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Prader-Willi syndrome (PWS) is a rare disease caused by a lack of expression of

inherited imprinted genes in the paternally derived Prader-Willi critical region on

chromosome 15q11.2-q13. It is characterized by poor feeding and hypotonia in

infancy, intellectual disability, behavioral abnormalities, dysmorphic features, short

stature, obesity, and hypogonadism. PWS is not a known cancer predisposition

syndrome, but previous investigations regarding the prevalence of cancer in

these patients suggest an increased risk of developing specific cancer types

such as myeloid leukemia and testicular cancer. We present the results from

a Swedish national population-based cohort study of 360 individuals with PWS

and 18,000 matched comparisons. The overall frequency of cancer was not

increased in our PWS cohort, but we found a high frequency of pediatric cancers.

We also performed whole-genome sequencing of blood- and tumor-derived

DNAs from a unilateral dysgerminoma in a 13-year-old girl with PWS who also

developed bilateral ovarian sex cord tumors with annular tubules. In germline

analysis, there were no additional findings apart from the 15q11.2-q13 deletion

of the paternal allele, while a pathogenic activating KIT mutation was identified in
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the tumor. Additionally, methylation-specific multiplex ligation-dependent probe

amplification revealed reducedmethylation at the PWS locus in the dysgerminoma

but not in the blood. In conclusion, our register-based study suggests an increased

risk of cancer at a young age, especially testicular and ovarian tumors. We found

no evidence of a general increase in cancer risk in patients with PWS. However,

given our limited observational time, further studies with longer follow-up times

are needed to clarify the lifetime cancer risk in PWS. We have also described the

second case of locus-specific loss-of-imprinting in a germ cell tumor in PWS,

suggesting a possible mechanism of carcinogenesis.

KEYWORDS

Prader-Willi syndrome, ovarian tumor, germ-cell tumor, cancer predisposition, loss-of-

imprinting, imprinting relaxation

1. Introduction

Prader-Willi syndrome (PWS, OMIM #176270) is a

multisystemic genetic disorder caused by imprinting defects

in paternally expressed genes in the 15q11.2-q13 region (1).

In the neonatal period, patients present with poor sucking,

failure to thrive, and severe hypotonia. Subsequently, they

develop hyperphagia which, in the natural course of disease,

leads to obesity. Additional symptoms include craniofacial

dysmorphisms, short stature, small hands and feet, hypogonadism

with cryptorchidism in male sex, intellectual disability of variable

degree, and behavioral changes (1, 2). The genetic causes of PWS

include paternal 15q11.2-q13 deletions, maternal uniparental

disomy (UPD) 15, and imprinting defects (3), all leading to

loss of expression of the paternal-only expressed genes MKRN3,

MAGEL2, NECDIN, SNURF, SNRPN and seven non-coding

RNAs (1).

Dysgerminomas are ovarian germ cell tumors that occur in

female sex, primarily in teenagers and young women (4), and

sometimes in patients with gonadal dysgenesis. Sex cord tumor

with annular tubules (SCTATs) are rare ovarian tumors with

low malignant potential. These tumors are strongly associated

with Peutz-Jeghers syndrome, which is present in more than

one-third of all cases (5). SCTATs have also been described in

Turner syndrome, as well as in combination with other neoplasms,

including dysgerminomas and gonadoblastomas (6). However, they

have rarely been reported in children (7).

Genomic imprinting is an epigenetic mechanism that controls

the monoallelic expression of specific genomic regions according

to their parental origin and implies hemizygous inheritance of

the imprinted genes (8). During gametogenesis, parent-specific

imprinting is established by diverse mechanisms, including DNA

methylation and chromatin remodeling by histone modification

(9). Parent-of-origin-imprinted marks are maintained throughout

the entire life of an organism, though erased in the gonads,

before new imprinting is set during gametogenesis according to

the gender (10). In the recent decades, imprinted genomic regions

have been mapped (11), highlighting their relevance in disease

and cancer (12). In certain conditions, such as carcinogenesis,

imprinting marks can be lost. This process is known as imprinting

relaxation or loss-of-imprinting (LOI). During carcinogenesis,

LOI is associated with the activation of silent oncogenes or

the inactivation of normally expressed tumor suppressor genes

(TSG) (13).

The risk of cancer in patients with PWS is poorly understood,

and the condition is not considered a cancer predisposition

syndrome. Nevertheless, previous studies have indicated an

overrepresentation of malignancies in this patient group (14–

16), and individual case reports of cancer in PWS exist

(Supplementary Table 1). Specifically, two American studies on

individuals with PWS, one including 531 male patients and another

with 1,160 patients, reported an increased relative risk of testicular

cancer of 13.5 (15) and a higher incidence of leukemia (16) in

individuals with PWS, respectively. Finally, a study of the Finnish

population with 56 individuals with PWS reported three cancer

cases, including a patient with testicular cancer and one with

leukemia, which was twice the expected number of diagnoses (14).

Furthermore, the risk of cancer development in individuals with

PWS was possibly underestimated due to their relatively short

life expectancy and the multiple co-morbidities accompanying the

disease (1, 17).

In this study, we aimed to investigate the prevalence of cancer

in PWS by using nationwide register-based data with information

regarding PWS and cancer diagnoses. Furthermore, we present the

second case of locus-specific LOI in DNA from the dysgerminoma

of a 13-year-old girl with PWS and multiple ovarian tumors,

namely, bilateral SCTATs and a dysgerminoma.

2. Materials and methods

2.1. Register-based study

2.1.1. National registers used
In Sweden, all permanent residents are given unique personal

identity numbers (PIN). Upon ethical approval, the PIN enables

linkage between different national registers where data on

demographics and healthcare are collected continuously (18). In

1964, the Swedish National Board of Health and Welfare began

collecting data on all inpatient visits at public Swedish hospitals

in the Sweden National Patient Register (NPR) (19). This register

has nationwide coverage from 1987 onwards, including outpatient

visits since 2001. Since 1973, the Board also maintains a nationwide

Medical Birth Registry (MBR) of all pregnancies resulting in
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childbirth, including information on congenital malformations and

perinatal diagnoses (20).

The National Cancer Register (NCR) was founded in 1958 and

covers all cancer cases in Sweden (21). It is mandatory for all

Swedish caregivers to report new cancer cases to the NCR. The

register contains information on the tumor site (according to the

International Classification of Diseases ICD-7, ICD-O/2, or ICD-

O/3), histology (according to WHO/HS/CANC/24.1, ICD-O/2,

or ICD-O/3), and date of diagnosis. Additionally, the Karolinska

University laboratory information system (LIS) holds a clinical

biobank with data on a large cohort of patients affected by different

rare diseases. The biobank includes information on disease-causing

mutations and phenotypes in 16,502 cases.

Statistics Sweden holds information on the date of birth, death,

and emigration of all citizens in the Total Population Register (22).

Furthermore, it keeps registers including data on educational level

[the Longitudinal Integration Database for Health Insurance and

Labor Market Studies; 1990 and onwards (23)] and across multiple

generations [the Multi Generation Register (24)], enabling linkage

between index individuals and their biological parents.

2.1.2. Exposure and outcome
All individuals diagnosed with PWS were identified from the

MBR and NPR. Since only ICD-10 includes a specific code for

PWS (Q87.1F), solely patients diagnosed with PWS between 1997

and 2017 were included. Individuals who had been diagnosed with

chromosomal aberrations after the last date of diagnosis of PWS

were excluded. Furthermore, patients with a genetically confirmed

PWS identified through the Karolinska University Hospital LIS,

though lacking a PWS diagnosis in the NPR, were added to

the patient cohort. Each patient was matched with 50 unaffected

individuals by year of birth, sex, and birth county. Data on cancer

diagnosis, tumor site, histology, and age at diagnosis were collected

from the NCR. In the case of multiple cancer diagnoses, only the

first was used for further analyses. Data on demographics and

parental level of education were collected from Statistics Sweden.

In the restricted analyses, only individuals born in Sweden between

1961 and 2017 with at least two registered diagnoses of PWS in the

NPR or genetically confirmed PWS were included.

2.1.3. Relationship between PWS and cancer:
statistics

The association between PWS and cancer was estimated using

a Cox proportional hazard model with the attained age as the

underlying time scale. The results were presented as hazard ratios

(HR) with 95% confidence intervals (CI), crude and adjusted for

birth year, sex, and parental educational level. Each individual was

followed from birth to the outcome event, namely, emigration,

death, or end of the study period (31 December 2017), whichever

occurred first. As defined by the World Health Organization,

pediatric and adult cancers were considered as any malignancy

before and after the age of 20 years, respectively (25). The validity

of the proportional hazards assumption was verified by Schoenfeld

residuals. All analyses were performed with the Stata statistical

software, version 14.

2.2. Tumor histological and
immunohistochemical assessment

The tumors in the 13-year-old girl with PWS were diagnosed

through routine clinical assessment and pathological workup.

The large tumor of the right ovary was diagnosed using a

fine needle aspiration and a core biopsy. The former material

was evaluated using May-Grünwald-Giemsa staining, and the

latter with hematoxylin—eosin staining. Further processing with

immunocytochemical and immunohistochemical markers was

performed using antibodies for OCT3/4, SALL4, CD117, CD30,

and Glypican 3. The bilateral microscopic SCTATs were diagnosed

on surgically resected bilateral oophorectomies performed after

preoperative chemotherapy. Immunohistochemical staining with

markers such as inhibin, calretinin, SF1, MelanA, SALL4, and

Ki67 was performed. Furthermore, molecular analysis by Sanger

sequencing was performed to rule out FOXL2 C134Wmutation.

2.3. Whole genome sequencing and
bioinformatic analysis

Patient-matched genomic DNAs from fresh frozen tumors and

peripheral blood were extracted according to standard procedures.

Paired 2× 151 bpwhole genome sequencing (WGS) was performed

on NovaSeq 6000 (Illumina) instruments starting with 1 µg

DNA and using the TruSeq DNA PCR-Free library preparation.

Extracted tumor and blood DNAs were sequenced at 90×/30×

coverage, respectively, as described in Stranneheim et al. (26).

The choice of coverage for WGS is based on data from previous

studies (26–28). The WGS of germline DNA was performed

to confirm PWS diagnosis and exclude disease-causing variants

in childhood cancer predisposition genes. The Scout platform

(Clinical Genomics) was used for the ranking, visualization, and

filtering of variants. The filtering out criteria included a minor

allele frequency of above 0.01 in the general population (29),

annotations outside coding and splice regions, and predicted

benign/likely benign polymorphisms. Candidate variants were

manually explored in Scout (Clinical Genomics) and visualized

using the Integrative Genomics Viewer (IGV) (30).

The dysgerminoma sequencing data were analyzed using

Balsamic (the Bioinformatic Analysis pipeLine for SomAtic

MutatIons in Cancer, Clinical Genomics; https://github.com/

Clinical-Genomics/BALSAMIC), and variants were filtered and

visualized in Scout, as described in Stranneheim et al. (26). Tumor

and copy-number changes were detected with the Control Freec

software, v11.6.

2.4. Methylation-specific multiplex
ligation-dependent probe amplification
(MS-MLPA)

The imprinting status at the PWS locus was evaluated by

MS-MLPA. DNAs derived from tumor and blood samples were

analyzed using SALSA MLPA Probemix Prader-Willi/Angelman

panel (MCR Holland, ME028), according to the manufacturer’s
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instructions. As a control-imprinted region, the SALSA MLPA

Probemix for the Beckwith-Wiedemann/Silver Russell Syndrome

region (MCR Holland, ME030) was evaluated. The results were

analyzed with the GeneMarker V2.7.0 software (SoftGenetics). In

this software, probes with a peak ratio of 0.75–1.30 are generally

considered to be within the normal interval.

3. Results

3.1. Register-based study

A total of 360 patients with PWS were identified through the

MBR, NPR, or Karolinska University LIS, whereof 261 fulfilled the

criteria for inclusion in the restricted cohort. The mean age at the

end of follow-up was 24 years in PWS and 26 years in age-matched

comparisons. The overall frequency of cancer was similar between

patients and comparisons (Tables 1, 2), and there was no increased

risk of cancer at any age in either the full or restricted cohort

in time-to-event analyses (HR 1.07, 95% CI 0.6–1.9) (Table 3).

However, pediatric cancer wasmore prevalent among PWS patients

in the full cohort (3 cases) (Tables 1, 2). Among the individuals

developing cancer, the occurrence of malignancies before the age

of 20 years was observed in 3/12 (25%) of patients with PWS, as

compared to 48/551 (8.7%) in the comparison group. However, the

size of the affected cohort was too small to perform any further

statistical analyses. Therefore, studies on larger cohorts will be

needed to validate these results.

We observed a large proportion of germ cell tumors in

young individuals with PWS. Besides the case presented below,

a woman was diagnosed with an epithelial ovarian tumor at the

age of 20 years and a young boy was diagnosed with a testicular

embryonal carcinoma at the age of 17 years. The proportion

of gonadal tumors (testicular or ovarian) among all individuals

with cancer was 2/12 (17%) in PWS and 17/551 (3%) in the

comparison group.

3.2. Case presentation

3.2.1. Clinical report
A 13-year-old girl with PWS was referred to the

genetics clinic with bilateral ovarian germ cell tumors.

The patient did not have a family or personal history

of cancer.

She and her twin sister were the first common children to

non-consanguineous healthy parents. She has on her mother’s

and father’s side, four and two healthy half-siblings, respectively.

Pregnancy was uneventful, including a normal prenatal ultrasound

examination and genetic screening for trisomy 13, 18, and 21.

She was delivered at 37 weeks + 2 days of gestation by cesarean

section due to breech presentation. Her birth weight was 2,510 g

[−1.5 Standard Deviations (SD)], length 49 cm (+0.25 SD), and

head circumference 33 cm (−0.75 SD). At birth, the patient was

hypotonic and irritable, had weak reflexes and motor activity,

TABLE 1 Baseline characteristics of the full cohort.

PWS Matched controls

N = 360 % N = 17,963 %

Sex

Boys/Men 190 52.78% 9,463 52.68%

Girls/Women 170 47.22% 8,500 47.32%

Birth region

Sweden 345 95.83% 17,250 96.03%

Other 15 4.17% 713 3.97%

Cancer

Cancer at any age 12 3.33% 551 3.07%

Mean age at first cancer diagnosis

(SD)

35.8 (±22.9) 38.7 (±16.7)

Pediatric cancer (<20 years) 3 0.83% 48 0.27%

Emigration

Emigrated 9 3% 1,347 7%

Mean age at emigration (SD) 8.9 (±6.5) 17.0 (±13.3)

Death

Dead 43 12% 382 2%

Mean age at death (SD) 41.3 (±19.0) 37.3 (±24.3)

31 December 2017 310 86% 16,247 90%

Mean age at the end of follow-up (SD) 24.4 (±16.1) 26.1 (±17.4)
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TABLE 2 Baseline characteristics of the restricted cohort.

PWS Matched controls

N = 261 % N = 13,050 %

Sex

Boys/Men 133 50.96% 6,650 50.96%

Girls/Women 128 49.04% 6,400 49.04%

Cancer

Cancer at any age 5 1.92% 243 1.86%

Mean age at first cancer diagnosis

(SD)

35.8 (±22.9) 38.7 (±16.7)

Pediatric cancer (<20 years) 1 0.38% 36 0.28%

Emigration

Emigrated 5 1.92% 888 6.80%

Mean age at emigration (SD) 8.7 (±4.6) 15.1 (±12.1)

Death

Dead 19 7.28% 165 1.26%

Mean age at death (SD) 39.2 (±13.6) 20.6 (±18.3)

31 December 2017 237 90.80% 12,000 91.95%

Mean age at the end of follow-up (SD) 21.7 (±14.0) 22.5 (±14.8)

TABLE 3 Hazard ratios for the association between PWS and cancer at any age in the full and restricted cohorts.

Full cohort Restricted cohort

Crude Adjusted∗ Crude Adjusted∗

HR 95% CI HR 95% CI HR 95% CI HR 95% CI

1.09 0.61–1.93 1.07 0.60–1.89 0.98 0.40–2.37 0.95 0.39–2.31

∗Birth year, sex, and parental educational level.

and required continuous positive airway pressure support due to

respiratory difficulties, as well as nasogastric tube feeding.

Upon physical examination, she was noted to have a distinct

facial appearance with retro micrognathia, high palate, low-set

ears, bitemporal narrowing, bilateral palmar creases, and slender

hands and feet. Metabolic and infection investigations, ultrasound

examination of the brain, heart, kidneys, and urinary tract, and

an electroencephalogram were all normal. Genetic testing with

chromosomal microarray and MS-MLPA revealed an imprinting

defect due to a deletion of the paternal allele at the Prader-Willi

region on chromosome 15 (15q11.2-q13). Her tonus and feeding

difficulties gradually improved, and she was discharged home at 20

days of age.

Psychomotor development was mildly delayed. At 8 months of

age, she was diagnosed with growth hormone deficiency and started

replacement therapy, which continued until the age of 12 years.

She received low-dose growth hormone treatment, initiating at 0.02

mg/kg/day and adjusting to 0.01–0.015 mg/kg/day after a year, due

to her elevated insulin-like growth factor 1 (IGF-1) values, which

went from about 90 µg/L before hormone replacement, to roughly

between 275 and 570 µg/L during growth hormone treatment. The

patient’s parents also reported that she had difficulty sleeping and

snored loudly at night. A sleep study revealed severe sleep apnea,

and an adenotonsillectomy was performed with good results.

Between 1 and 2 years of age, the patient’s body mass index

rapidly increased from 19.2 kg/m2 (0 SD) to 21.6 kg/m2 (+3 SD),

and she developed childhood hyperphagia (excessive appetite and

obsession with eating). She was placed on a diet with a strict calorie

limit to control her weight and prevent obesity. At 5 years of age,

she developed hyperinsulinemia, her obsession with eating became

more problematic, and episodes of rage were noted. At 6 years

of age, she was diagnosed with intellectual disability and autism

spectrum disorder.

The patient sought emergency care at 13 years of age for fever

and abdominal pain. The parents also reported on a few-week-

old history of hirsutism, hoarse voice, acne, and an episode of

vaginal bleeding, which was interpreted as menarche. Laboratory

investigations showed elevated C-reactive protein (282 mg/L),

leukocytosis (14.8 × 109/L) with neutrophilia (11.6 × 109/L),

anemia (Hb 100 g/L), and thrombocytosis (404 × 109/L). An

abdominal computed tomography scan revealed a right ovarian

mass measuring 13× 7.5× 12.5 cm of heterogeneous aspect. Beta-

hCG was elevated in serum (42 E/L), and alpha-fetoprotein was

normal (>1 ug/L).

Frontiers inMedicine 05 frontiersin.org

https://doi.org/10.3389/fmed.2023.1172565
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Maya-González et al. 10.3389/fmed.2023.1172565

Abdominal magnetic resonance imaging confirmed the

presence of a right ovarian tumor. X-ray and computed

tomography scan of the thorax showed no lung metastasis.

She was put on neoadjuvant chemotherapy and received a first

cycle with bleomycin, etoposide, and cisplatin and a second

cycle with etoposide, carboplatin, and bleomycin, after which

the tumor could be surgically removed. Postoperatively, she

received an additional cycle of chemotherapy. Six months after

the surgery, a follow-up examination of the abdomen showed no

evidence of tumor material or metastatic disease in the lymph

nodes, and serum beta-hCG normalized. Clinical symptoms of

virilization regressed.

The patient’s height at 14 years of age wasmeasured at 156.5 cm,

which was 1 SD below the mean for her age and adequate according

to her target height. Her weight was 79 kg, which was 3 SD above

the mean for her age.

3.2.2. Germline genetic analysis
At cancer diagnosis, germline WGS was performed on

peripheral blood DNA to rule out potential childhood cancer

predisposition syndromes. WGS confirmed the disease-causing

deletion within the Prader-Willi critical region on 15q11.2-q13

(data not shown), but no additional pathogenic/likely pathogenic

variants explaining the presence of multiple bilateral ovarian

tumors in the patient were found.

3.2.3. Histopathological and
immunohistochemical assessment of the tumors

Diagnostic fine needle aspiration biopsy from the right-

sided ovarian tumor showed uniform medium to large-sized cells

with atypical nuclei, prominent nucleoli, and finely vacuolated

cytoplasm. Scattered lymphocytes were found in the background.

Tumor cells were positive for OCT3/4, SALL4, and CD117 and

negative for CD30 and Glypican 3, leading to a dysgerminoma

diagnosis (data not shown). This was confirmed by the evaluation

of core biopsies, performed simultaneously, which showed the

solid growth of nested atypical monomorphic cells with nucleoli-

containing nuclei and clear to eosinophilic cytoplasm. Focal

necrosis and lymphocytes were also observed in the background

(Figure 1A). Tumor cells were positive for OCT3/4, SALL4, and

CD117 (SALL4 and CD117 staining in Supplementary Figures 1A,

B) and negative for CD30 (data not shown).

After preoperative chemotherapy, bilateral oophorectomy was

performed. The dysgerminoma in the right ovary was completely

necrotic. In the adjacent ovarian stroma and contralateral ovary,

there were well-circumscribed nests of cells with bland angulated

nuclei and a moderate amount of cytoplasm with mild or no atypia

or mitotic activity. Punched-out spaces containing eosinophilic

material with focal calcifications were present (Figure 1B). These

nested cells were variably positive for inhibin, calretinin, and

SF1, while SALL4 was negative (inhibin and SFI staining in

Supplementary Figures 1C, D). Sanger sequencing analysis for

FOXL2 C134W mutation was negative. In the presence of a

dysgerminoma, gonadoblastomawas initially considered. However,

this diagnosis was ruled out by the absence of germ cells on

morphology and negative SALL4 staining. Instead, these sex cord

proliferations were diagnosed as bilateral SCTATs.

3.2.4. Genetic findings in the tumor tissue
(dysgerminoma)

WGS profiling of the patient’s ovarian dysgerminoma was

performed to evaluate driver somatic genomic alterations,

including copy number variations. The tumor presented

a very complex copy number profile, with numerical and

segmental aberrations in most of the chromosomes, except

for chromosomes 5, 9, 11, 16, 18, and X. Multiple copies of

chromosome 21 were observed. Chromosomes 1, 3, and 6 had

clear breakpoints (Supplementary Figure 2). Finally, variant

calling in the dysgerminoma detected a somatic pathogenic

activating KIT mutation (NM_000222.3:c.1676T>G) with a

variant allele frequency of 20% (Supplementary Figure 3A).

No additional single-nucleotide variants were found in known

cancer-related genes.

3.2.5. Locus-specific loss-of-imprinting in the
dysgerminoma

We investigated the imprinting status at the PWS region in the

dysgerminoma by MS-MLPA. The results showed a normal ratio of

five methylation-specific probes regarding the analysis of genomic

DNA from blood in the PWS region (mean ratio 0.94, Figure 1C), as

well as the imprinting region on chromosome 11 in blood andDNA

from the dysgerminoma (Supplementary Figure 3B). Imprinting

relaxation was implied in the tumor at the PWS region, where

these five imprinted probes showed a ratio mean of 0.71, just below

the normal threshold, but with a large difference compared to the

analysis in blood (Figures 1C, D).

4. Discussion

Although PWS is not considered a cancer predisposition

syndrome, there is preliminary evidence of an increased incidence

of leukemia (16) and othermalignancies (14, 15) in these patients. It

has been debated whether growth hormone replacement treatment,

leading to increased levels of IGF-1, may contribute to the observed

increased cancer risk in PWS (31). In this study, we carried out

a population-based cohort study investigating the frequency of

cancer in individuals with PWS. We also report on an interesting

clinical case of a 13-year-old girl with PWS due to a constitutional

paternal deletion of the chromosomal region 15q11.2-q13, who

developed both an ovarian dysgerminoma and bilateral SCTATs.

Tumor identity was confirmed, while genetic analyses detected a

somatic pathogenic activating KIT mutation and LOI at the PWS

locus in the dysgerminoma.

In the population-based cohort study, the overall frequency

of cancer was similar in PWS and age-matched comparisons, and

time-to-event analysis did not indicate an overall increased risk

of cancer in association with PWS. However, when considering

the age at cancer onset, we found that the frequency of childhood

cancer was three times higher in PWS than in age-matched controls

(0.83 and 0.27%, respectively, in the full cohort). The numbers were
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FIGURE 1

Patient’s histological and genetic findings. (A) Diagnostic core biopsy from the right ovarian dysgerminoma, hematoxylin–eosin staining. Solid

growing nests of atypical, monomorphic tumor cells with prominent nucleoli (blue arrows) and a moderate amount of clear to eosinophilic

cytoplasm. Numerous mitoses were observed (black arrows). In the background, scattered tumor-infiltrating lymphocytes. Scale bar: 100µm. (B)

Surgical resection of right ovarian SCTAT visualized with hematoxylin-eosin staining. Nested formations of annular tubules with central eosinophilic,

hyaline material. Focal Leydig cells (black arrows) and calcifications (not shown) were observed. Similar proliferations were found in the resected

contralateral ovary. (C, D) MS-MLPA analysis of the PWS imprinted region 15q in DNA from the patient’s blood (C) and the dysgerminoma (D), after

HhaI digestion. Control probes outside the 15q11 region are depicted in blue, target probes with peak ratio below 0.75 are depicted in red, and target

probes with a peak ratio above 0.75 are depicted in green. Copy number probes confirm 15q11.2-q13 deletion (red squares, peak ratio 0.5 ± 0.25). In

blood, the eight probes with HhaI show the expected methylation pattern, with a ratio of 1.0 ± 0.25 at the imprinted genes at 15q11.2-q13 (green

squares). In the dysgerminoma, loss of methylation (peak ratio <0.75) can be observed at four of these probes, at imprinted genes SNRPN and

MAGEL2 (selected region, red squares). A fifth probe presents a borderline value of 0.757 (selected region, green square).

too small to perform proper tumor subtype analyses, but when

reviewing the specific cancer types, we found a large proportion

of gonadal tumors among young individuals with PWS. Even if

the increased childhood cancer incidence is below the risk level

recommended for surveillance in the European Union (32), it

is important that treating physicians are aware of this increased

risk, especially since individuals with PWS may have difficulties

expressing their health status.

Through a literature review of published reports of

malignancies in individuals with PWS, we found a total of 50

described patients, including 13 individuals reported in the present

study. Of note, only articles published before January 2022 were

included in the review. Interestingly, the patients presented a

considerably young age at cancer diagnosis, with an average of 24.5

years. Specifically, of the 46 reported cases with specified age at

cancer diagnosis, 20 patients (43.5%) were diagnosed before the age

of 20 years (Supplementary Table 1). This can result from a lower

life expectancy in individuals with PWS (1, 33) or, as observed in

the present study, an overrepresentation of pediatric malignancies

in this patient population. As life expectancy increases in PWS,

there is a possibility for further investigation of cancer risk in this

patient group (17).

Of the 49 cases where cancer type was reported, 11 patients

(22.5%) developed germ cell tumors (Supplementary Table 1). This

is in line with results from previous studies, which indicate an

elevated risk for testicular cancer in PWS (14, 15). All previous

reports of germ cell tumors in PWS refer to testicular presentations

(34–36). In this respect, a link between testicular malignancies and

PWS has been proposed (34), possibly related to the high incidence

of cryptorchidism in PWS (37), as an undescended testis increases

the risk for testicular malignancies in male patients (38). However,

dysgerminomas in females are equivalent to testicular seminomas

in males, possibly indicating gonadal dysgenesis, rather than

cryptorchidism, as the underlying cause. Three ovarian tumors

were found in our study: one germ cell tumor and, notably, two

gonadal but not germ cell ovarian tumors. Expressly, an ovarian

epithelial tumor was found in our register-based study in addition

to the reported patient’s bilateral SCTATs.

We also performed tumor and germline genetic analysis in a

13-year-old girl with PWS who developed bilateral SCTATs and a

unilateral ovarian dysgerminoma, since the presence of multiple

primary tumors in childhood is one of the criteria for recognition

of cancer predisposition syndromes (39). Interestingly, MS-MLPA

revealed locus-specific LOI in the dysgerminoma at the PWS

region, but not in a control region at 11p. This same phenomenon

was previously reported in a child with PWS due to maternal UPD

15, who developed a germ cell testicular seminoma. He presented

incomplete methylation at the PWS locus in the tumor, but not in
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iPSCs or skin fibroblasts (36). Similar to our study, the authors used

the methylation status of a second imprinting region, i.e., the H19

cluster, to conclude that imprinting relaxation was locus-specific

and possibly linked to carcinogenesis (36).

Imprinting relaxation has been previously described in cancer.

Initial studies reported LOI inWilms tumor at the imprinted region

11p (40, 41). Later on, imprinting relaxation in other cancer types

was also documented (42), including in germ cell tumors (43). It is

hypothesized that imprinting can result in cancer when the region

that loses its epigenetic marks provides growing advantages to the

cell or when the only expressed copy of a TSG losses its function

(13). At 11p, LOI results in overexpression of the growth factor

IGF2, leading to increased cell division and growth (44). A similar

mechanism could possibly explain the link between LOI at the

imprinted region 15q11.2-q13 and tumorigenesis.

We queried the coding genes located in the PWS imprinted

region [MKRN3, MAGEL2, NDN, NPAP1, and SNURF-SNRPN

(1)] in public databases of cancer driver genes. As of June

2023, none of the genes was found in the Census Tiers from

the COSMIC database (45), while three were candidate cancer

drivers according to the Network of Cancer Genes (46). Of these,

NPAP1 and NKRN3 are putative TSG, with prevalent loss-of-

function alterations in melanoma and lung cancer, respectively.

The third gene, SNRPN, is considered a putative oncogene,

due to prevalent gain-of-function alterations and duplications

in cancer. In vitro studies in cancer cell lines showed that

increased cell proliferation, metastatic capability, and cell cycle

progression positively associate with SNRPN expression (47–49).

Finally, the NDN gene is reported by the Tumor Suppressor

Gene Database as a potential TSG (50). Necdin, the protein

encoded by the NDN gene, arrests cell cycle progression and

interacts with TP53 to inhibit cell growth (51). It has been

hypothesized that the lack of NDN in patients with PWS

may lead to cancer predisposition (17). We thus conclude that

carcinogenesis in patients with PWS could be linked either to

SNRPN re-expression or changes in NDN expression in patients

with PWS. Moreover, the involvement of additional genetic

factors or growth hormone replacement treatment (31) in cancer

development cannot be excluded. Therefore, follow-up functional

studies are needed to understand the impact of LOI at 15q11.2-q13

in carcinogenesis.

Germline WGS analysis in our patient did not lead to the

identification of additional disease-causing variants besides the

15q11.2-q13 paternal deletion. However, a pathogenic missense

KIT activating variant, previously not described in germ cell

tumors, was discovered in the dysgerminoma of the 13-year-

old girl. KIT encodes a tyrosine kinase receptor involved in

cell differentiation and germ cell survival. In cancer, it has

been associated with the presence of cancer stem cells and

increased epithelial-mesenchymal transition (52). Furthermore,

KIT amplification or somatic activation (due to mutations in exon

17, codon 816) is present in 27–53% of ovarian dysgerminomas

(53–55). Furthermore, KIT pathogenic variants associated with

tumor development are found in 10–40% of testicular seminomas

(55). Based on the present results, it is not possible to determine

whether the initial driving event in the dysgerminoma corresponds

to the somatic KIT variant or LOI at 15q.

As in the previously published epidemiological investigations

of cancer in association with PWS, the main limitation of

the present study is the cohort size. Although the Swedish

registry holds records of citizens from 1960s onwards, only

individuals diagnosed with PWS between 1997 and 2017 are

included in the study, since only ICD-10 diagnosis of PWS

is reliable. Additionally, both PWS and pediatric cancer are

rare diseases, thus reducing the number of reported cases to

<5. A similar limitation was encountered when analyzing the

incidence of germ cell malignancies in PWS. Furthermore, as

adult cancer correlates with increasing age, the relatively short

follow-up time may have contributed to the underestimation

of the true association between PWS and cancer in adulthood.

Therefore, future studies on larger cohorts will be needed to

validate the pediatric and lifetime cancer risks in individuals

with PWS.

In conclusion, we found a high frequency of pediatric cancer,

especially gonadal tumors, in individuals with PWS, suggesting

an increased risk for these malignancies in PWS. Studies on

larger cohorts with longer follow-up times are needed to clarify

the lifetime cancer risk in this patient group. Furthermore,

we have presented the second case of locus-specific imprinting

relaxation in a germ cell tumor in a patient with PWS and

suggest LOI as a possible mechanism for tumorigenesis in

these patients.
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