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Abstract: A bidirectional causal relationship has been established between temporomandibular
disorders (TMDs) and chronic headaches. Recent advances in the neurobiology of chronic pain offer
a framework for understanding the comorbidity between these two conditions that might reside in
the shared biomolecular mechanisms of peripheral and central sensitization. The initiation of these
processes is inflammatory in nature and is most likely mediated by key molecules, including calcitonin
gene-related peptide (CGRP). This scoping review proposes that CGRP-mediated neuroinflammation
in the trigeminal ganglion may partly explain the biomolecular bidirectional link between TMDs and
chronic headaches. Finally, clinical implications of this neuropathologic process are briefly discussed.

Keywords: temporomandibular disorders; headache; migraine; central sensitization; calcitonin
gene-related peptide

1. Introduction

Temporomandibular disorders (TMD) encompass a group of conditions involving the
masticatory muscles, the temporomandibular joint (TMJ) and associated structures [1,2].
TMD affect 5–12% of the population, with an estimated annual cost of approximately USD
4 billion in the US [2]. Approximately 15% of these individuals experience delayed recovery
and chronicization of their condition [3].

Among the various signs and symptoms that individuals with TMD manifest, headache
is a common manifestation. Migraine and tension-type headache constitute the majority of
the primary headaches encountered in the general population, with a prevalence of approxi-
mately 12% [4] and 45–78% [5], respectively. Moreover, a new disorder has been introduced
in the Diagnostic Criteria for Temporomandibular Disorders (DC-TMD), headaches at-
tributed to TMD (HA-TMD), defined as “a headache in the temple area secondary to
pain-related TMD that is affected by jaw movement, function, or parafunction” [6]. Ac-
cording to the diagnostic criteria, HA-TMD should be replicable with provocation and
palpation of the masticatory system [5].

Recent studies highlighted the comorbid presence of headache and TMD, hypothe-
sizing that a relationship between the two might exist. In this regard, a recent systematic
review and meta-analysis supported a positive association between pain-related TMDs,
migraine and chronic tension-type headaches [7]. Other studies observed that, among
those patients seeking care for headaches, the prevalence of those presenting with TMD
symptoms ranged from 52 to 55% [8]. When segregated into painful vs. functional TMD,
this prevalence increased to more than 80% [9]. Headache severity has also been associ-
ated with the number of TMD symptoms such that the prevalence of headache in TMD
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patients with one TMD symptom was 57%, with two symptoms was 65%, and with three
or more symptoms was 73% [10]. Moreover, longitudinal studies suggest that an increase
in headache frequency may coincide with the development of TMD [11].

Importantly, the Orofacial Pain: Prospective Evaluation and Risk Assessment (OP-
PERA) study demonstrated that prior headaches were a significant risk factor for the
development of first-onset TMD symptoms [8]. After the development of TMD, both
headache severity and frequency were shown to increase in the TMD group compared to
healthy participants. Specifically, the prevalence of migraine episodes increased 10-fold in
the group that developed TMD symptoms [8]. Finally, clinical studies revealed that, when
TMD is successfully treated, the headache symptoms also tend to resolve [12], suggesting a
role of TMD in the pathophysiological process. Nevertheless, the biomolecular process that
links these two conditions is far from being clear.

Recent advances in the neurobiology of TMD and headaches focused on the apparent
bidirectional relationship and epidemiological association between the two conditions.
At the center of these advances is an increased understanding of calcitonin gene-related
peptide (CGRP), a mediator of trigeminal neuroinflammation [13], and its role in the
process of pain chronicization. More specifically, CGRP is among the molecules linked
to mediate a sterile trigeminal ganglionitis, wherein cross-excitation between different
branches of the trigeminal nerve occurs [14]. When this ganglionitis is sustained, it leads to
neuroplastic changes in the sensory cortex so that pain is perceived in the absence of noxious
stimuli, a process referred to as central sensitization [15]. In this review, we will explore the
biomolecular pathophysiology of headache (specifically migraine, tension-type headache
and traumatic headache) and TMD as it relates to CGRP-mediated central sensitization,
and briefly discuss how this understanding may guide treatment considerations.

2. Methods

A literature search was conducted to identify relevant studies examining the asso-
ciation between CGRP, headache (migraine, tension-type headache and post-traumatic
headache) and TMD. The search aimed at including both preclinical and clinical studies
investigating the role of CGRP in the pathophysiology of these conditions.

2.1. Search Strategy

Electronic databases, including PubMed, Embase and PsycINFO, were searched to
identify relevant articles. The following keywords and terms were used: “Temporo-
mandibular disorders”, “TMDs”, “TMD”, “migraine”, “tension-type headache”, “calcitonin
gene-related peptide”, “CGRP”, “neuroinflammation”, “peripheral sensitization”, and “cen-
tral sensitization”.

2.2. Study Selection Criteria

Included studies were studies (A) published in English; (B) both conducted on animal
models and humans; (C) examining the relationship between CGRP, headaches and TMD;
and (D) reporting relevant outcomes on CGRP, headache severity and TMD symptoms.
Those not relevant to the topic, not published in English language and on animal studies
without translational relevance were excluded.

The following sections report the main findings of this literature search.

3. CGRP in Peripheral and Central Sensitization

Both peripheral and central sensitization are cited as primary mechanisms behind the
development of chronic pain syndromes, including headaches and TMDs. Peripheral and
central sensitization encompasses two different phases, that are closely interconnected.

• Peripheral sensitization. Peripheral injury of the muscles, joints, or nerves of the jaw
and head triggers pain signals in the trigeminal nerve from the primary afferent fibers
(mostly C fiber and A delta fibers). Local tissue inflammation releases cytokines and
pro-inflammatory mediators, including CGRP, that perpetuate and increase the pain
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response. Peripheral sensitization lowers the depolarization threshold, so that normal
stimulation is now perceived as painful (primary allodynia) and painful stimuli result
in higher pain perception (primary hyperalgesia or “hyperalgesic priming”) [16,17].

• Central sensitization. Sustained peripheral pain signaling leads to central sensitization,
characterized by increased excitability of central pain pathways [18] https://www.
iasp-pain.org/resources/terminology/ (Accessed on 25 February 2023) [18,19]. At
first, this sensitization is activity-dependent and consists primarily of lowered depolar-
ization thresholds. This characterizes the phase of acute pain. However, if it persists
for a longer period of time (i.e., beyond the normal healing process), it evolves into
an activity-independent phenomenon through neuroplastic adaptation [14]. In this
scenario, the CGRP released in the trigeminal ganglion engages with adjacent neurons
and satellite glial cells, causing the continuation of peripheral sensitization and facili-
tating central sensitization of the second-order neurons [13]. This identifies a shift to a
chronic pain phase. Central sensitization is the physiological hallmark of chronic pain
syndromes and is responsible for the clinical symptoms of secondary hyperalgesia
(defined as the increased pain response derived from a normally painful stimulus (Ter-
minology | International Association for the Study of Pain. International Association
for the Study of Pain (IASP). https://www.iasp-pain.org/resources/terminology/
(Accessed on 25 February 2023) [18]) and secondary allodynia (defined as pain re-
sponse derived from a stimulus that is not normally perceived as painful [19].

As noted earlier, one pivotal molecule responsible for both states is CGRP. CGRP
receptors belong to the G-protein coupled receptor (GPCR) family and are composed of two
subunits, the calcitonin receptor-like receptor (CLR) and the receptor activity-modifying
protein (RAMP) [20]. The CLR serves as the primary binding site for CGRP, while RAMP
modifies the pharmacological properties of the receptor [20]. The expression of CGRP recep-
tors varies among different types of sensory neurons within the ganglion. These receptors
are predominantly expressed by peptidergic nociceptive neurons, which are responsible for
transmitting pain signals [21]. However, they are also found in non-peptidergic neurons
and certain subsets of proprioceptive and mechanoreceptive neurons [21]. The differential
expression of CGRP receptors by various sensory neuron types contributes to their distinct
responsiveness to CGRP signaling. This variation in receptor expression gives rise to both
autocrine and paracrine signaling by CGRP within the ganglion [22]. Specifically, autocrine
signaling occurs when CGRP acts on the same neuron responsible for its production [22].
In this scenario, CGRP released from the neuron can bind to the CGRP receptors present
on its own cell membrane, thereby influencing its own cellular activities. Conversely,
paracrine signaling involves the diffusion of CGRP to neighboring sensory neurons within
the ganglion [22]. Accordingly, when CGRP is released from one neuron, it can travel short
distances to interact with CGRP receptors expressed on nearby neurons [22]. This paracrine
signaling allows for intercellular communication, affecting the excitability and sensitivity
of adjacent neurons in the ganglion.

CGRP is abundantly distributed in the central and peripheral nervous system and
pain pathways, as it is found in unmyelinated Aδ and C sensory nerve fibers [23]. Even
if the attention brought to this molecule thanks to its therapeutical effect in migraine
refer to the CGRP released in the brain, the primary source of CGRP is not within the
brain itself, but rather in peripheral structures such as nerve endings and sensory ganglia.
CGRP is predominantly release from peripheral nerve fibers, including those located in the
trigeminal ganglion. Here, it is synthesized in the cell bodies of these sensory neurons [24]
and then transported to their peripheral terminals. Nevertheless, it should be pointed
out that this study applied a stimulus constituted by capsaicin directly into slices of the
ganglion in vitro. As such, the notion that excitation of afferent fibers causes the release
of CGRP from neuronal soma in the trigeminal ganglion may be speculative. Within the
central nervous system (CNS), CGRP is also found in some regions where it likely acts as a
neurotransmitter or neuromodulator. These regions include:

https://www.iasp-pain.org/resources/terminology/
https://www.iasp-pain.org/resources/terminology/
https://www.iasp-pain.org/resources/terminology/
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• Spinal cord, where CGRP is released from primary sensory neurons in the dorsal horn
of the spinal cord and cerebral gray matter, where it contributes to pain transmission
and modulation [21];

• Brainstem: CGRP-containing fibers and terminals have been identified in various
brainstem nuclei involved in pain processing, including the periaqueductal gray (PAG)
and the nucleus tractus solitarius (NTS);

• Hypothalamus: CGRP has been detected in certain hypothalamic nuclei, such as the
paraventricular nucleus (PVN) and the supraoptic nucleus (SON), involved in the
regulation of autonomic functions and pain modulation [21];

• Thalamus: neurons expressing CGRP in the parvocellular sub-parafascicular nucleus
have been observed in the thalamus [25].

• It is also broadly distributed in non-neuronal tissues, such as mesenteric plexus,
gastrointestinal, cardiovascular and nociceptive systems, smooth and skeletal muscles,
and skin [21,26].

Although other possible mechanisms are still debated [27], CGRP is implicated as
the primary activating factor of migraine headaches and TMD via cross-excitation with
resulting stimulation and perpetuation of peripheral and central sensitization, both in
the acute activity-dependent phase and in the chronic activity-independent phase. The con-
cept of cross-excitation between sensory neuron cell bodies occurs among adjacent and
long-distance neurons. To support this, early electrophysiological studies showed that
stimulating one cell led to a partial depolarization of neighboring neurons in the dorsal root
ganglion (DRG), thereby lowering the activation threshold of secondary neurons [28,29].
The phenomenon was hypothesized to occur through chemical communication [28,29].
Recent studies have further revealed that the cross-excitation of adjacent neurons in the
DRG involves the participation of gap junctions and the propagation of Ca2+ waves through
neurons and satellite glial cells [30]. This neuronal coupling significantly increases in mod-
els of inflammation or neuron injury, and contributes to the activation of certain cells by
capsaicin. Although CGRP does not appear to play a mechanistic role in this specific mode
of cross-excitation, it is possible (albeit speculative) that peptidergic neurons are involved
or undergo cross-excitation. The fact that CGRP can diffuse over long distances suggests
its potential involvement in the cross-sensitization of spatially distant neurons. This may
differentiate neuropeptide-mediated coupling from the gap junction-mediated coupling
observed in adjacent neurons.

Specifically in regard to migraine and TMD pathogenesis, review studies have sug-
gested that pain-related TMD symptoms might be attributed to a peripheral mechanism
in certain cases [31]. However, given that the correlation between the severity of TMD-
related pain symptomatology and the evidence of tissue pathology is often relatively weak,
some other patients might experience a central sensitization phenomenon. As a result, an
alteration in the central nervous system pain processing pathways along with responsible
heritable genes encoding for altered pain processing might be responsible for pain symp-
toms [31]. Among other important factors, biopsychosocial stressors are also known to play
a role in development and chronicization of the painful condition [31].

With migraine pathogenesis, the role of CGRP in developing central sensitization
has been established. Migraine pathogenesis is complex and can be summarized as a
primary brain disturbance that involves ion channels, thus creating a neurovascular and
neurobiological disorder where neural events result in dilation of blood vessels with
subsequent pain and further nerve activation (10.4103/0972-2327.99993, #83). With tension
type headache, the evidence suggests that an increased excitability of the central nervous
system secondary to sustained and repetitive pericranial myofascial input and central
sensitization may be implicated in the transformation of tension-type headache from
episodic to chronic [32,33]. Conversely, the pathophysiology of traumatic headache is
not well understood. Nevertheless, it seems to involve neurometabolic changes and an
impairment in descending modulation, as well as an activation of the trigeminal sensory
system, including peripheral and central sensitization [34].
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The role of CGRP in peripheral and central sensitization is thought to be mediated by
its neuroinflammatory and vasodilation effects. Among other molecules such as glutamate
and prostaglandin E2, CGRP promotes the further release of nitrous oxide (NO) from
postsynaptic neurons. As a result, this further sensitizes neurons through stimulation of
inflammatory mediators in the periphery, the trigeminal ganglion, in secondary connections
in the trigeminal nucleus caudalis, and tertiary connections in the thalamus, limbic system
and sensory cortex (Figure 1) [13,35]. Moreover, experimental evidence showed that
intrathecal administration of CGRP stimulates central supporting cells (microglial cells and
astrocytes) to release pro-inflammatory mediators that are known to induce and perpetuate
central sensitization [15].
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Figure 1. The neuroanatomy of the trigeminocervical complex including the ophthalmic nerve (V1)
innervating the eyes, upper eyelids and forehead, the maxillary nerve (V2) innervating the cheeks,
nose, lower eyelids, upper teeth, lips and gingiva, and mandibular nerve (V3) innervating the lower
face, jaws, lower lip, lower teeth and gingiva.

4. CGRP and Migraine

Different migraine pathogenetic mechanisms have been explored and supported in the
literature. Beside the classic vascular pathophysiology of migraine, current research sug-
gests that vasodilation is an epiphenomenon, and that peripheral and central sensitization
in the trigeminal nociceptive system may explain the migraine pain [36]. This paradigm
shift was accompanied by an increased understanding of the role of CGRP in migraine
pathogenesis, where CGRP functions as a potent vasodilator, a sensory neurotransmitter
and a regulator of gene expression. Especially for its property of mediator of vasodilation,
it is believed to cause neurogenic inflammation, while co-localized with several other
biomolecular markers of pain [37].

The role of CGRP in migraine pathogenesis is evidenced by many of the current
migraine pharmacological therapies, which act by directly or indirectly inhibiting CGRP
activation. For instance:

• Ergotamine derivatives and triptans, drugs approved for the acute treatment of mi-
graine [38], mainly stimulate 5-HT1B/1D receptors. As 5-HT1B receptor is localized
on smooth muscle cells of cerebral, meningeal and coronary arteries, and 5-HT1D is
mainly expressed in the trigeminal ganglion, these drugs result in a strong vasocon-
striction of the cranial arteries [39]. They also indirectly act on decreasing the release
of CGRP, thus reducing trigeminal activation and vasodilation [35].

• Ditans, 5-HT1F receptor agonists (lasmiditan) are newly Food and Drug Administra-
tion (FDA)-approved drugs for the acute treatment of migraine [40]. 5- HT1F receptors
are located on terminals and cell bodies of the trigeminal ganglion neurons, acting at
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the peripheral nervous system and central nervous system. It can modulate CGRP
from trigeminal ganglion neurons by potentially blocking its release and inhibiting
the development of central sensitization [40]. Contrary to the effect of ergotamine
derivates and triptans, activation of 5- HT1F does not induce vasodilation but rather
causes vasoconstriction [40].

• CGRP receptors are localized on smooth muscles cells of meningeal and cerebral blood
vessels. As a result, the release of CGRP by the activated meningeal C-fibers causes
blood vessels to dilate [37]. Direct blockade of CGRP signaling with gepants [41], and
with monoclonal antibodies directed against the molecule or its receptor attenuated
the cutaneous mechanical hypersensitivity [42] and nitroglycerin-induced trigeminal
hyperalgesia in animal models of migraine-like pain [43]. They have been FDA-
approved as an effective treatment in preventive migraine [44]. Although the exact
mechanism and site of action of CGRP in pain are still unclear and many mechanisms
of action have been proposed [45], the meningeal blood vessels and their vasodilation
are a primary target to prevent or inhibit pain signals [23].

• Topiramate inhibits nitric oxide and proton mediated CGRP secretion in a time- and
concentration-dependent fashion from sensory trigeminal neurons [46].

• Botulinum toxin-A (BoNT) at doses between 150 Units and 195 Units, repeated every
12 weeks, is listed among the FDA-approved therapies for prevention of chronic
migraine [38]. Among the several hypotheses on mechanism of action, one of these
supports that BoNT attenuates the release of local transmitters such as CGRP from
trigeminal neurons [47]. This further supports the pivotal role of CGRP reduction to
its mechanism of action [48].

Nevertheless, as many as 40% of patients suffering from chronic migraine are consid-
ered non-responders to therapy, i.e., not achieving more than 50% reduction in monthly
headache days [49]. This may indicate that, while CGRP plays a pivotal role in the pathol-
ogy for many cases, it may not be universally applicable, or not reflect the only molecule or
mechanism of action involved in migraine pathogenesis. Emerging evidence suggests that
combining BoNT with anti-CGRP antibodies or anti-CGRP receptor antibodies results in a
slight improvement compared to monotherapy [50,51]. However, non-responder rates still
remain high. Moreover, reports indicate that the success of BoNT treatment correlates with
high GRP levels in patients’ serum, although with limited available data and with other
studies supporting opposite findings [52,53]. These findings may suggest that CGRP assays
could potentially aid in assessing patient suitability for anti-CGRP therapy. Nevertheless,
the costly, time-consuming and technically demanding existing assay technology may limit
its suitability.

Important experimental clinical findings supporting the relationship between migraine
and CGRP include the following findings:

• The levels of CGRP in saliva, cerebrospinal fluid and peripheral blood are elevated
during severe migraine attacks [14].

• Clinical improvement of migraine symptoms after triptan administration is accom-
panied by decreased CGRP levels [54]. In addition, administration of CGRP trig-
gers migraine headaches in both healthy subjects and individuals suffering with
migraine [55,56].

• Subjects with chronic migraine have higher levels of CGRP in peripheral blood samples
than those with episodic migraine [57].

5. CGRP and TMDs

TMD exhibits a significant comorbidity with migraine. Current research supports
that CGRP may constitute one important molecular link between headaches and TMD.
Such a connection is evidenced by a migraine animal model, where the masseter muscle
was injected with a chemical irritant to trigger a peripheral inflammatory response [58].
As a result, this inflammatory response led to a rapid and significant increase in CGRP
mRNA in the trigeminal ganglion [58]. Thus, this increased CGRP expression provoked
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migraine-like behavioral phenotypes of hypersensitivity [59]. It is hypothesized herein that
the findings of this experiment may be explained by cross-excitation within the trigeminal
ganglion. Trigeminal sensory neurons are pseudo-unipolar neurons, which refer to the
fact that trigeminal neurons have a single process emerging from the cell body that splits
into two branches—a central branch towards the CNS, and a peripheral branch that travels
towards the target tissue or sensory receptor. The peripheral afferents of both meningeal
tissues and the TMJ apparatus project towards the trigeminal ganglion location of their cell
bodies. Hence, the trigeminal ganglion is the common area where both meningeal and tem-
poromandibular sensory neurons project. Secondary neurons from the trigeminal ganglion
then project to the trigeminal nucleus caudalis, which in turn project to the thalamus, cortex
and limbic system [60]. Once CGRP is released from neuronal cell bodies or processes, it
further contributes to the inflammatory process by promoting sensitization of surrounding
neuronal and glial cells not initially involved in the inflammatory response [14].

Specifically in the case of TMJ-related trauma, peripheral insult or repetitive strain
to the masseter causes CGRP expression in the trigeminal ganglion. When CGRP is
expressed in the ganglion, it acts in an autocrine and paracrine fashion by stimulating
satellite microglial cells to release pro-inflammatory mediators, causing a ganglion-wide
inflammatory cascade [61]. In this regard, one study showed that administering CGRP to
microglial cells in a culture stimulated the release of over 20 inflammatory cytokines [62].
This neuroinflammatory cascade explains how peripheral inflammation of trigeminal
afferents from the mandibular branch of the trigeminal nerve can stimulate migraine-like
behavioral phenotypes [14]. This sequence is also applicable in the opposite direction, as
evidenced by the fact that migraine is a significant predictor of TMD onset [8] or that cases
of post-traumatic brain injury can lead to TMD-like symptomatology [63].

The role of CGRP as a key biomolecular link in neuroinflammation responsible for
TMD development and maintenance is highlighted in the following studies (Table 1).

Table 1. Studies supporting a biomolecular link between CGRP and TMD in animals and humans.

Preclinical Studies

Author Model Findings

Cady et al. [15] TMJ capsule Injection of CGRP in the TMJ capsule stimulated the expression of
proteins associated with peripheral and central sensitization in
neuronal and glial cells in animal models.

Fiorentino et al. [64] Osteoarthritis in a
mouse model

CGRP-induced neuroinflammation contributed to histopathological
modifications of the articular tissues (i.e., cartilage), leading to
osteoarthritis in a mouse model.

Lai et al. [65] TMJ of mouse model Inhibition of CGRP-mediated neuroinflammation curbed the
progression of TMJ damage.

Akerman et al. [59] Rat model of myofascial
TMD-like inflammation

Models of TMD-like inflammation resulted in neuronal activation
and sensitization of dural trigeminal neurons, similar to
migraine-like manifestation. Pre-administration of CGRP receptor
antagonist effectively prevented these neuronal responses.

Brouxhon et al. [66] TMJ of mouse model The overexpression of CGRP in mouse models of TMJ led to the
manifestation of joint anomalies and articular pathology;
conversely, in a scenario of joint inflammation, the overexpression
of CGRP inhibitory peptide partially led to improvement of
joint pathology.

Shu et al. [67] Myogenic TMD mice model The presence of pre-existing myogenic TMD lesions caused
increased central CGRP release and enhanced migraine
hypersensitivity in animal models.
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Table 1. Cont.

Preclinical Studies

Author Model Findings

Damico et al. [68] Acute and chronic arthritis
model

Both acute and chronic arthritis were associated with significant
increases in CRGP expression in the trigeminal ganglion in
animal models.

Suttle et al. [69] Mouse model In naïve mouse models, the local injection of CGRP in masseters
and/or TMD induced acute pain. Conversely, blockage of CGRP
receptor decreased TMD pain.

Romero-Reyes et al. [70] Mouse model of acute
masseter pain

Selective CGRP receptor antagonist, MK-8825, was found to
significantly reduce spontaneous orofacial pain behaviors in a
mouse model of acute masseter pain injected with CFA. This study
also supported the role of CGRP as an important neurotransmitter
involved in TMD pain, although not through an
inflammatory mechanism.

Clinical studies

Sato et al. [44] TMJ pain vs. healthy control Human subjects exhibited a significantly higher level of CGRP in
deranged TMJ joints vs. healthy controls, with CGRP levels that are
positively correlated with pain intensity scores.

The majority of the available literature on the use of anti-CGRP therapy in TMD has been
conducted in animal studies. Interestingly, there is evidence suggesting a potential association
between comorbidity of headache, migraine and TMD, and dysfunctional CGRP signaling.
Studies have indicated alterations in CGRP levels and CGRP receptor expression in individuals
with both headache and TMD compared to those with either condition alone. Comorbidity of
headache and TMD could potentially serve as an indicator for the likelihood of successful anti-
CGRP therapy [59,70]. While specific evidence addressing this question is limited, ongoing
randomized clinical trials are currently investigating the potential TMD pain reduction derived
from administration of monoclonal antibodies against CGRP receptors (https://clinicaltrials.
gov/ct2/show/NCT05162027 and https://clinicaltrials.gov/ct2/show/NCT04884763?term=
CGRP&cond=Temporomandibular+Disorder&draw=2&rank=2) (Accessed on February 23
2025).

When these findings are combined with those supporting the role of CRGP as a
biomolecular key in headaches, a framework to better understand the shared pathogen-
esis of headache and TMD comorbidity emerges. This relationship is supported by the
following findings:

• CGRP receptors are widely distributed through the trigeminovascular system [71].
• The inflammatory response from peripheral injury stimulates the expression of CGRP

in the trigeminal ganglion and central relay centers [13].
• Biomolecular CRGP release in the trigeminal ganglion stimulates the release of pro-

inflammatory mediators via supporting cells in a paracrine fashion [72].
• The resulting “inflammatory soup” in the ganglion (a sterile ganglionitis) is permissive

of cross-excitation of all branches of the trigeminal nerve [73].

Taken together, these findings suggest that cross-excitation secondary to CGRP-
mediated trigeminal ganglionitis may explain the physiologic basis for the comorbidity of
TMD and headaches [15].

6. CGRP, Traumatic Headaches and TMD

The proliferation of research on mild traumatic brain injury (mTBI) and post-traumatic
headaches (PTH) in the past decade has increased our understanding of chronic pain
syndromes. There are many types of trauma that can impact the head, neck and jaw, and
lead to both headache and TMD including:

https://clinicaltrials.gov/ct2/show/NCT05162027
https://clinicaltrials.gov/ct2/show/NCT05162027
https://clinicaltrials.gov/ct2/show/NCT04884763?term=CGRP&cond=Temporomandibular+Disorder&draw=2&rank=2
https://clinicaltrials.gov/ct2/show/NCT04884763?term=CGRP&cond=Temporomandibular+Disorder&draw=2&rank=2
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• Direct jaw trauma;
• Sports injuries;
• Motor vehicle accidents;
• Whiplash associated injuries;
• Hyperextension injuries;
• Strain from repetitive or continuous muscle activation;
• Bruxism and other parafunctional behaviors.

Importantly, an acute jaw, head and neck injury of any type will result in a four-fold
increase in the odds of subsequent painful TMD development [8]. Trauma to the TMJ
complex is frequently overlooked in the acute setting or, if noted, the prescribed treatment
is usually limited to a soft diet recommendation. This contrasts with other orthopedic
injuries, where a program of stabilization, physical therapy and other supportive care is
reflexively prescribed.

There are well described clinical and phenotypic overlaps between PTHs and both
migraine [74] and TMDs [63]. This is because persistent post-concussive symptoms like
PTH follow the same process of central sensitization as TMD, migraine headaches and a
host of other chronic pain conditions [75].

Not surprisingly, CGRP is implicated in the development of PTH after mTBI [76].
According to preclinical studies, using CGRP inhibitors in the first week after mTBI nearly
eliminated the development of post-traumatic hyperalgesia in preclinical models [77]. Nev-
ertheless, this effect was reduced when CGRP inhibitors were administered 1–2 weeks after
the injury, indicating that the timing of CGRP blockade is essential to prevent the develop-
ment of central sensitization [78]. Similar findings were observed with the administration
of BoNT therapy, which was able to prevent the development of PTH when given within
the first week after the injury. Similarly, this positive effect exhibited limited effects when
given after the acute period [79].

Another recent study supporting the link between CGRP and PTH revealed how the
injection of CGRP in a cohort of patients diagnosed with PTH resulted in the immediate
development of migraine-like headache in 72% of them [80]. This study further provided a
rationale for the use of anti-CGRP monoclonal antibodies as a treatment for PTH. Similar
clinical trials are ongoing, suggesting positive initial results [80].

7. Treatment Considerations

The studies reviewed so far suggest that an anti-neuroinflammatory treatment in the
acute phase of an injury has the potential to encourage healing and prevent central sensitiza-
tion, and, as a result, a chronic pain state. Alternatively, if a chronic pain condition is already
established, the same treatment strategy can be used in an abortive fashion for episodic
symptom flare-ups. In this scenario, pharmacologic agents that directly or indirectly an-
tagonize CGRP are already being used clinically for different types of headache [81,82].
Current research also supports the use of CGRP antagonists for TMD-related pain [69].
Nevertheless, at the current state of art, an application of anti-CGRP therapies to be pro-
vided as an early therapeutic strategy may not be feasible. First of all, a reason why these
therapies may not be initiated as early interventions include current guidelines and lim-
ited approval. To date, anti-CGRP therapies are primarily approved for the preventive
treatment of migraine, and their use as early interventions for acute migraine attacks or
TMD is still an area of ongoing research and clinical evaluation. Moreover, treatment guide-
lines and recommendations may not yet include anti-CGRP therapies as front-line or even
second-line treatments, leading to their prescription primarily for patients who have failed
initial treatment options. For example, anti-CGRP monoclonal antibodies are approved by
health insurance in the United States after documented inability to tolerate or failure of an
8-week trial of two or more other Level A or B migraine treatments [38]. In addition, while
these therapies have consistently demonstrated efficacy in reducing the frequency and
severity of migraine attacks in clinical trials, their effectiveness in an acute setting or the
early stages of migraine and TMD is still being studied. As such, specific mechanisms of
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action, dosage and optimal timing for these therapies need further investigation to establish
their potential as early interventions. Similar caution should be taken in regard to safety
and side effects. To date, anti-CGRP therapies have shown favorable safety profiles in
clinical trials while being used as a preventive treatment. Common side effects reported
include injection site reactions, constipation and upper respiratory tract infections [38].
However, comprehensive data on long-term safety and potential off-target effects may
still be evolving. Finally, these drug therapies are relatively expensive compared to other
treatment options for migraine and TMD, which may limit their accessibility and making
them less feasible as early interventions.

Therefore, the optimal approach in clinical practice should involve an early identifica-
tion of those individuals in the acute phase with a high likelihood of developing a chronic
pain state through the promotion of risk stratification and preventive treatment approaches.
At this stage, conservative, non-invasive and inexpensive approaches are advocated to
encourage both healing of the injured tissues and reduction of the risk factors that drive
delayed healing and chronic pain.

The first few weeks after an injury correspond well with the proposed physiological
mechanisms that drive central sensitization, i.e. neuroinflammation, microglial activation
and neuroplastic adaptation. This is also supported by clinical findings, such as those
seen in the OPPERA study [2]. Each individual case is different, but the principle of
prompt treatment to prevent central sensitization is clear. If central neuroplastic changes
can be prevented, chronic pain will not develop. A multimodal approach, using non-
invasive and complementary measures, provides the best chance of curbing the cycle of
pain amplification and progression to pain chronicity.

Table 2 lists the characteristics and scientific efficacy of different treatments of TMD
and headache conditions [83–87].

Table 2. Characteristics and scientific basis of treatments for TMD and headache.

Intervention Scientific Basis Description

Self-management
training

Systematic reviews of
behavioral therapies

Nutritional and dietary intervention
Preventive medicine counseling

Habit-reversal
Mindfulness-based stress reduction

Meditation and relaxation

Intra-oral splints Systematic reviews of
intra-oral splints

Full coverage stabilization at night
Repositioning splints at night

Immediate quick splints short-term
Anterior bite plane short-term

Medications Systematic reviews of
medications

Migraine medication
NSAIDs

Acetaminophen
Tricyclic medications

Muscle relaxants

Physical therapies Systematic review evidence
of therapeutic exercises

Therapeutic exercises
Mobilization

Beside pharmacological approaches, other non-pharmacological strategies can be adopted.
This is the case, for example, of an anti-inflammatory minimal sugar diet with nutritional
supplements that attenuate biomolecular CGRP expression [88,89] or the use of nutritional
supplement in patients suffering from migraine (such as coenzyme Q10 alone [90–92] or in
combination with nano-curcumin [93], L-carnitine [94], curcumin [95] and vitamin D [96],
among others). Notably, daily supplementation with coenzyme Q10 [92], curcumin [95]
and vitamin D [96] were shown to reduce CGRP levels. Some other evidence derived from
preclinical migraine and TMD model studies reported reduction of CGRP secretion with grape
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seed extract [97–99]. Table 3 summarizes the evidence of the efficacy and scientific rigor of the
available human studies assessing nutritional supplements compared to a control group.

Table 3. Characteristics and scientific evidence of nutritional supplement in patients with migraine.

Nutritional
Supplement Scientific Rigor N Participants Findings

Coenzyme Q10

Double-blind
placebo-controlled

RCT [92]

45 female adults with
migraine

Significant reduction in frequency (p = 0.018),
headache intensity (p = 0.001) and duration

(p = 0.012) compared to controls

Open-label
match-controlled

trial [90]
80 adults with migraine

Significant reduction in frequency of monthly
attacks (p < 0.001) and headache severity

(p < 0.001) compared to controls

Crossover double-blind
placebo-controlled

RCT [91]

120 children and
adolescents with migraine

Greater improvement in migraine frequency in
the initial 1–4 weeks

Double-blind RCT [100] 42 adults with migraine
Significant decrease in attack frequency,

headache-days and responder rate (47.6% vs.
14.4% in controls)

Nano-curcumin and
coenzyme Q10

Double-blind
placebo-controlled

RCT [93]
100 adults with migraine

Significant reduction in headache frequency,
severity and duration in participants treated

with nano-curcumin and coenzyme Q10
(p < 0.001)

L-carnitine and
coenzyme Q10

Double-blind
placebo-controlled

RCT [94]
56 adults with migraine

Significant reduction in headache intensity
(p < 0.001), duration (p < 0.001), frequency

(p < 0.001) and headache diary results (p < 0.001)

L-carnitine,
magnesium and
magnesium-L-

carnitine

Single-blind RCT 133 adults with migraine

Magnesium supplementation achieved
significantly higher reduction in headache
frequency compared to the other groups

(p = 0.008); significant reduction in migraine
symptoms in all study groups with no

difference among them

Curcumin
Double-blind

placebo-controlled
RCT [95]

44 female adults
with migraine

Significant reduction in headache intensity
(p = 0.001) and duration (p = 0.007); no

significant reduction in headache frequency
(p = 0.052)

Vitamin D
Double-blind

placebo-controlled
RCT [96,101]

80 adults with migraine
Significant reduction in migraine disability

(p = 0.016), headache duration, intensity and
frequency (p < 0.05) compared to controls

RCT: randomized clinical trial.

In cases of pain within the temporomandibular structures, the protective biomechan-
ical splinting of the TMJ and jaw and head muscle complex is a non-invasive effective
intervention. As noted, there is a large population of CGRP-positive neurons in the TMJ
complex (joint capsule, synovial membrane, retrodiscal tissue), and masticatory muscles,
tendons and fascia [69,102,103]. Tooth clenching can activate these neurons through repeti-
tive strain of masticatory muscles and TMJ tissues, especially if the disc space was recently
traumatized. Sustained clenching even for short periods can trigger pain, and lead to
peripheral sensitization in the muscles of mastication [104] with nociceptive sensitization
and tissue oxygenation changes [105]. Oral appliances, such as an anterior bite plane
which impedes posterior occlusal contact, can mechanically reduce noxious trigeminal
input through reduction of clenching forces, and overload of TMJ and masticatory muscles,
especially during the acute stage [74,106].

The use of behavioral interventions (such as mindfulness strategies [79] and deep
breathing techniques [83,107,108] to reduce peripheral and central sensitization may also
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play a role in managing acute and chronic pain symptoms by decreasing psychosocial
stressor and harmful oral parafunctional habits. Interestingly, expression of CGRP can
induce anxiety-like behaviors in clinical models [109]. Further, experimentally induced
masseter myalgia has been shown to activate CGRP release in the hypothalamic–pituitary–
adrenal axis, establishing a direct link with stress levels [110]. As CGRP-positive neurons
are also abundantly present in the “nociceptive amygdala”, the brain region that integrates
affective and sensory signals [111], targeting psychological distress may represent an
indirect pathway to intervene in CGRP-mediated pain chronicization.

Physical therapies and exercise are considered front-line therapy for acute head, neck
or TMD pain. Early mobility of both the jaw and neck is important for the interruption of
peripheral sensitization. Multiple studies have shown that jaw exercises facilitate pain-free
mouth opening and reductions in disturbances to daily living [19]. Physical therapies
such cryotherapy (cold therapy) or thermotherapy are a well-established treatment for
acute orthopedic injuries. Cold decreases circulation to the injured region, slowing the
inflammatory reaction and reducing inflammation. Cold has an analgesic effect by slowing
nociceptive conductivity, decreasing neuronal excitability and decreasing muscle tension.
Thermotherapy (heat therapy) is also well-established and is typically used in a delayed
fashion several days after injury (to avoid bleeding into the wound). Thermotherapy in-
creases circulation and oxygenation, and allows for the elimination of metabolic waste. Heat
also reduces nerve pain conduction. Finally, heat promotes muscle relaxation, facilitating
ease of mobility and the reduction of the guarding reflex.

8. Conclusions

Headache and TMD pathology are linked via the trigeminal system. The frequent
comorbidity and bidirectional relationship of these two conditions may be supported by
biomolecular pathways such as CGRP-mediated cross-excitation in an inflamed trigeminal
ganglion. As a result, this excitation may drive peripheral and central sensitization of
the structures innervated by the trigeminal system including both TMD and headache
syndromes such as migraine. In both the acute and chronic phase of these conditions,
treatments that inhibit CGRP may represent a promising preventive treatment strategy
to minimize delayed recovery and chronic pain. This also highlights the importance of
multimodal treatment with conservative, non-pharmacologic measures during the acute
period including dietary changes, oral device therapy, behavioral management and phys-
ical therapies such as exercise to reduce peripheral and central risk factors to prevent
chronic pain.
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