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Abstract 

 

MicrobeMASST, a taxonomically-informed mass spectrometry (MS) search tool, tackles limited 

microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated 

database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra 

and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification 

of microbial-derived metabolites and relative producers, without a priori knowledge, will vastly enhance 

the understanding of microorganisms' role in ecology and human health. 

  

Main 

 

Microorganisms drive the global carbon cycle1 and can establish symbiotic relationships with 

host organisms, influencing their health, aging, and behavior2–6. Microbial populations interact with 

different ecosystems through the alteration of available metabolite pools and the production of 

specialized small molecules7,8. The vast genetic potential of these communities is exemplified by 

human-associated microorganisms, which encode approximately 100 times more genes than the 

human genome9,10. However, this metabolic potential remains unreflected in modern untargeted 

metabolomics experiments, where typically <1% of the annotated molecules can be classified as 

microbial. This problem particularly affects mass spectrometry (MS)-based untargeted metabolomics, 

a common technique to investigate molecules produced or modified by microorganisms11, which 

famously struggles with spectral annotation of complex biological samples. This is because the 

majority of spectral reference libraries are biased towards commercially available or otherwise 

accessible standards of primary metabolites, drugs, or industrial chemicals. Even when metabolites are 

annotated, extensive literature searches are required to understand whether these molecules have 

microbial origins and to identify the respective microbial producers. Public databases, such as KEGG12, 

MiMeDB13, NPAtlas14, and LOTUS15, can assist in this interpretation, but they are mostly limited to well-

established, largely genome-inferred, metabolic models or to fully characterized and published 

molecular structures. Additionally, while targeted metabolomics efforts aimed at interrogating the gut 

microbiome mechanistically have been developed16, these focus only on relatively few commercially-

available microbial molecules. Hence, the majority of the microbial chemical space remains unknown, 

despite the continuous expansion of MS reference libraries. To fill this gap, we have developed 

microbeMASST (https://masst.gnps2.org/microbemasst/), a search tool that leverages public MS 

repository data to identify the microbial origin of known and unknown metabolites and map them to 

their microbial producers. 

 

MicrobeMASST is a community-sourced tool that works within the GNPS17 ecosystem. Users 

can search tandem MS (MS/MS) spectra obtained from their experiments against MS/MS spectra 

previously detected in other extracts of bacterial, fungal, or archaeal monocultures. No other available 

resource or tool allows linking uncharacterized MS/MS spectra to characterized microorganisms . The 

microbeMASST reference database of monocultures has been generated through years of community 

contributions and metadata curation, and it contains microorganisms isolated from plants, soils, 

oceans, lakes, fish, terrestrial animals, and humans (Figure 1a). All available microorganisms are 

categorized according to the NCBI taxonomy18 at different taxonomic resolution (i.e. species, genus, 

family, etc.) or mapped to the closest taxonomically accurate level, if no NCBI ID was available at the 

time of database creation. As of June 2023, microbeMASST includes 60,781 liquid chromatography 

(LC)-MS/MS files, comprising >100 million MS/MS spectra, mapped to 541 strains, 1,336 species, 539 

genera, 264 families, 109 orders, 41 classes, and 16 phyla from the three domains of life: Bacteria, 

Archaea, and Eukaryota (Figure 1b). Differently from MASST19, which uses a precomputed network of 

~110 million MS/MS spectra to enable spectral searching, microbeMASST is based on the newly 

introduced Fast Search Tool (https://fasst.gnps2.org/fastsearch/)20. This tool, originally designed for 

proteomics, drastically improves search speed by several orders of magnitude by indexing all the 



 

 

MS/MS spectra present in GNPS/MassIVE and restricting the search space to the user input 

parameters. Because of this, search results are returned within seconds as opposed to 20 min per 

search or 24-48 hours for modification tolerant searches in the original implementation of MASST. 

Additionally, microbeMASST leverages the pre-curated file-associated metadata to aggregate results 

into taxonomic trees. This represents a major enhancement over MASST, where users have to manually 

inspect result tables and contextualize them, making interpretations tedious. 

 

In microbeMASST, users can search MS/MS spectra using a Universal Spectrum Identifier 

(USI)21 or by inputting a precursor ion mass and its spectral fragmentation pattern (Supplementary 

Figure 1). Analogue search can also be enabled to discover molecules related to the MS/MS spectrum 

of interest across the taxonomic tree17,19,22. The microbeMASST web app displays query results in 

interactive taxonomic trees, which can be downloaded as HTML files. Nodes in the trees represent 

specific taxa and display rich information, such as taxon scientific name, NCBI taxonomic ID, number 

of deposited samples, number of found MS/MS matches, and proportion of found matches, which is 

also visualized through pie charts. Information for an MS/MS match in a particular taxon is propagated 

upstream through its lineage. The reactive interface of microbeMASST enables filtering of the tree to 

specific taxonomic levels or to a minimum number of matches observed per taxon. Additionally, three 

data tables are generated, linking the search job to other resources in the GNPS/MassIVE ecosystem. 

Each MS/MS query is searched against the public MS/MS reference library of GNPS (587,213 MS/MS 

spectra, June 2023). Annotations to such reference compounds are listed under the ‘Library matches’ 

tab (Supplementary Figure 2a). The ‘Datasets matches’ tab contains information on the matching 

scans, displaying scientific name, NCBI taxonomic ID and taxonomic rank, number of matching 

fragment ions, and modified cosine score together with a link to a mirror plot visualization 

(Supplementary Figure 2b). Finally, the ‘Taxa matches’ tab informs on how many matches were found 

per taxon and number of samples available for that taxon (Supplementary Figure 2c). Quality controls 

(QCs) and blank samples (n=2,902) present in the reference datasets of microbeMASST have been 

retained to provide information on possible contaminants and media components. Additionally, data 

from human cell line cultures (n=1,199) have been included to enable assessment of whether 

molecules can be produced by both human hosts and microorganisms. 

 



 

 

 
 

Figure 1. The microbeMASST search tool and reference database. 

a) Community contributions of data and knowledge to GNPS17, ReDU23, and MassIVE from 2014 to 2022 

were used to generate the microbeMASST reference database. Additionally, a public invitation to 

deposit data in June 2022 resulted in the further deposition of LC-MS/MS files from 25 different 

laboratories from 15 different countries across the globe, leading to the curation of a total of 60,781 

LC-MS/MS files of microbial monoculture extracts. b) MicrobeMASST comprises 1,858 unique 

lineages, across three different domains of life, mapped to 541 unique strains, 1,336 species, 539 

genera, 264 families, 109 orders, 41 classes, and 16 phyla. c) Examples of medically-relevant small 

molecules known to be produced by bacteria or fungi. Lovastatin, a cholesterol lowering drug originally 

isolated from Aspergillus genus24, salinosporamide A, a Phase III candidate to treat glioblastoma 

produced by Salinispora tropica25, and commendamide, a human G-protein–coupled receptor agonist26. 

d) MicrobeMASST search outputs of the three different molecules of interest confirm that they were 

exclusively found in monocultures of the only known producers. Pie charts display the proportion of 

MS/MS matches found in the deposited reference database. Blue indicates a match with a 

monoculture, while yellow represents a nonmatch. Searches were performed using MS/MS spectra 

deposited in the GNPS reference library: lovastatin (CCMSLIB00005435737), salinosporamide A 

(CCMSLIB00010013003), and commendamide (CCMSLIB00004679239). 

 

 Search results for lovastatin, salinosporamide A, and commendamide MS/MS spectra highlight 

how microbeMASST can correctly connect microbial molecules to their known producers (Figure 1c). 

In the case of lovastatin, a clinically-used cholesterol-lowering drug originally isolated from Aspergillus 

terreus24, spectral matches were unique to the genus Aspergillus (Figure 1d). The MS/MS spectrum for 

salinosporamide A, a Phase III candidate to treat glioblastoma27, only matched two strains of 

Salinispora tropica (Figure 1d), the only known producer25. Commendamide, first observed in cultures 

of Bacteroides vulgatus (recently reclassified as Phocaeicola vulgatus), is a G-protein–coupled receptor 

agonist26. Surprisingly it had many matches to several bacterial cultures, including in Flavobacteriaceae 

(Algibacter, Lutibacter, Maribacter, Polaribacter, Postechiella, and Winogradskyella) and Bacteroides 

cultures (Figure 1d). Additional examples include searches of mevastatin, arylomycin A4, 



 

 

yersiniabactin, promicroferrioxamine, and the microbial bile acid conjugates28–30 glutamate-cholic acid 

(Glu-CA) and glutamate-deoxycholic acid (Glu-DCA) (Supplementary Figure 3). Mevastatin, another 

cholesterol-lowering drug originally isolated from Penicillium citrinum31, was only found in samples 

classified as fungi. The antibiotic arylomycin A4 was observed in different Streptomyces species and it 

was originally isolated from Streptomyces sp. Tue 6075 in 200232. Yersiniabactin, a siderophore 

originally isolated from Yersinia pestis33, whose monoculture is not yet present in the reference 

database of microbeMASST, was observed in Escherichia coli and Klebsiella species, consistent with 

previous observations34,35. Promicroferrioxamine, another siderophore, was observed to match 

Micromonospora chokoriensis and Streptomyces species. This molecule was originally isolated from an 

uncharacterized Promicromonosporaceae isolate36. The MS/MS spectrum of the gut microbiota-derived 

Glu-CA, an amidated tri-hydroxylated bile acid, was most frequently observed in cultures of 

Bifidobacterium species, while Glu-DCA was found only in one Bifidobacterium strain but also in two 

Enterococcus and Clostridium species. None of the aforementioned molecules were found in cultured 

human cell lines, highlighting the ability of microbeMASST to distinguish MS/MS spectra of molecules 

that can be exclusively produced by either bacteria or fungi. It is important to acknowledge that MS/MS 

data generally do not differentiate stereoisomers, but it can nevertheless provide crucial information 

on molecular families. 

 

MicrobeMASST can be also used to extract microbial information from mass spectrometry-

based metabolomics studies without any a priori knowledge. To illustrate this, we reprocessed an 

untargeted metabolomics study comparing germ-free (GF) mice to those harboring microbial 

communities, also known as specific pathogen-free (SPF) mice29 (Figure 2a). We extracted 10,047 

consensus MS/MS spectra uniquely present in SPF mice and queried them with microbeMASST. A total 

of 3,262 MS/MS spectra were found to have a microbial match. Of these, 837 were also found in human 

cell lines and for this reason were removed from further analysis. Among the remaining 2,425 MS/MS 

spectra, 1,673 were exclusively found in bacteria, 95 in fungi, and 657 in both (Supplementary Figure 

4). These MS/MS spectra were then processed with SIRIUS37 and CANOPUS38 to tentatively annotate 

the metabolites and identify their chemical classes. A file containing all these spectra of interest can 

be explored and downloaded as .mgf format from GNPS (see Methods). To further validate the 

microbial origin of these MS/MS spectra, we assessed their overlap with data acquired from a different 

study comparing SPF mice treated with a cocktail of antibiotics to untreated controls40. Interestingly, 

621 MS/MS spectra were also found in this second dataset and 512 were only present in animals not 

treated with antibiotics (Figure 2b). The distribution of these spectra and their classes across bacterial 

phyla was visualized using an UpSet plot39 (Figure 2c). Notably, the majority of the spectra classified 

as terpenoids were commonly observed across phyla while amino acids and peptides appeared to be 

more phylum specific. Of these 512 spectra, 23% had a level 2 or 3 annotation41, matching against the 

GNPS reference libraries (Supplementary Table 1). These included the recently described amidated 

microbial bile acids19,28–30,42–47, free bile acids originating from the hydrolysis of host derived taurine 

bile acid conjugates48, keto bile acids formed via microbial oxidation of alcohols29, N-acyl-lipids 

belonging to a similar class of metabolites as commendamide26 (a microbial N-acyl lipid), di- and tri- 

peptides seen in microbial digestion of proteins49, and soyasapogenol, a byproduct of the microbial 

digestion of complex saccharides from dietary soyasaponins29. Part of the remaining unannotated 

spectra can be identified as chemical modifications of the above annotated microbial metabolites 

through spectral similarity obtained from molecular networking (Supplementary Figure 5). Based on 

literature information, the list of annotated MS/MS spectra contained a small number of metabolites 

traditionally considered to be non-microbial in origin. One interpretation of this finding is that 

microorganisms are capable of producing metabolites previously described to only be made by 

mammalian hosts. Notable examples include serotonin50, γ-aminobutyric acid (GABA)51, and the 

glycocholic acid42,52–54, with microorganisms often being the primary producers of these metabolites in 

the gut. Additionally, an alternative hypothesis is that microorganisms can also selectively stimulate 

the production of host metabolites. Other limitations regarding annotations are discussed in Methods. 



 

 

To assess if the observations from the mouse models translate to humans, we searched and found 

that 455 out of the 512 MS/MS spectra of interest matched to public human data (Figure 2d). 

Interestingly, these spectra were found in both healthy individuals and individuals affected by different 

health states, including type II diabetes, inflammatory bowel disease (IBD), Alzehimer’s diseases and 

other conditions. These spectra were most commonly found in stool samples (n=110,973 MS/MS 

matches) followed by blood, breast milk, and the oral cavity as well as other organs including the brain, 

skin, vagina, and biofluids, such as cerebrospinal fluid and urine (Figure 2e). These findings support the 

concept that a significant number of microbial metabolites reach and influence distant organs in the 

human body55. 

 

We anticipate microbeMASST will be a key resource to enhance understanding of the role of 

microbial metabolites across a wide range of ecosystems, including oceans, plants, soils, insects, 

animals, and humans. This expanding resource will enable the scientific community to gain valuable 

taxonomic and functional insights into diverse microbial populations. The mass spectrometry 

community will play a key role in the evolution of this tool in the future through the continued deposition 

of data associated with novel microbial monocultures and the expansion of spectral reference libraries. 

Moreover, microbeMASST holds potential for various applications, ranging from aquaculture and 

agriculture to biotechnology and the study of microbial-mediated human health conditions. By 

harnessing the power of public data, we can unlock new opportunities for advancements in multiple 

fields and deepen our understanding of the intricate relationships between microorganisms and their 

ecosystems. 

 

 

 

 

 

 



 

 

 
Figure 2. MicrobeMASST can identify microbial MS/MS spectra within mouse and human datasets.  

a) Workflow to extract microbial MS/MS spectra from biochemical profiles of 29 different tissues and 

biofluids of SPF mice that are not observed in GF mice29. The MS/MS spectra unique to SPF mice 

(10,047) were searched with microbeMASST. A total of 3,262 MS/MS spectra had a match; those 

MS/MS also matching human cell lines were removed, leaving a total of 2,425 putative microbial 

MS/MS spectra (see Methods to download .mgf file). b) The presence of the 2,425 MS/MS spectra was 

evaluated in an additional animal study looking at antibiotics usage40. A total of 512 MS/MS spectra, 

out of the 621 overlapping, was exclusively found in animals not receiving antibiotics. c) UpSet plot of 

the distribution of the detected MS/MS spectra (512) across bacterial phyla. Terpenoids were more 

commonly observed across phyla while amino acids and peptides appeared to be more phylum specific  

d) The 512 MS/MS spectra were searched in human datasets and 455 were found to have a match. 

These MS/MS spectra were present in both healthy individuals and individuals affected by different 

diseases. e) Most of the MS/MS spectra (n=411) matched fecal samples (n=110,973 matches), 

followed by blood, oral cavity, breast milk, urine, and several other organs. Abbreviations: CSF, cerebral 

spinal fluid; HIV, human immunodeficiency virus; PBI, primary bacterial infectious disease; SD, sleep 

disorder; AD, Alzheimer's disease; IS, ischemic stroke; KD, Kawasaki disease; IBD, inflammatory bowel 

disease; T2D, type II diabetes. 
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Data and code availability 

Data used to generate the reference database of microbeMASST are publicly available at 

GNPS/MassIVE (https://massive.ucsd.edu/). A list with all the accession numbers (MassIVE IDs) of 

the studies used to generate this tool is available in Supplementary Table 2. Interactive examples of 

the MS/MS queries illustrated in Figure 1d and Supplementary Figure 3 can be generated, visualized, 

and downloaded from the microbeMASST website (https://masst.gnps2.org/microbemasst/). Known 

molecules already present in the GNPS library (https://library.gnps2.org/) were used to facilitate 

interpretation and confirm that specific bacterial and fungal molecules were exclusively observed in 

the respective monocultures. 

 

- Lovastatin - CCMSLIB00005435737 

- Salinosporamide A - CCMSLIB00010013003 

- Commendamide - CCMSLIB00004679239 

- Mevastatin - CCMSLIB00005435644 

- Arylomycin A4 - CCMSLIB00000075066 

- Yersiniabactin - CCMSLIB00005435750 

- Promicroferrioxamine - CCMSLIB00005716848 

- Glutamate-cholic acid (Glu-CA) - CCMSLIB00006582258 

- Glutamate-deoxycholic acid (Glu-DCA) - CCMSLIB00006582092 

 

Data used to extract MS/MS spectra exclusively present in colonized (SPF) mice is publicly available in 

GNPS/MassIVE under the accession number MSV000079949. Data used to validate and assess 

antibiotics effect on microbial MS/MS spectra of interest is available under the accession number 

MSV000080918. List of datasets with data acquired from human biosamples that presented matches 

to the putative microbial MS/MS spectra of interest is available in Supplementary Table 3. 

 

The microbeMASST code to query spectra, create interactive trees, and analyze results is available 

under open source license on GitHub (https://github.com/robinschmid/microbe_masst). Code used to 

generate the microbeMASST web interface can be accessed on GitHub 

(https://github.com/mwang87/GNPS_MASST). Code used to perform the analysis and generate the 

figures present in the manuscript can be downloaded from GitHub 

(https://github.com/simonezuffa/Manuscript_microbeMASST)  

 

Data collection and harmonization 

Data deposited in GNPS/MassIVE was investigated manually and systematically, using ReDU23 

(https://redu.ucsd.edu/), to extract all the publicly available MS/MS files (.mzML or .mzXML formats) 

acquired from monocultures of bacteria, fungi, archaea, and human cell lines. Only monocultures were 

included in this search tool to unequivocally associate the production of the detected metabolites to 

each specific taxon. A total of 60,781 files from 537 different GNPS/MassIVE datasets were selected 

to be used as a reference database of microbeMASST (Supplementary Table 2). These comprise files 

deposited in response to our call to the scientific community. Between May and July 2022, 25 different 

research groups deposited 65 distinct datasets in GNPS/MassIVE, comprising a total of 3,142 unique 

LC-MS/MS files. This represented a 5.45% increase in publicly available MS/MS data acquired from 

monocultures in just two months. To qualify as a contributor and be credited as one of the authors, 

researchers had to deposit high resolution LC-MS/MS data acquired either in positive or negative 

ionization modes from monocultures of either bacteria, fungi, or achaea. Harmonization of the acquired 

data and metadata represented a challenge. The NCBI taxonomic database is constantly expanding 

and evolving and ReDU latest updated (December 2021) does not accommodate the latest deposited 

taxa. For this reason, an additional metadata file (microbeMASST_metadata_massiveID) was generated 

specifically for the microbeMASST project and uploaded to the respective GNPS/MassIVE datasets 

deposited by the collaborators, if the ReDU workflow failed. All the collected information was finally 



 

 

aggregate in one single .csv file (microbe_masst_table.csv) that can be found on GitHub, which 

contains: 1) Full MassIVE path of each sample, 2) Filename of each sample reported as its MassIVE 

ID/file name to avoid presence of duplicated names, 3) MassIVE ID, 4) Taxonomic name of the isolate 

as reported by the author submitting the associated metadata, 5) Alternative taxonomic name if the 

provided taxonomic name was incorrect or not present in NCBI, 6) Associated NCBI ID to the taxonomic 

name or the alternative taxonomic name, when present, 7) Definition if the taxonomic ID was 

automatically assigned or manually curated, and information if 8) ReDU metadata is available for that 

specific file and if the file correspond to a 9) Blank or 10) Quality control (QC) rather than an unique 

biological sample. 

 

Unique taxonomic names and NCBI IDs were extracted from the metadata associated with the selected 

samples. When metadata was not available and multiple species of bacteria or fungi were present in 

the same dataset, samples were generically classified as bacteria or fungi. Concordance between 

taxonomic names and NCBI IDs was checked by blasting taxonomic names against NCBI 

(https://www.ncbi.nlm.nih.gov/Taxonomy/TaxIdentifier/tax_identifier.cgi) to obtains respective NCBI 

IDs and updated taxonomic names. Results were manually investigated and missing IDs were 

recovered using the NCBI browser (https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi). If 

the taxonomic name was not found in NCBI, most likely because it was not deposited yet, the NCBI of 

the closest taxon was retrieved and used. For example, the strain Staphylococcus aureus CM05 was 

unavailable in NCBI and was curated to the species Staphylococcus aureus instead. 

 

Taxonomic tree generation 

The microbeMASST taxonomic tree was generated using both R 4.2.2 (R Foundation for Statistical 

Computing) and Python 3.10 (Python Software Foundation). In R, the microbeMASST table was filtered 

and only unique NCBI IDs were retained (n = 1,834). The classification function from the `taxize` 

package (v 0.9.100) was used to retrieve the full lineage of each NCBI ID56. Main taxonomic ranks 

(kingdom to strain) plus subgenus, subspecies, and varieties were kept in order to obtain taxonomic 

trees with a similar number of nodes per lineage. The list of NCBI IDs of all lineages was then imported 

in Python, where the ETE3 toolkit was used to generate a comprehensive taxonomic tree based on the 

provided NCBI IDs57. The generated Newick tree was then converted into JSON format and information 

such as taxonomic rank, number of samples available was added. Additionally, children nodes for 

blanks and QCs were created in order to be visualized in the same tree, if observed. 

 

MASST query 

MicrobeMASST web application was built using Dash and Flask open source libraries for Python 

(https://github.com/mwang87/GNPS_MASST/blob/master/dash_microbemasst.py). The web app 

can receive as inputs either a USI21 or an MS/MS spectrum (fragment ions and their intensities). 

Additionally, batch searches can be performed using a customisable python script that can read either 

a .tsv file containing a list of USIs or a single .mgf spectra file. Through the manuscript we showcase 

how we were able to search for more than 10,000 MS/MS spectra contained in a single .mgf file 

(approximately 2 hours run time). After receiving input information, microbeMASST leverages the Fast 

Search Tool (https://fasst.gnps2.org/fastsearch/) API and the sample-specific associated metadata 

to generate taxonomic trees. Fast searches are based on indexing all the MS/MS spectra present in 

GNPS/MassIVE according to the mass and intensity of their precursor ions and then restricting the 

search to only a set of relevant spectra that have a greater chance to achieve a high spectral similarity 

(modified cosine score) to the MS/MS of interest. Searches are customizable and default settings are 

the following: precursor and fragment ion mass tolerances = 0.05, minimum cosine score threshold = 

0.7, minimum number of matching fragment ions = 3, and analog search = False. The JSON file of the 

microbeMASST taxonomic tree is then filtered according to the results and converted into a D3 

JavaScript object that can be visualized as an HTML file. 

 



 

 

Applications 

We envision microbeMASST having several applications. First, we showcase how researchers can 

investigate single MS/MS spectra, using the web interface, and obtain matching results if their known 

or unknown MS/MS spectrum was previously observed in any of the microbial monocultures present 

in the microbeMASST database. Nine small molecules of interest were investigated using MS/MS 

spectra already deposited in the GNPS reference library (see Data and code availability). Second, we 

show how microbeMASST can be leveraged to mine for known or unknown microbial metabolites in 

MS studies. To test this hypothesis, we reprocessed an LC-MS/MS dataset acquired from GF and SPF 

mice29. A comprehensive molecular network was generated 

(https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=893fd89b52dc4c07a292485404f97723). From 

the obtained job, the qiime2 artifact (qiime2_table.qza), the .mgf file (METABOLOMICS-SNETS-V2-

893fd89b-download_clustered_spectra-main.mgf) containing all the captured MS/MS spectra, and the 

annotation table (METABOLOMICS-SNETS-V2-893fd89b-view_all_annotations_DB-main.tsv) were 

extracted. The .qza file first converted into a .biom file and then .tsv using QIIME258 to extract the 

feature table. This was then imported in R where only spectra present in tissues and biofluids of SPF 

animals were retained (n = 10,047). To add an extra layer of filtering, all MS/MS spectra that had an 

edge (cosine similarity > 0.7) and a delta parent ion mass +/- 0.02 Da with MS/MS spectra present in 

GF animals were removed (spectral pairs information is contained in networkedges_selfloop). All the 

MS/MS spectra were then run in batch using a custom python script of microbeMASST (processing 

time: ~2 hours, Apple M2 Max, 64GB RAM) to obtain microbial matches. Matching and filtered MS/MS 

spectra (n = 2.425) were aggregated into a single .mgf file that can be downloaded from GNPS 

(https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=aecd30b9febd43bd8f57b88598a05553). 

Compound class of each MS/MS spectrum, with parent ion mass < 850 Da, was predicted with SIRIUS37 

and CANOPUS38. The 2,425 MS/MS spectra were then searched against the MSV000080918 dataset 

containing animals treated or not with antibiotics40. Matching and filtered MS/MS spectra (n = 512) 

were aggregated into a single .mgf file that can be downloaded from GNPS 

(https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=c33855fc32c948049331e9730189d5c1). A list 

of the spectra with putative chemical class classification is available in Supplementary Table 1. Venn 

diagrams and UpSet plots were generated in R using `VennDiagram 1.7.3`, `UpSetR 1.4.0`, and 

`ComplexUpset 1.3.3`. Finally, the 512 MS/MS spectra were searched in batch against the GNPS public 

repository to observe if they were detected in human datasets ( Supplementary Table 3) 

 

Technical limitations 

Analysis of the results should be considered with these limitations in mind. Molecule detection in 

microbeMASST is dependent on the availability of specific substrates in the reference monocultures. 

If the culture lacks the necessary substrates (or any other culture condition) to produce a certain 

molecule, this molecule will not be detected. Nevertheless, if related substrates are present then a 

different but related molecule may be produced instead, which can be detected using the analog 

search. To address this problem, it is crucial for the community to continue to gather data from as many 

diverse experimental conditions as possible to capture the full range of metabolites produced by 

different microorganisms. This will help in building the most comprehensive reference database that 

encompasses diverse microbial metabolic profiles. Isomers and stereoisomers, which are molecules 

with the same molecular formula but different structural arrangements, often exhibit similar MS/MS 

spectra. This means that their fragmentation patterns may not provide enough information to 

distinguish them. Differences in extraction conditions and instrument settings can lead to variations in 

the obtained MS/MS spectra. For example, the intensity of precursor ions used for fragmentation can 

impact the resulting spectra. If the precursor ion intensity is low, the fragmented spectrum may lack 

ions that are present in spectra obtained from high-intensity precursor ions. This may result in "data 

leakage", as the MS/MS spectrum may be missing ions, and leading to the two molecules not being 

recognized as the same molecule. To partially overcome this more permissive settings can be created. 

The majority of the data deposited in public repositories, GNPS included, and used in microbeMASST 



 

 

were acquired using positive ionization mode, which limits the observation of molecules that cannot be 

ionized in positive mode. This means that certain metabolites may be underrepresented or not detected 

at all. The continuous curation of the microbeMASST reference database involves adding more diverse 

data in terms of ionization modes to improve the coverage of metabolites. Taxonomic tree was 

generated using associated NCBI IDs provided by the community. Specimen assignment prior to 

metabolomic analysis can not be checked by microbeMASST. The majority of the deposited data do 

not have associated genetic information and even if available, it was not used to build taxonomic tree. 

Thus, specimen mis-identification is possible. By addressing these challenges and continuously 

curating the reference database with more comprehensive and diverse data, microbeMASST coverage 

can be expanded to provide valuable insights into the role of microbiota and to facilitate our 

understanding of microbial metabolism in diverse ecosystems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Supplementary Figures 

 

 
Supplementary Figure 1. microbeMASST web app 

Users can access the microbeMASST web app at https://masst.gnps2.org/microbemasst/. They can 

search for MS/MS spectrum against the microbeMASST reference database by either providing a USI 

in `Spectrum USI` or by inputting fragment ions and their intensities and the precursor mass in 

`Spectrum Peak’ and ̀ Precursor m/z` respectively. Search parameters, such as parent ion and fragment 

ions tolerances, cosine threshold, and minimum matching peaks can be modified. Analog search can 

also be enabled. Finally, to submit a search query users have just to click either on `Search 

microbeMASST by USI` or `Search microbeMASST by Spectrum Peak` based on the information that 

they have provided. Search jobs can be easily shared by clicking on `Copy Link`. 

 



 

 

 
 

Supplementary Figure 2. Complementary output of microbeMASST 

a) The queried MS/MS spectrum is searched against the GNPS libraries and, if matches are found, 

possible annotations are returned. Information on cosine similarity and number of matching peaks is 

provided and users can explore the associated GNPS Library Spectrum page and inspect mirror plots. 

b) Information of matching scans in the sample from the different taxa is provided. In addition to cosine 

similarity score, matching fragments, and the possibility to inspect mirror plots, users can retrieve the 

MassIVE ascension number of the project together with contact information on who deposited the data. 

c) Number of matches for each taxonomic level are returned. Users can observe how many samples 

for that specific taxon are part of microbeMASST and see how broadly the molecule is distributed within 

it (fraction). 



 

 

 
 

Supplementary Figure 3. Examples of microbeMASST outputs 

Additional examples of results obtained from searching from mevastatin, arylomycin A4, yersiniabactin, 

promicroferrioxamine, glutamate-cholic acid, and glutamate deoxycholic acid. In all cases the 

molecules were found in the monocultures of known producers and not in human cell lines, confirming 

that microbeMASST can be used to search for microbial-derived molecules. 

 

 
Supplementary Figure 4. Distribution putative microbial metabolites across phyla 

a) Of the 2,425 MS/MS spectra that had a match exclusively to microbial monocultures, 1,673 were 

found only in bacteria, 95 in fungi, and 657 in both. b) Chemical classes were then predicted using 

SIRIUS and CANOPUS and their distribution across the different phyla was visualized using an Upset 

plot. 



 

 

 
 

Supplementary Figure 5. Contextualization of the molecular network  

The selected 512 MS/MS spectra were mapped back to the full molecular network generated from the 

data acquired from GF and SPF mice (MSV000079949). Only molecular families containing at least one 

of the MS/MS spectra of interest were retained and used to generate putative annotations of the 

unannotated spectra of interest. Each node represents a spectrum (ion), light blue indicates MS/MS of 

interest while green indicates spectra that were not retained in the performed downstream analysis. 

Within each node the m/z of the precursor ion is indicated, while on each edge the m/z difference 

between two connected nodes is reported. a) Ions with precursor mass 318.181 and directly connected 

to a spectrum annotated as the dipeptide Trp-Phe (m/z 352.144) can be tentatively annotated as Trp-

Iso/Leu. b) Ions with precursor mass 423.362 connected to Soyasapogenol C, which can represent a 

soyasapogenol molecule with a loss of water (delta mass 18.01). Abbreviations: Trp, tryptophan; Phe, 

phenylalanine; Iso, isoleucine; Leu, leucine. 
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