression analysis identified 21 130 

significantly dysregulated pathways in the Reactome database (adjusted p-value < 0.1) 131 

(Extended Data Figure 3). The most enriched pathways in Dex patients included 132 

metabolic pathways such as tricarboxylic acid cycle and several mitochondria-133 

associated pathways, defense against pathogens, and interferon signaling. Conversely, 134 

NoDex patients had gene expression signatures consistent with the enrichment of 135 

sensory perception pathways possibly linked to differences in leukocyte populations,15 136 

and the activation of cell survival related pathways such as fibroblast growth factor 137 

receptor (FGFR)- and G-protein-coupled receptor (GPCR). 138 

 139 

Supervised integrative analysis of blood transcriptomic and plasma cytokine data 140 

identifies co-varying responses to dexamethasone 141 

We next designed an integrative analysis examining the effect of dexamethasone 142 

on gene expression and protein concentrations in all patients with both data types 143 

available from the same blood sample (N = 10 Dex patients and N = 11 NoDex). We 144 

used DIABLO16, an implementation of partial least squares discriminant analysis, to 145 

identify components (“variates”) shared across modalities that stratify based on 146 

dexamethasone treatment with the goal of identifying coordinated changes across gene 147 

expression and protein concentrations vs. changes independently observed in unique 148 

data types. Variate 1 clearly separated Dex from NoDex patients (Figure 2A). When 149 

examining the contributions to variate 1 from the cytokine data, Dex patients were 150 

separated based on lower IP-10, which is involved in interferon gamma signaling; lower 151 

levels of the inflammatory cytokines IL-6 and IL-18; lower ICAM-1, which is involved in 152 

inflammation and leukocyte recruitment; and lower Ang-2, a facilitator of angiogenesis 153 

and antagonist to Ang-1. Dex patients were conversely separated by higher Ang-1, and 154 

higher levels of protein C and IL-10, reflecting the attenuated proinflammatory cytokine 155 

signaling observed in the unimodal analysis (Figure 2B).  156 

Gene set enrichment analysis of the transcriptomic contributions to variate 1 157 

unexpectedly demonstrated relative elevation of innate immune response and cytokine 158 

signaling pathways in Dex patients compared to the NoDex patients (Figure 2C). 159 

Covariation highlighted by DIABLO exposed a decrease in the inflammatory response in 160 

circulating cytokines, and an increase in inflammatory responses in peripheral blood  161 



Figure 2: Supervised integrative analysis of blood transcriptomic and plasma 162 

cytokine data captures co-varying effects of dexamethasone on immune cell 163 

pathways and modulators 164 

 165 
 166 

a, Integrative analysis of plasma cytokines (17 cytokine variables) and bulk PBMC RNA-167 

seq (500 gene variables) data (paired) from patients comparing Dex and NoDex using 168 

DIABLO and highlighting shared contributions from individual data modalities. N = 10 169 

Dex, N = 11 NoDex; day 0 of hospitalization. First two variates from DIABLO run 170 

comparing Dex (orange) vs. NoDex (blue) samples. A parameter value of 0.5 was 171 

chosen to model the strength of the relationship between the data and the treatment 172 

status. b, Cytokine contribution (loadings) to DIABLO variate 1. The color indicates the 173 

treatment group in which the median value was the highest (orange for Dex and blue for 174 

NoDex). c, Gene set enrichment analysis of PBMC RNA-seq contribution to DIABLO 175 

variate 1 (loadings) using REACTOME gene sets (methods). 20 most significant terms 176 

represented: top 10 for Dex (orange) and top 10 for NoDex (blue). 177 

 178 

gene expression. Pathways involved in defense against pathogens, as well as interferon 179 

signaling, were found to be enriched in Dex patients, consistent with the analysis of 180 

peripheral blood gene expression. Additionally, gene expression variation represented 181 

by variate 1 was associated with alterations in transcriptional regulation and specifically, 182 

to epigenetic-related processes. 183 

 184 

Single-cell analysis reveals differing effects of dexamethasone on immune cells 185 

from the lung versus blood that are reproducible in external datasets 186 

In order to compare systemic and tissue-specific effects of dexamethasone 187 

treatment, we examined single-cell RNA sequencing data from both whole blood and 188 



TA from patients treated with or without dexamethasone. We evaluated whole blood 189 

(WB) scRNA-seq data from 7 Dex and 3 NoDex, and TA scRNA-seq data from 10 Dex 190 

and 7 NoDex patients (Figure 3A, 3B). A single data processing pipeline was used to 191 

align, harmonize, and cluster data and identify cell types from both compartments 192 

(Figure 3C, 3D), as well as examine the cell-specific effect of dexamethasone (Figure 193 

3E, 3F). Notably, while we include in our gene expression and pathway analysis the 194 

cells that are identified as neutrophils, we excluded them from our comparisons of cell 195 

type abundance because their proportions were highly discordant with complete blood 196 

count results of absolute neutrophil count per white blood cell count (Extended Data 197 

Table 1), likely due to experimental variability in the neutrophil-sparing protocol for 198 

scRNA-seq in blood. 199 

Cell-type specific gene expression differences assessed using MAST17 identified 200 

both shared and compartment-specific differential gene expression associated with 201 

dexamethasone (Figure 3G, 3H, Extended Data Figure 4, Extended Data Table 3; 202 

Supplementary File 1). The greatest concordance across compartments appeared in 203 

neutrophil differential gene expression (R = 0.5; Figure 3G). Dex subjects exhibited 204 

decreases in expression of the S100A family of proinflammatory genes in neutrophils in 205 

both lungs and blood. In contrast, gene expression in T cell subsets was highly 206 

discordant across compartments (Tregs R = 0.03; CD4 T cells R = 0.05, CD8 T cells R 207 

= -0.01). The greatest shared significant difference across anatomical sites in CD4 and 208 

CD8 T cells was in the expression of FKBP5 (log2 fold-difference 0.49 and 0.39, and 209 

adj. p-value 0.023 and 0.058 for CD4 and CD8 T cells, respectively), which is a 210 

canonical transcriptomic marker of glucocorticoid receptor activity.18 211 

In order to assess consistency and reproducibility of our analysis, we also 212 

analyzed two external single-cell RNA-seq datasets using this same pipeline: Sinha et 213 

al similarly generated scRNA-seq on whole blood to examine the role of neutrophils in 214 

COVID-19 and responsiveness to dexamethasone in an observational cohort of 13 215 

patients (5 Dex/ 8 NoDex)7; and Liao et al acquired bronchoalveolar lavage (BAL) 216 

samples from 6 COVID-19 patients19, a subset of whom were treated with the 217 

corticosteroid methylprednisolone (4 methylprednisolone, 2 no-methylprednisolone).  218 

Immune cell composition was similar per compartment in external datasets (Extended 219 

Data Figure 5).  220 

 To assess whether the effects of dexamethasone were reproducible across 221 

datasets, we performed tested for enrichment of pathways in the Reactome dataset that 222 

were detected across blood datasets (Figure 4A, Extended Data Figure 6) and lung  223 



Figure 3: Single-cell analysis of lung and peripheral blood samples from patients 224 

treated with or without dexamethasone  225 

 226 

a,b, Plot per patient showing the collection of blood (a; N = 7 Dex, 3 NoDex) or TA 227 

samples (b; N = 10 Dex, 7 NoDex) overlaid on hospitalization (gray bars) and 228 

dexamethasone treatment (pink bars). X-axis shows days of hospitalization (day 0 = 229 

admission to UCSF hospital). Dots show the day when sample was collected, colored 230 

by Study Day (methods). c,d, UMAP plots of single-cell RNA-seq data from blood (c) or 231 

TA (d) samples, clustered and annotated by major immune cell types. e,f, UMAP plots 232 

of single-cell RNA-seq data from blood (e) or TA (f) samples, colored by Dex (blue) or 233 

NoDex (pink) samples. g,h, log2 fold difference of gene expression of Dex and NoDex in 234 

TA (y-axis) v. blood (x-axis) plotted for Neutrophils (g) and Tregs (h). Significant genes 235 

in TA only (blue), blood only (brown), both compartments (red) are shown (adj. p-value 236 

< 0.1 & |log2 fold-difference| > 0.5). Spearman’s correlation R value shown between the 237 

two compartments. 238 
 239 

datasets (Figure 4B, Extended Data Figure 6). In the blood datasets, we observed 240 

decreased innate immune signaling and degranulation in neutrophils and decreased 241 

immunoregulatory interactions between the lymphoid and non-lymphoid cells in 242 

monocytes in Dex patients. Both blood datasets revealed decreased adaptive immune 243 

responses and co-stimulation in B cells, as well as decreased levels in cellular 244 



responsiveness, and pathways related to infectious disease and influenza responses in 245 

both CD4 and CD8 T cells in Dex patients. Interestingly, responses in B cells, CD4 T 246 

cells, and monocytes were directionally consistent with a restoration to healthy control 247 

levels in these pathways (Figure 4A, third column), as compared to observations in 248 

neutrophils and CD8 T cells.  249 

 250 

Figure 4: Dexamethasone has discordant effects on cell type specific gene 251 

expression in lung and peripheral blood that are reproducible in external datasets 252 

 253 
a,b, Net enrichment scores from gene set enrichment analysis in blood (a) and lung (b), 254 

faceted by cell type. Orange circles have a positive net enrichment score (NES), 255 

indicating the pathway is more highly expressed in dexamethasone-treated COVID-19 256 

patients (Dex) or healthy controls relative to NoDex subjects. Solid circles identify 257 

pathways where GSEA FDR < 0.1, empty circles identify pathways with GSEA FDR ≥ 258 

0.1, and blank spaces indicate no GSEA NES score was calculated for that pathway. 259 

Datasets represented are from COMET (whole blood, TA), Sinha et al (blood) and Liao 260 

et al (BAL). 261 



In contrast, when examining our lung datasets, we observed reproducible but 262 

often discordant effects with what was observed in blood, most strikingly an elevation in 263 

interferon signaling and response in influenza-related genes in T cell subsets and NK 264 

cells in Dex patients that was not observed (interferon) or decreased (influenza) in the 265 

blood single-cell datasets (Figure 4B). Interferon signaling was, as expected, lower in 266 

healthy controls than in COVID-19 patients (column 3). Discordant effects also included 267 

pathways related to translation and cellular responses to starvation in CD4 T cells, 268 

which appeared higher in lung but lower in blood in Dex patients. Concordant effects 269 

across compartments were not detectable.  270 

 271 

Single-cell receptor ligand analysis suggests effects of dexamethasone on tissue 272 

injury resolution and a dampening of antigen presentation and T cell responses 273 

 Because we identified several differences in cell-specific gene expression, we 274 

next sought to understand communication between cells within a compartment to 275 

develop a model of the systems biology of dexamethasone in patients with severe 276 

COVID-19. We examined ligand-receptor communication using CellChat20, which 277 

extracts signaling patterns among cells from single-cell RNA-seq data. We compared 278 

cell-cell signaling between Dex and NoDex subjects in the COMET study patients 279 

(blood and TA) and the Sinha et al study, and compared results against blood scRNA-280 

seq data from healthy controls. In TA, CellChat identified several pathways that were 281 

differentially active in Dex and NoDex samples (Figure 5A). Dexamethasone was 282 

associated with a marked decrease in MHC-II signaling (Figure 5B), suggesting a 283 

potential decrease in antigen presentation to CD4 cells in the lung. In addition, CellChat 284 

identified a significant decrease in SELPLG activity in TA (Figure 5C), suggesting 285 

dexamethasone might play a role in decreasing lung injury through these mechanisms, 286 

given prior studies associating SELPLG with murine lung injury and higher risk for non-287 

COVID-19 ARDS in humans. Similar effects were also observed in blood, but the effect 288 

was much smaller in magnitude than in TA samples and statistically insignificant. 289 

 Dexamethasone was associated with additional differences in whole blood that 290 

were consistent with findings in the Sinha et al dataset. A clustered heatmap of detected 291 

interactions grouped together the two NoDex COVID-19 datasets, whereas the two Dex 292 

COVID-19 datasets grouped with each other and with the healthy control dataset, 293 

suggesting dexamethasone may be contributing to a restoration toward a healthy 294 

phenotype (Figure 5D). The collagen and annexin pathways were more active in 295 

NoDex subjects, and activity of these pathways in Dex subjects was comparable to  296 



Figure 5: Receptor ligand inference from single-cell sequencing data reveals 297 

decrease in inflammation, antigen presentation, and T cell recruitment in blood 298 

and lung in response to dexamethasone 299 

 300 
a, Clustered heatmap of CellChat results of TA samples from Dex as compared to 301 

NoDex patients with significant receptor-ligand pairs shown (p-value < 0.05 and |log2 302 

fold-difference| > 1). b,c, Cell type interaction networks for MHC-II (b) and SELPLG 303 

interactions (c) shown comparing NoDex (left) and Dex (right) patients of TA samples. 304 

Line thickness represents predicted strength of the interaction. d, Clustered heatmap of 305 

CellChat results of blood samples from Dex (COMET), Dex (Sinha et al), NoDex 306 

(COMET), NoDex (Sinha et al), and healthy controls (COMET) with receptor-ligand 307 

pairs that are significant between at least one pair of patient groups are shown (p-value 308 

< 0.05 and | log2 fold-difference| > 1). e, Comparisons for the COMET dataset shown 309 

between Dex, NoDex, and healthy controls for a subset of significantly detected 310 

receptor-ligand interactions (*adj. p<0.1, **adj. p<0.001, ***adj. p<0.0001, ****adj. 311 

p<0.00001).  312 

 313 



healthy controls (Figure 5E, Extended Data Figure 7). Interestingly, collagen 314 

deposition can occur in the context of viral infection, likely as a response to injury and 315 

inflammation, and the restoration to healthy control levels may further indicate reduction 316 

of that response. In addition, elevation of CD99, ICAM, and ITGB2 were observed in 317 

NoDex patients as compared to both Dex patients and healthy controls (Figure 5E, 318 

Extended Data Figure 7). This finding may indicate an effect of dexamethasone on 319 

dampening T cell responses since these signaling molecules are involved in leukocyte 320 

recruitment, formation of the immunological synapse between T cells and antigen 321 

presenting cells, and T cell function and activation21.  322 

 323 

Discussion 324 

Despite their widespread use in clinical medicine and demonstrated benefit in 325 

patients with severe COVID-19 infections, the biological effects of corticosteroids on 326 

pulmonary and systemic biology in critically ill patients are incompletely characterized. 327 

We performed a multi-omic analysis of the effects of dexamethasone in a cohort of 328 

patients with severe COVID-19. We identified cell- and compartment-specific effects of 329 

dexamethasone that highlight the pleiotropic effects of steroids in critical illness. Limited 330 

data are available about the compartmentalized biological effects of steroids in patients 331 

with ARDS, pneumonia, or sepsis due to causes other than COVID-19, and the role of 332 

corticosteroids to treat these conditions in patients remains uncertain.22–24 Our analysis 333 

identifies dysregulated pathways potentially modified by dexamethasone therapy that 334 

could have potential therapeutic relevance in other causes of critical illness25.    335 

Integrative analysis of cytokine and blood transcriptomics identified decreased 336 

plasma concentrations of IP-10 in Dex patients. IP-10 is an interferon-stimulated 337 

molecule that promotes T-cell adhesion to endothelial cells,26 and has been associated 338 

with disease severity and mortality in COVID-19 patients.27 Consistent with this result, 339 

interferon-gamma concentrations were also lower in patients treated with 340 

dexamethasone. In contrast to IP-10 and IFN-gamma protein levels, interferon-341 

stimulated genes were markedly upregulated in dexamethasone-treated patients in our 342 

integrative analysis. The discordance between interferon levels from protein biomarker 343 

data and the enrichment of interferon-related genes may reflect steroid-resistant ISG 344 

pathways remaining active in these patients, which may explain the efficacy of 345 

JAK/STAT inhibition in patients treated with steroids28. We also found higher levels of 346 

Ang-1, and lower concentrations of its antagonist, Ang-2, were associated with 347 



dexamethasone treatment. An increased ratio of Ang-2 to Ang-1 reflects endothelial 348 

injury29, and is associated with mortality in patients with ARDS due to COVID-19 and 349 

other causes30. Together, the results of our integrative analysis demonstrate treatment 350 

with dexamethasone is associated with decreased activation of several pathways 351 

associated with COVID-19 severity. 352 

Inference and analysis of cell communication identified potential cellular signaling 353 

networks that may explain changes in COVID-19 biology associated with 354 

dexamethasone treatment. In TA, dexamethasone treatment was associated with 355 

decreased activity of MHC-II and SELPLG, a glycoprotein involved in leukocyte 356 

trafficking in inflammation. Notably, SELPLG was identified as a locus associated with 357 

increased risk of ARDS in GWAS studies, pulmonary SELPLG expression is increased 358 

in murine lung injury models, and anti-SELPLG antibodies decrease LPS-induced lung 359 

injury31. In both the respiratory tract and whole blood, dexamethasone was associated 360 

with decreased MHC-II activity. Dexamethasone inhibits expression of MHC-II in 361 

dendritic cells in experimental models,32 which may further suppress immune responses 362 

by decreasing antigen presentation to T cells.  363 

Network analysis of whole blood scRNA-seq data revealed decreased activity of 364 

annexin, integrin beta 2, and ICAM pathways, which mediate leukocyte adhesion and 365 

extravasation. These decreases were also observed in TA. Annexins play a key role in 366 

resolving inflammation and are established glucocorticoid targets.33 Beta2 integrins are 367 

adhesion molecules that regulate neutrophil function, and leukocyte adhesion and 368 

trafficking.  Our results are consistent with prior observations that steroids decrease the 369 

expression of integrin beta 2 (CD18) in activated neutrophils.34 Intercellular adhesion 370 

molecules enable leukocyte recruitment to injured lung and, in patients with non-371 

COVID-19 ARDS, increased concentrations of sICAM-1 are associated with a higher 372 

mortality, hyperinflammatory ARDS phenotype35,36 and dexamethasone also inhibits 373 

LPS-stimulated ICAM-1 signaling.37 ICAM-1 has additionally been reported to be higher 374 

in non-survivors than survivors of COVID-19 related ARDS.11 In whole blood, we also 375 

observed decreased activity of collagen pathways with dexamethasone treatment, 376 

which may reflect a mitigation of damage from viral injury.38 The results of the network 377 

analysis identify several dysregulated cell-signaling pathways that may be modified by 378 

dexamethasone treatment and mediate the therapeutic effects of steroids in each the 379 

lungs and blood.  380 

This study significantly builds upon prior studies of the effects of steroids in 381 

patients with COVID-19. Prior observational studies have identified changes in 382 



neutrophilic inflammation and gene expression associated with corticosteroids in 383 

patients with COVID-19. Steroids were associated with decreased BAL neutrophils in a 384 

case series of 12 patients with COVID-19 ARDS who required ECMO39. In patients with 385 

non-resolving ARDS, steroid treatment was associated with decreased BAL 386 

concentrations of the neutrophil chemoattractants CXCL1 and CCL2040. Two 387 

observational studies have described the effects of dexamethasone on gene expression 388 

in patients with COVID-19 ARDS. Sinha et al. compared peripheral scRNA-seq data 389 

from six dexamethasone-treated patients to eight controls, and found that 390 

dexamethasone was associated with decreased annexin signaling, increased circulating 391 

immature neutrophils, and suppression of interferon-stimulated neutrophils.7 The 392 

second compared bulk RNA sequencing in BAL samples from eight patients treated 393 

with dexamethasone to four who did not receive dexamethasone, and identified genes 394 

that were differentially expressed between the groups related to B cell activation, 395 

leukocyte trafficking, and antigen presentation.8 Our work adds to the literature by 396 

identifying cell-specific and compartment-specific effects of dexamethasone in the 397 

context of severe COVID-19 that are reproducible in external cohorts.  398 

 Our results suggest dexamethasone has distinct effects on pulmonary and 399 

systemic inflammation and repair in patients with COVID-19, consistent with prior 400 

findings from lung injury models. Michel et al. challenged healthy volunteers with 401 

inhaled LPS and observed an increase in sputum and peripheral blood inflammatory 402 

biomarkers. Prednisolone 10mg had no effect on airway inflammation but markedly 403 

decreased plasma CRP concentrations41. Bartko et al bronchoscopically instilled LPS 404 

into lung segments of healthy volunteers and saline into a contralateral segment. 405 

Pretreatment with 40mg of dexamethasone 13 hours and 1 hour before LPS challenge 406 

markedly decreased systemic inflammation biomarker levels, BAL neutrophilia, and BAL 407 

protein concentrations, but only minimally decreased BAL IL-6 concentrations and had 408 

no effect on BAL TNF or IL-8 concentrations5. We observed several cell- and 409 

compartment-specific differences in gene expression associated with dexamethasone 410 

treatment, emphasizing the importance of studying respiratory illness biology not only 411 

systemically, but also at the site of injury. 412 

This study has several strengths. We selected subjects from a deeply 413 

phenotyped observational cohort and integrated multiple assays to identify 414 

compartment- and cell-specific differences in the responses to dexamethasone. We 415 

build on prior studies by examining both the systemic and pulmonary biology of COVID-416 

19 together, which provides more complete insight into the pathophysiology of critical 417 



respiratory illness. We used mixed effects modeling to compare single cell RNA 418 

expression, which addresses the pseudo-replication bias present in prior clinical single 419 

cell studies and produces more conservative and reproducible estimates of differential 420 

gene expression. Our findings extend our understanding of corticosteroids in critical 421 

respiratory illnesses, at the gene, protein and cellular levels. Future studies using similar 422 

methods can assess whether these observations are generalizable to patients with 423 

other critical illness syndromes, such as sepsis or ARDS. 424 

This study also has some limitations. COMET is an observational study, so 425 

treatment with dexamethasone was not randomly assigned, and we cannot rule out 426 

confounding by other unobserved variables that also changed during the study period. 427 

However, we carefully selected patients for inclusion in both the Dex and NoDex 428 

cohorts to minimize the effects of practice variation (Methods). We also observed higher 429 

plasma N-antigen concentrations in COMET patients who received dexamethasone. 430 

Dexamethasone notably impairs viral clearance in experimental models of SARS-CoV2 431 

pneumonia42, but we cannot confirm steroids had this effect in our cross-sectional data. 432 

Reassuringly, many of our observations are reproducible in external cohorts and are 433 

consistent with experimentally confirmed effects of dexamethasone. Secondly, it is 434 

challenging to temporally align specimens from critically ill patients, who have dynamic 435 

and rapidly changing biology. This variance can introduce additional within-group 436 

biological heterogeneity and bias comparisons toward the null; despite this challenge, 437 

we were able to identify robust and reproducible signals using multiple modalities, 438 

suggesting the date of intubation was a suitable reference timepoint for sample 439 

collection. Because this was an observational, cross-sectional study, we cannot 440 

determine if differences in cell- and compartment-specific gene expression represent 441 

proliferation of cell lines, changes in cell polarization, and/or translocation of cells 442 

between the pulmonary and systemic compartments.  443 

In summary, we identified cell- and tissue-specific differences in the effects of 444 

dexamethasone in critically ill patients with COVID-19. Our results provide new insights 445 

into potential therapeutic targets in COVID-19 and highlight the importance of studying 446 

compartmentalized immune responses in critically ill patients. 447 

 448 

Data availability 449 

The data files used to produce the results reported in this article are available on Gene 450 

Expression Omnibus (GEO), dbGaP or Dryad. The computable matrix of the plasma 451 



cytokine data is deposited at Dryad (doi:10.7272/Q6MS3R18). The sequencing data for 452 

COMET samples used here is available at GEO under GSE237180 SuperSeries. The 453 

FASTQ files and processed data files for the bulk RNA-seq data are available at GEO 454 

(GSE237109), dbGaP (phs002686.v1.p1) and at ImmPort (SDY1760). The cellranger-455 

processed raw feature-barcode matrices for tracheal aspirate and whole-blood are 456 

available at GEO (GSE236030), and the associated raw FASTQ files for 10X libraries 457 

have been deposited in the Sequence Read Archive (SRA). A subset of the whole-blood 458 

data published in our previous article10 was obtained from GSE163668 (HS1 and HS2 459 

from GSM4995425, HS50 from GSM4995430, and the healthy controls from 460 

GSM4995449- GSM4995462) The whole-blood data reported in Sinha et al was 461 

secured from GSE157789 and the BAL data in Liao et al from GSE145926. The 462 

accession numbers and sample metadata are included in Supplementary File 2. 463 

 464 

Code availability 465 

Code used to generate the analysis results are available at https://github.com/UCSF-466 

DSCOLAB/COVID-dex. 467 
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Methods 513 

Study 514 

We conducted a case-control study of mechanically ventilated COVID-19 ARDS 515 

patients with (Dex) or without (NoDex) administered dexamethasone. The patients used 516 

in this study were a subset of the participants enrolled in the COMET study (COVID-19 517 

Multi-immunophenotyping projects for Effective Therapies; https://www.comet-518 

study.org/) , which had a partial overlap with the IMPACC (IMmunoPhenotyping 519 

https://www.comet-study.org/
https://www.comet-study.org/


Assessment in a COVID-19 Cohort).9 These patients were enrolled either at the 520 

University of California, San Francisco Medical Center (UCSFMC) and Zuckerberg San 521 

Francisco General Hospital (ZSFG). The COMET study was approved by the UCSF 522 

Institutional Review Board (IRB #: 20-30497). We included patients who were enrolled 523 

between April 2020 and Mar 2021. The NoDex group (n=16) included patients enrolled 524 

before July 2020, when the dexamethasone became the standard of care for COVID-525 

19. The Dex group (n=27) included patients enrolled after July 2020. The patients were 526 

enrolled in a study within the first 72 hours of hospitalization. The blood samples were 527 

collected on the day of enrollment (“Study Day 0”) and tracheal aspirates were collected 528 

within four days of enrollment. We selected only a single timepoint per patient in each 529 

assay for this study. 530 

 531 

Subjects 532 

As the COMET database is regularly updated, we chose to freeze our list of included 533 

patients based on a snapshot of the database as of May 9, 2022. To be selected, 534 

patients had to meet all following criteria: confirmed COVID-19 infection; ICU admission 535 

record or WHO COVID-19 severity score of 6 or more at any point during hospital stay; 536 

not on an immunosuppressive therapy; for dexamethasone-treated patients, not be on a 537 

different steroid with an overlapping range, or prior admission; complete and 538 

unambiguous treatment record available; and intubated (Extended Data Table 1, 539 

Extended Data Figure 1). 540 

 541 

Data acquisition 542 

Luminex Assay for Plasma Cytokines 543 

The soluble plasma cytokines were quantified using the Luminex multiplex platform 544 

(Luminex, Austin TX) as described previously.10 Briefly, the analytes were quantified 545 

using the Luminex multiplex platform with custom-developed reagents (R&D Systems, 546 

Minneapolis, MN), as described in detail43 or single-plex ELISA (R&D Systems, 547 

Minneapolis, MN). The quantified analytes were read on MAGPIX® instrument and the 548 

raw data was analyzed using the xPONENT® software. Analytes quantified using 549 

single-plex ELISA were read using optical density. Values outside the lower limit of 550 

detection were imputed using 1/3 of the lower limit of the standard curve for analytes 551 

quantified by Luminex and 1/2 of the lower limit of the standard curve for analytes 552 

quantified by ELISA. 553 

 554 



Bulk RNA sequencing of PBMCs 555 

The bulk RNA sequencing library preparation for PBMC was performed using SMART-556 

Seq Low Input protocol as described here.44 Briefly, RNA was extracted from 2.5 x 105 557 

PBMCs using the Quick-RNA MagBead Kit (Zymo) with DNase digestion. RNA quality 558 

was assessed using a Fragment Analyzer (Agilent) and 10ng RNA was used to 559 

synthesize full length cDNA using the SMART-Seq v4 Ultra Low Input RNA Kit (Takara 560 

Bio). The cDNA was purified using bead cleanup, followed by library preparation using 561 

Nextera XT kit (Illumina). Libraries were validated on a Fragment Analyzer (Agilent), 562 

pooled at equimolar concentrations, and sequenced on an Illumina NovaSeq6000 563 

(Emory) at 100 bp paired-end read length targeting ~25 million reads per sample. 564 

 565 

Single-cell RNA sequencing of TA and WB 566 

The single cell RNA sequencing of TA and WB samples was performed as described 567 

previously.10,45 Briefly, the TA samples were transported to a BSL-3 laboratory, 3 mL of 568 

TA was dissociated using 50 µg/mL collagenase type 4 (Worthington), and 0.56 ku/mL 569 

of Dnase I (Worthington). The single-cells were collected by centrifugation and counted, 570 

and the CD45-positive cells were enriched using MojoSort Human CD45 beads 571 

(Biolgenend) and counted again before library preparation. The scRNA-seq of whole 572 

blood was performed to preserve granulocytes. Briefly, the peripheral blood was 573 

collected into EDTA tubes (BD, 366643). 500 μl of peripheral blood was treated with 574 

RBC lysis buffer (Roche, 11-814-389-001) according to the manufacturer’s instructions 575 

and the single cells were collected and counted. For both TA and WB samples, the 576 

Chromium Controller was loaded with 15,000 cells per sample following the 577 

manufacturer’s instructions (10X Genomics). Some samples were pooled together (at 578 

15,000 cells per sample) before GEM partitioning. A Chromium Single Cell 5′ Reagent 579 

Kit v2 (10X Genomics) was used for reverse transcription, cDNA amplification and 580 

library construction of the gene expression libraries (following the detailed protocol 581 

provided by 10X Genomics). Libraries were sequenced on an Illumina NovaSeq6000. 582 

 583 

Cytokine analysis 584 

Cytokine data was represented using principal component analysis. For this analysis 585 

only, variables with more than 10% missing values across the dataset were excluded. 586 

Patients with one or more remaining missing values were filtered out. Values were then 587 

log2-transformed and scaled. A PERMANOVA test was performed using Euclidean 588 

distances to estimate separation of the treatment groups. To compare circulating 589 



cytokine levels, Wilcoxon tests on cytokine concentrations, including those with more 590 

than 10% missing values, were employed. Significant differences were selected using a 591 

0.1 threshold on adjusted p-values. 592 

 593 

Bulk RNA sequencing analysis 594 

Gene counts were generated using the nf-core rnaseq pipeline v3.3 (https://nf-595 

co.re/rnaseq) and Salmon-generated counts were used for the analyses. 596 

For the analysis of bulk gene expression data, the R package DESeq2 (v1.28.1) was 597 

used. Age and sex were included as covariates in the model. The log fold-change 598 

values were shrunk using the apeglm algorithm. A 0.1 threshold on adjusted p-values 599 

was used to identify differentially expressed genes. Gene set enrichment analysis was 600 

performed with the fgsea package (v.14.0) and the REACTOME gene set database. 601 

Significantly disrupted pathways were identified using a 0.1 threshold on adjusted p-602 

values. 603 

 604 

Integrative analysis 605 

DIABLO (v6.14.11), a supervised multi-omics data integration tool, was selected to 606 

analyze coordinated changes across cytokine and bulk PBMC data, and to identify 607 

variables driving the differences between NoDex and Dex patients. Only intubated 608 

patients with both cytokine and bulk PBMC data measurements were selected for the 609 

integrative analysis. Scaled log2 transformed cytokine values and scaled variance 610 

stabilization transformed counts for the 500 most variable genes were used as input. 611 

DIABLO’s parameter design (range 0-1) indicates the extent to which covariance 612 

between data modalities should be maximized vs. covariance between individual data 613 

modalities and treatment status. We chose a value of 0.5 to balance the contribution of 614 

those two covariances for our analysis. 615 

 616 

Single-cell RNA sequencing analysis 617 

Data processing: 618 

The BCL files from sequencer were demultiplexed into individual libraries using 619 

mkfastqs command in Cellranger 3.0.1 suite of tools (https://support.10xgenomics.com). 620 

The feature-barcode matrices were obtained for each library by aligning the WB raw 621 

FASTQ files to GRCh38 reference genome (annotated with Ensembl v85) and TA raw 622 

FASTQ files to GRCh38 + SARS-CoV-2 reference genome using Cellranger count. The 623 

raw feature-barcode matrices were loaded into Seurat 4.0.3, and cell barcodes with 624 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjYhIeJlYeAAxUCLUQIHQGUDiEQFnoECCMQAQ&url=https%3A%2F%2Fnf-co.re%2Frnaseq&usg=AOvVaw1HdwxRiNFFPBvKPZSKX99x&opi=89978449
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjYhIeJlYeAAxUCLUQIHQGUDiEQFnoECCMQAQ&url=https%3A%2F%2Fnf-co.re%2Frnaseq&usg=AOvVaw1HdwxRiNFFPBvKPZSKX99x&opi=89978449
https://support.10xgenomics.com/


minimum of 100 features were retained in order to remove the droplets lacking cells. 625 

The features that were detected in less than 3 barcodes were removed. Our dataset 626 

contained three samples that were multiplexed for 10X library preparation and the rest 627 

were processed individually. For the samples that were processed individually, the 628 

heterotypic doublets were detected using DoubletFinder46 by matching each cell with 629 

artificially synthesized doublets. We used 35 PCs, pN=0.25 and sct=TRUE in 630 

DoubletFinder. An optimal pK value (PC neighborhood size used to compute pANN) 631 

was determined for each sample separately using find.pK function as suggested by the 632 

authors. We approximated the doublet rate as 7% based on 10X's recommendation for 633 

the expected doublets when 15,000 cells were loaded on the 10X handler 634 

(https://kb.10xgenomics.com/hc/en-us/articles/360001378811). DoubletFinder requires 635 

cell annotations to determine the rate of heterotypic doublets. We clustered the cell 636 

barcodes using Louvain clustering and the cluster labels were used as cell annotations. 637 

We removed the heterotypic doublets and subjected the remaining barcodes for further 638 

quality control.  639 

Our dataset contained three samples that were multiplexed, for which the filtered count 640 

data for singlets were obtained from GSE163668.10 The authors used Demuxlet47 to 641 

demultiplex the samples and to identify inter-sample doublets, and DoubletFinder to 642 

identify heterotypic doublets. Single cells with greater than 50,000 unique RNA 643 

molecules, fewer than 150 or greater than 8000 features, greater than 15% 644 

mitochondrial content or greater than 60% ribosomal content were removed. The cell 645 

cycle state of each cell was assessed using a published set of genes associated with 646 

various stages of human mitosis.48   647 

The WB data from healthy controls was obtained from GSE163668,10 the external 648 

validation WB data from COVID-19 patients from GSE1577897 and the external 649 

validation bronchoalveolar lavage (BAL) fluid data from GSE145926.19 The same data 650 

processing strategy was used for these datasets as for our datasets described above. 651 

 652 

Data integration and UMAP generation: 653 

There was a substantial heterogeneity between samples within treatment groups, most 654 

likely due to technical variations introduced during the library preparation that spanned 655 

over months. Even if this heterogeneity is due to biological differences, this 656 

heterogeneity could cause substantial issues in mapping same cell types across 657 

samples. To account for this, we integrated the samples using Seurat's CCA integration 658 

approach (FindIntegrationAnchors and IntegrateData functions),49 while treating each 659 

https://kb.10xgenomics.com/hc/en-us/articles/360001378811


sample as its own batch. The integrated data was scaled while regressing out feature 660 

counts, RNA counts, mitochondrial percentage, ribosomal percentage and cell states. 661 

After reducing the data to lower dimensions (PCs), 30 PCs were used for UMAP 662 

generation. The CCA integrated data was used only for generating UMAPs. All follow-663 

up analyses were performed using the non-integrated data. Each tissue was processed 664 

separately. 665 

  666 

Single-cell annotation: 667 

Automated cell annotation was performed using SingleR.50 We mapped the log-668 

normalized expression data against a reference expression dataset from ENCODE 669 

Blueprint.51 The fine labels of Blueprint dataset were used for mapping. Many cell types 670 

contained too few cells, which were cleaned up in two ways: the cell types with less 671 

than 101 cells across all samples from a tissue were labeled "other" and fine labels 672 

were manually combined into broad cell types for the follow up analyses. 673 

  674 

Differential frequency analysis: 675 

The cell frequencies were normalized to the total cell counts per sample and compared 676 

between Dex and NoDex samples using Wilcoxon test. The log2 fold-change was 677 

calculated by calculating the log-ratio of mean normalized frequencies of Dex and 678 

NoDex samples. The Neutrophils were removed before frequency normalization. 679 

  680 

Differential gene expression:  681 

To study the cell-type-specific effects of dexamethasone in whole blood and TA 682 

samples, we compared gene expression between Dex and NoDex samples within each 683 

tissue for every cell-type separately. The differential expression analysis was performed 684 

using Model-based Analysis of Single-cell Transcriptomics (MAST),17 while controlling 685 

for the number of detected genes per cell and using patients as a random effect. Briefly, 686 

the cell types with at least 50 cells in both conditions were retained in the Seurat 687 

objects. For each cell type, the Seurat object was subsetted to keep single-cell 688 

expression data for that cell type, the subsetted object was converted to 689 

SingleCellExperiment object, and the RNA raw counts were normalized for the library 690 

size (i.e. divided each count by total number of UMIs per cell and multiply by the mean 691 

of the number of UMIs per cell across all cells) and log2 transformed with pseudocount 692 

of 1. To remove the highly sparse data, only genes with non-zero counts in at least 5% 693 

cells in at least one condition were retained. Finally, the zlm function was used to 694 



identify the differentially expressed genes between Dex and NoDex samples. We 695 

accounted for the number of detected genes per cell in the model. Since the numbers of 696 

cells per patient are often very different, the differential analysis is often biased toward 697 

the patient with the largest number of cells. To account for this bias, we used patient ids 698 

as a random effect. Additionally, we used the following parameters in zlm function: 699 

method='glmer', ebayes = F, strictConvergence = FALSE, fitArgsD = list(nAGQ = 0). 700 

Finally, the P values were corrected for multiple testing using FDR. 701 

 702 

Gene set enrichment analysis:  703 

To identify the pathways affected by the dexamethasone treatment, we performed gene 704 

set enrichment analysis (GSEA).52 We ranked the genes by the log2 fold-changes 705 

between pairs of Dex, NoDex and healthy samples and used fgseaMultilevel function 706 

from fgsea package in R (nPermSimple = 10000 and minSize = 25) to perform GSEA 707 

analysis against REACTOME pathways. Significantly disrupted pathways were 708 

identified using a 0.1 threshold on adjusted p-values. 709 

 710 

CellChat analysis:  711 

We performed CellChat analysis53 to identify ligand-receptor pairs that display 712 

differential interaction strength between cells from Dex, NoDex and healthy groups. The 713 

Seurat objects were subsetted to include the cell types that had more than 100 cells in 714 

all conditions within that tissue. Specifically, for TA data, the cell types with more than 715 

100 cells in both Dex and NoDex were retained, and for blood data, the cell types with 716 

more than 100 cells in all groups (Dex (COMET), NoDex (COMET), healthy (COMET), 717 

Dex (Sinha et al) and NoDex (Sinha et al)) were retained. The CellChat objects were 718 

first created for each group (condition) of cells separately using createCellChat() 719 

function, with Seurat’s normalized RNA data as input data. The over expressed genes 720 

and interactions were identified based on the CellChat database of human ligand-721 

receptor pairs, and the expressed data were projected on the protein-protein interaction 722 

network. Finally, the communication probabilities were calculated, the communications 723 

based on less than 10 cells were discarded, aggregated network were calculated by 724 

summarizing the communication probability, and saved as individual RDS files for each 725 

condition. Pairs of conditions, for example TA Dex and TA NoDex, were compared 726 

using rankNet to rank signaling networks based on the information flow. We used this 727 

information flow to find ligand-receptor pairs that exhibit significant difference in 728 

predicted interaction strength between the conditions. 729 



 730 

Statistics 731 

The p-values were corrected for multiple testing using Benjamini–Hochberg method, 732 

which controls for the false-discovery rate (FDR). 733 

 734 
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Extended Data 866 

 867 
Extended Data Table 1 | Demographics table at admission (unless specified otherwise). 868 
 869 

Variable Category All (N=43) 
No Dexamethasone 

(N=16) 
Dexamethasone (N=27) 

No Dex vs. 
Dex 

Age (years) 58.0 (45.5-68.5) 50.5 (40.5-64.2) 62.0 (53.0-70.5) NS 

Sex at birth Male 30 (69.8%) 11 (68.8%) 19 (70.4%) NS 

BMI  33 (30.3-37.5) 32.7 (28.7-37) 33.5 (30.3-38.2) NS 

Race 

Asian 2 (4.7%) 2 (12.5) 0 (0.0) 

NS 

Black / African 
American 

2 (4.7%) 0 (0.0%) 2 (7.4%) 

Native Hawaiian / 
Other Pacific 

Islander 
0 (0.0%) 0 (0.0%) 0 (0.0%) 

Other / Multiple 
Races 

31 (72.1%) 12 (75.0%) 19 (70.4%) 

White 8 (18.6%) 2 (12.5%) 6 (22.2%) 

Ethnicity Hispanic / Latino 27 (62.8%) 10 (62.5%) 17 (63.0%) NS 

Mean arterial 
pressure 

(mmHg) 97.3 (84.7-105.5) 95.0 (81.8-100.7) 98.0 (85.7-106.2) NS 

Diastolic blood 
pressure 

(mmHg) 77.0 (69.0-84.0) 79.0 (65.2-86.8) 76.0 (70.5-82.0) NS 

Systolic blood 
pressure 

(mmHg) 134.0 (116.0-145.5) 119.0 (106.0-136.5) 140.0 (122.5-150.0) P=.03 

FiO2  0.2 (0.2-0.5) 0.2 (0.2-0.4) 0.2 (0.2-0.6) NS 

P/F ratio at Day 0  97 (68-150) 97 (71-155) 95 (68-147) NS 

Oxygen saturation (%) 90 (85-96) 93 (88-96) 90 (84-95) NS 

Heart rate (beats per minute) 108 (87-123) 112 (85-125) 105 (91-121) NS 

Respiratory rate 
(breaths per 

minute) 
25 (22-30) 25 (24-32) 26 (21-30) NS 

Temperature (Celsius) 36.8 (36.7-37.5) 36.8 (36.7-37.2) 36.8 (36.7-37.6) NS 

Neutrophil/WBC  0.85 (0.79-0.90) 0.85 (0.83-0.90) 0.85 (0.77-0.91) NS 

N antigen (pg/mL) 481.2 (5.3-4510.8) 24.5 (2.1-2162.5) 958.7 (335.5-4887.5) P=.04 

Time between first 
Dex and D0 

sample 
(days) / / 2 (1-2.5) / 

Remdesivir Yes 32 (74%) 5 (31%) 27 (100%) P<.001 

Discharge status 

In-hospital death 10 (23.3%) 2 (12.5%) 8 (29.6%) 

NS 

Activity limitations 
and/or O2 

requirements 
23 (53.5%) 10 (62.5%) 13 (48.1%) 

No limitations and 
no O2 

requirements 
10 (23.3%) 4 (25.0%) 6 (22.2%) 

Ventilator-free 
days 

 7.0 (2.0-18.5) 12.0 (0.0-18.2) 5.0 (2.5-18.0) NS 

Alive Yes 32 (74.4%) 14 (87.5%) 18 (66.7%) NS 
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Extended Data Table 2 | Measured cytokine biomarkers. 

 
Cytokine Cytokine full name 

Ang-1 Angiopoietin 1 
Ang-2 Angiopoietin 2 

ICAM-1 Intercellular adhesion molecule 1 
IFN-gamma Interferon gamma 

IL-10 Interleukin 10 
IL-18 Interleukin 18 
IL-6 Interleukin 6 
IL-8 Interleukin 8 

IP-10 Interferon gamma-induce protein 10 
MMP-8 Matrix metalloproteinase 8 
PAI-1 Plasminogen activator inhibitor 1 

Protein C / 
RAGE Receptor for advanced glycation end-products 
SP-D Surfactant protein D 

Thrombomodulin / 
TNR R1 Tumor necrosis factor receptor 1 
TREM-1 Triggering receptor expressed on myeloid cells 1 
VEGF Vascular endothelial growth factor 

 

  



 
Extended Data Table 3 | Significant gene expression counts per 
cell type across compartments. 
 

Cell type 
Both 
compartments TA only WB only 

CD4 T 1 0 177 

CD8 T 1 4 38 

Monocytes 8 13 176 

Neutrophils 14 9 92 

NK 0 11 19 

other 0 0 37 

Tregs 3 84 50 

 
Number of significantly different genes per cell type using MAST (adj. 
p-value < 0.1 & |log2FC| > 0.25). 
TA = tracheal aspirate. WB = whole blood. Both compartments = both 
WB and ETA samples.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



 
Extended Data Figure 1 | Consort chart. 

 
  



 
 
Extended Data Figure 2 | Differences in cytokine expression. a, 
Volcano plot of cytokines comparing Dex (right > 0) and NoDex (left < 
0), colored by significance (red; Wilcoxon test, adjusted p-value < 

0.1). N = 23 Dex, N = 15 NoDex, for 18 cytokines; day 0 of 
hospitalization. b, Cytokine differences, stratified by time between 
first dexamethasone dose and sample collection. 

 

 
 

   

 

 
  



 
Extended Data Figure 3 | Gene set enrichment of bulk RNA-seq 
from PBMC. Gene set enrichment plot of 19 most significant – top 10 

for Dex (orange) and top 9 for NoDex (blue) – Reactome terms, 
based on differential gene expression results.

  



 
 
Extended Data Figure 4 | Cross tissue differential gene 
expression. log2 fold-difference in gene expression of Dex and 
NoDex in TA (y-axis) v. blood (x-axis) plotted for additional cell types 
not shown in Figure 3. Significant genes in TA only (blue), blood only 

(brown), both compartments (red) are shown (adj. p-value < 0.1 & | 
log2 fold-difference| > 0.5). Spearman’s correlation R value shown 
between the two compartments.

 
  



 
Extended Data Figure 5 | Immune cell frequencies quantified and 
compared between Dex and NoDex samples. X-axis shows log2 
fold-difference of Dex compared to NoDex in whole blood (purple 
circle); TA (orange circle); a blood validation set (Sinha et al, purple 

diamond); a lung validation set (bronchial alveolar lavage; Liao et al, 
orange triangle). Significance shown by boxes. The size of each 
shape corresponds to -log10 p-value calculated using the Wilcoxon 
test.

  



 
Extended Data Figure 6 | Gene set enrichment of Tregs in blood 
and lung. Net enrichment scores from gene set enrichment analysis 
in blood and lung shown for Tregs (remaining cell types shown in 
Figure 4). Fold differences are shown for dexamethasone-treated 
samples (Dex), or healthy control samples, all relative to 

the NoDex samples within that dataset. Orange shows up in Dex or 
healthy relative to NoDex COVID-19 samples, bule shows down in 
Dex or healthy. Datasets represented are from COMET (whole blood, 

TA), Sinha et al (blood) and Liao et al (BAL). 

 
 
  



 
Extended Data Figure 7 | Whole blood cell interactions using 
CellChat. CellChat interaction networks for COLLAGEN, ANNEXIN, 
ICAM and ITGB2 interactions shown comparing NoDex (left), and 

Dex (middle) patients, and healthy controls (right) for COMET whole 
blood dataset. Line thickness represents predicted strength of the 
interaction. 
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Supplementary files are available as separate files. 
Supplementary File 1: Full differential gene expression results (MAST) for COMET, Sinha et 
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