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Summary

Neuronal wiring diagrams reconstructed by electron microscopy1–5 pose new questions about 

the organization of nervous systems following the time-honored tradition of cross-species 

comparisons 6,7. The C. elegans connectome has been conceptualized as a sensorimotor circuit 

that is approximately feedforward 8–11, starting from sensory neurons proceeding to interneurons 

and ending with motor neurons. Overrepresentation of a three-cell motif often known as the 

“feedforward loop” has provided further evidence for feedforwardness10,12. Here we contrast 

with another sensorimotor wiring diagram that was recently reconstructed from a larval zebrafish 
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brainstem13. We show that the three-cycle, another three-cell motif, is highly overrepresented 

in the oculomotor module of this wiring diagram. This is a first for any neuronal wiring 

diagram reconstructed by electron microscopy, whether invertebrate12,14 or mammalian15–17. 

The three-cycle of cells is “aligned” with a three-cycle of neuronal groups in a stochastic 

block model18 of the oculomotor module. However, the cellular cycles exhibit more specificity 

than can be explained by the group cycles; recurrence to the same neuron is surprisingly 

common. Cyclic structure could be relevant for theories of oculomotor function that depend on 

recurrent connectivity. The cyclic structure coexists with the classic vestibulo-ocular reflex arc 

for horizontal eye movements19, and could be relevant for recurrent network models of temporal 

integration by the oculomotor system20,21.

eTOC Blurb:

Yang et al. analyze a wiring diagram of a larval zebrafish brainstem. Cycles of three synaptically 

connected cells are highly overrepresented. They are aligned with a three-cycle of neuronal groups 

in a stochastic block model, but exhibit more specificity. Recurrence to the same neuron is 

surprisingly common.

Results

The center subgraph and its degree distributions

Previously we reconstructed a neuronal wiring diagram from a larval zebrafish brainstem13. 

The number of presynaptic sites (“presynapses”) and postsynaptic sites (“postsynapses”) on 

a neuron varies greatly (Figures S1A, B). Some of this variation is biological, and some 

results from truncation of arbors by the borders of the EM imaged volume. To exclude 

reconstructed cells that are highly truncated, we define a “center subgraph” that retains only 

neurons with presynapse numbers and postsynapse numbers exceeding thresholds (Figures 

1A; S1A, B). The center subgraph includes 419 neurons and 5,605 connections, and was 

used for subsequent analyses. This definition of the center subgraph is simpler than our 

previous spectral definition13.

Varying the thresholds changes the size of the center (Figure 1A), but will be shown to 

have little effect on subsequent analyses (Figure S1G, modularity results for other center 

subgraphs). We previously identified 34 secondary vestibular (Ve2) neurons in the center, 

which receive input from primary vestibular afferents13. Neurons excluded from the center 

subgraph will be referred to as the “periphery.” They include 54 abducens (ABD) neurons, 

and 4 large reticulospinal (RS) neurons.

The in-degree of a node was defined as the number of its presynaptic partners contained in 

the center subgraph (Figure S1C). The weighted in-degree of a node was defined as the total 

number of incoming synapses received by that node from its presynaptic partners contained 

in the center (Figure S1E). The maximum in-degree was 59, and the maximum weighted 

in-degree was 246. Similarly, we defined the out-degree (Figure S1D) and the weighted 

out-degree (Figure S1D) of a neuron as its number of postsynaptic partners and outgoing 

synapses in the center subgraph. The maximum out-degree was 101, and the maximum 

weighted out-degree was 271.
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Division of wiring diagram into oculomotor and axial modules

We previously applied Louvain clustering to the neuronal wiring diagram to discover 

two modules specialized for oculomotor and axial movements13. The Louvain algorithm22 

assumes that the graph is modular, i.e., intra-cluster connectivity is stronger than inter-

cluster connectivity. More generally, we would like to identify clusters of nodes with 

similar connectivity patterns. The stochastic block model (SBM) is a way of doing this18, 

and can work whether or not the clusters are modules. The SBM has previously been 

applied to neuronal wiring diagrams23,24, and revealed nonmodular structure in the C. 
elegans connectome23. We will begin by applying the SBM to identify oculomotor and 

axial modules in our zebrafish wiring diagram, similar to our earlier work on Louvain 

clustering13. Later on, we will show that the SBM can identify a nonmodular, cyclic 

structure in our zebrafish wiring diagram. We will also make use of another feature of 

the SBM: it can be used to estimate the probability of connectivity motifs, since it is a 

probabilistic model.

We use a microcanonical degree-corrected SBM25, because the degrees of the nodes in 

the center subgraph are highly variable (Figure S1C, D). The model assumes that the 

neurons are divided into a fixed number of blocks, and the connection probability between 

neurons is a function of their block memberships only, after correcting for the degrees of 

the neurons. We applied the SBM to divide our center subgraph into two blocks. After 

the block memberships and connection probabilities were found by maximizing posterior 

probability25, the blocks ended up being roughly equal in size (Figure 1C). The blocks 

satisfy the definition of modules or communities in network science26; within-module 

connectivity is stronger than between-module connectivity (modularity Q = 0.37, p < 0.001).

Following our previous work13, we named the modules modO and modA. To biologically 

validate the modules, we checked their relation to neurons in the “periphery,” which were 

not used to construct the SBM. As in our previous work13, ABD neurons received much 

stronger connectivity from modO than from modA (Figure 1C), and the 4 large RS neurons 

in the periphery received much stronger connectivity from modA than from modO (Figure 

1C). All 34 of the Ve2 neurons are members of modO; none were in modA. Of the 7 RS 

neurons contained in the center, all were in modA, and none were in modO. Therefore, all 

our structural observations imply that modO plays a role in eye movements, and modA plays 

a role in movements of the body axis.

To probe the robustness of the SBM, one can run the algorithm multiple times starting from 

random initial conditions and evaluate whether the solutions are similar every time. We 

generated 10 solutions in this way, and found that the Rand index was 0.997 after averaging 

over all pairs of solutions. This indicates that the solutions are highly similar; the Rand index 

is equal to one when the block structures are identical27. We also applied an SBM without 

degree correction, and the result was almost identical (Figure S2A). Finally, we applied a 

multi-graph SBM with degree correction25, and obtained almost identical results (Figure 

S2A).

As another test of robustness, we also applied the SBM with greater than two blocks. The 

3-block and 5-block SBMs turn out to be approximate refinements of the 2-block SBM 
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(Figure 1D). The 3-block SBM splits modA of the 2-block SBM into two sub-modules 

(Rand index=0.985, N=10), with one sub-module containing all center RS neurons. The 

5-block SBM (Rand index = 0.963, N=10) further splits modO into 3 sub-blocks. These 

three sub-blocks are not modular, due to off-diagonal connectivity that will be discussed 

later on. The 4-block SBM (data not shown) is less robust (Rand index = 0.913, N=10), 

which implies that dividing the network into 4 blocks is not as “natural” as dividing it into 

2, 3, or 5 blocks, so we exclude it from consideration. In summary, the 2-block, 3-block, and 

5-block SBMs form an approximately nested hierarchy.

A connection from neuron A to neuron B may be mediated by more than one synapse 

from neuron A to neuron B. The number of synapses per connection varies from 1 to 20 

(Figure 1B). About 65% of connections involve a single synapse, and we will refer to these 

as “weak” connections. We manually proofread these connections, and verified that they 

include very few false positive synapses (Methods).

Applying the SBM to the weak connections only, or to the strong connections only, yields 

similar modO and modA blocks (Figure 1E). When both are compared to the SBM based 

on the entire center subgraph, the SBM based on strong connections only is more similar 

(Figure 1E).

The number of synapses per connection is greater when the connection is within a module 

than between modules (Figure S2F). The average size of a synapse is roughly the same, 

whether the synapse is between modules or within a module (Figure S2G).

Bidirectional connections in modO

The analysis of network motifs relies on models of random graphs to assess statistical 

significance. The Erdős-Rényi (ER) and configuration (CFG) models of random graphs are 

widely used12,14. An ER model assumes that all connections are equally probable. A CFG 

model preserves in- and out- degrees of all nodes while randomizing connections (Figure 

2A).

We compared the frequencies of two-cell motifs with values expected from the ER and CFG 

models. There is an overrepresentation of bidirectional connections (Figure 2D, p = 0.001). 

The overrepresentation is weak relative to C. elegans, where the overrepresentation factor is 

much greater than one12.

We repeated the analysis for strong connections, defined as those containing at least a 

threshold number of synapses. The results were qualitatively similar for strong connections 

(Figure S4B). We also repeated the analyses for modA, and found qualitatively similar 

results (Figure S4E).

Global and local analyses of feedforwardness in the C. elegans connectome

For C. elegans, the graph of chemical synapses has been argued to be approximately 

feedforward. (Durbin 1987) was able to order the neuronal classes so that only a small 

fraction of synapses point in the “backward” direction8,11, and reported that almost all of 

the backward-pointing synapses belong to bidirectionally connected cell pairs. His work 
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suggested that there is little violation of feedforwardness beyond this overrepresented two-

cell motif. Similar orderings of all neurons have been derived11,12,13.

In addition to these global analyses involving neuron ordering or SBM, evidence 

for approximate feedforwardness comes from local analyses of three-cell connectivity 

motifs11,12. In particular, the “feedforward loop” (Figure S3A) is known to be 

overrepresented in the C. elegans connectome. A feedforward loop might arise, for example, 

because of the coexistence of two pathways from a sensory neuron to a motor neuron, one 

pathway that is direct and the other that is mediated by an interneuron. However, it has been 

reported that the feedforward loop is overrepresented even when the analysis is restricted to 

interneurons only12.

Building on this finding, we can regard the division of the C. elegans nervous system 

into three blocks–sensory neurons, interneurons, and motor neurons–as the basis of a naive 

SBM. The matrix of connection probabilities (Figure S3C) between blocks is asymmetric, 

because connections are more likely from sensory neuron to interneuron, and interneuron 

to motor neuron, than in the opposite direction9. A similar asymmetry is observed for 

the matrix of synapse counts (Figure S3B). This SBM is naive, because the blocks 

are manually identified. A similar demonstration of asymmetry with a larger number of 

manually identified blocks has also been given 11. An SBM was previously fit to the C. 
elegans connectome to find more than three blocks23.

In the naive SBM of Figure S3C, we find that 29% of feedforward loops are intra-block, and 

for only 6% do the three cells conform to sensory, inter-, and motor neuron (Figure S3D). In 

other words, the feedforward loop is not “aligned” with the global structure captured by the 

three-block SBM of Figure S3B and Figure S3C, elaborating on a previous report that the 

feedforward loop is overrepresented even if restricted to interneurons only11,12.

Instead of using the naive SBM, one could fit a three-block SBM, including the block 

assignments, to the connectivity data. For the simple graph version of the fitted SBM (Figure 

S3E), blocks 1, 2, and 3 end up being mostly (but not exclusively) sensory, inter-, and 

motor neurons, respectively. The connection probabilities are asymmetric, but there are no 

connections from block 1 to 3. Therefore the feedforward loop does not align at all with 

the fitted SBM. For the multi-graph version of the fitted SBM (Figure S3F), the connection 

probabilities do not display much asymmetry.

3-cycles of cells in modO

Approximate feedforwardness of the C. elegans connectome is consistent with the 

conception of some C. elegans behaviors as sensorimotor reflexes, mediated by reflex 

arcs from sensory neurons to interneurons to motor neurons28. Vertebrate oculomotor 

behaviors have also been conceptualized as reflexes. For example, the vestibulo-ocular reflex 

involves a three neuron reflex arc traveling from primary vestibular neuron to secondary 

vestibular neuron to motor neuron29. This reflex arc is indeed present in our zebrafish wiring 

diagram, and travels through modO. Therefore one might ask whether the modO has an 

approximately feedforward organization, similar to C. elegans.
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We first address this question with a local analysis of three-neuron motifs11,12. Following 

previous work11,12, we use generalizations of ER (gER, Figure 2B) and CFG models 

(gCFG, Figure 2C) that preserve frequencies of all two neuron motifs (Figure 2D). This 

enables us to look for recurrent connectivity that is above and beyond bidirectional 

connections between pairs of cells, which are overrepresented (Figure 2D).

The frequencies of all three neuron motifs are shown in Figures 2E and S4A. The most 

striking finding is that the three-cycle (motif #11) is overrepresented in modO relative to 

gCFG (z-score=22.67, N=1,000). Its overrepresentation is both absolutely large and also 

has high statistical significance. Another striking finding is that the feedforward loop (motif 

#10) is fairly well predicted in modO by gCFG (z-score=2.52, N=1,000). There is a slight 

overrepresentation that is statistically significant, but its magnitude is not large.

These findings about motifs #10 and #11 should be interpreted in the context of other motifs. 

All highly connected motifs (#10 to #16) are overrepresented relative to gCFG (Figures 2E; 

S4A). However, the different motifs are correlated in the sense that they share individual 

‘legs’ of the connectivity triangles. For example, both motifs 10 and 11 have directed 

connections from beta to alpha and alpha to gamma, and differ only in the direction of the 

third connection between beta and gamma. Such correlations can be normalized away by 

defining relative measures of recurrence that involve both motifs #10 and #11 as well as 

other highly connected three neuron motifs #12–16.

The “3-unicycle coefficient” (U3) estimates the probability ratio between completing a 

unidirectional 3-cycle (motif #11) and making a feedforward loop (motif #10) among three 

neurons, conditioned on two consecutive unidirectional connections (Figure 2F). A higher 

U3 indicates higher network recurrence. We found the increasing recurrence indicated by U3 

from the whole C. elegans connectome, C. elegans interneuron subgraph, to our zebrafish 

center subgraph, modO, and the modO subgraph of strong connections (Figure 2H). The 

center subgraph and modO do not include sensory or motor neurons, so they are regarded 

here as analogous to the C. elegans interneuron subgraph. The 3-unicycle coefficient of 

modO is higher than 1, indicating that modO is even more recurrent than ER, for which U3 

≈ 1.

The preceding suggests that zebrafish networks are more recurrent than C. elegans networks 

in an absolute sense. Comparing with the generalized CFG model, we find that zebrafish 

center subgraph and the oculomotor module (modO) have a higher U3 than gCFG, while 

both C. elegans interneuron subnetwork (79 neurons) and the entire wiring diagram (270 

neurons + 115 end-organ cells) have lower U3 scores than gCFG (Figure 2H). Therefore 

zebrafish remains more recurrent than C. elegans, even if we normalize U3 by its gCFG 

model value.

The “3-cycle coefficient” (C3) is similar to the 3-unicycle coefficient, but allows 

bidirectional connections (Figure 2G). Given three neurons α, β, and γ with two consecutive 

connections (β α and α γ), it calculates the probability ratio of existing a feedback 

connection between neurons γ and β and a unidirectional connection from β to γ. The 3-cycle 

coefficient C3 shows similar trends as U3 (Figure 2I). The above analyses included all 
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connections in modO. If we include only the strong connections in modO, then the effects 

are even stronger (Figures 2H,I).

We also analyzed three-cell motifs in modA. In contrast to modO, the feedforward loop 

(motif #10) is more overrepresented in modA relative to gCFG (z-score=+22.32, N=1,000), 

and the 3-cycle (motif #11) is less overrepresented (z-score=+8.04, N=1,000). Consequently, 

we found modA is less recurrent than modO and the center subgraph, but still much more 

recurrent than C. elegans networks, as indicated by U3 and C3 (Figures 2H,I). The same 

trend holds after normalizing U3 and C3 with their gCFG values, and the recurrence of 

modA is close to gCFG.

To summarize, modO exhibits a strong cyclic structure at the block and cellular levels, 

modA is slightly less cyclic than gCFG, and C. elegans is much less cyclic than 

gCFG8,10,12,30.

3-cycle of blocks in modO

We looked for a block structure in modO that could contribute to the cellular cycles noted 

above. When we applied a 3-block SBM to modO, we found that the blocks were not 

modular; intra-block connectivity was weaker than inter-block connectivity (Figure 3A). The 

inter-block connectivity could be approximated as cyclic (Figure 3A), with the connection 

probabilities from blockO1 to blockO2 to blockO3 to blockO1 higher (8✕, 3✕, 14✕) than 

those in the opposite direction. Similar cyclic structure also holds for normalized synapse 

counts between the blocks (Figure 3D).

We also found that the 3-cycles of cells identified above are related to the 3-cycle of blocks. 

About 87% of 3-unicycles (Figure 3B) and 72% of 3-cycles (Figure 3C) are aligned with the 

3-cycle of blocks, from a blockO1 neuron, to a blockO2 neuron, then to a blockO3 neuron, 

and finally back to the same blockO1 neuron. There is only one 3-unicycle in the opposite 

direction. If we generate networks from the 3-block SBM (Figure 3A), the expected number 

of 3-cycles of cells is much less than the observed number (Methods, Figures 3B,C). In 

other words, 3-cycles are overrepresented relative to the prediction of the 3-block SBM, 

indicating positive correlations between inter-block connections, rather than the statistical 

independence assumed by the SBM.

BlockO1 contains almost all Ve2 neurons in the reconstruction. These are secondary 

vestibular neurons, which receive signals from primary vestibular afferents and provide input 

to the vestibulo-ocular reflex. Therefore, blockO1 can be seen as the start of the 3-cycle. 

BlockO3 neurons have a high probability of connection (>90%) to ABDI neurons (Figure 

3F), and therefore can be seen as the exit of the 3-cycle. BlockO2 is the least connected to 

ABD neurons (Figure 3F), suggesting that blockO2 are mainly intermediating the 3-cycle to 

create richer dynamics.

BlockO1 contains both Ve2 neurons and other neurons (Figure 3G). We found that the 

number of 3-cycle motifs containing Ve2 neurons is much less than the portion of Ve2 

neurons in blockO1, which means Ve2 neurons do not participate in 3-cycles as often as 

generic modO neurons (Figures 4D,E). Ve2 neurons receive synapses from blockO3 neurons 
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close to its soma, while the generic modO neurons in blockO1 receive synapses at various 

locations (Figures 3H,I).

The neuron morphology and spatial organization can at least partially explain the cyclic 

connections among three blocks. Figure 4C demonstrates morphological similarity between 

the neurons in each block that participate in 3-unicycles. This suggests that the blocks, 

though derived by analysis of connectivity, are similar to those that might be found by 

morphological analysis.

The power and limitations of morphological analysis can be seen by attempting to predict 

the true connectivity matrix of Figure 3A from axodendritic overlap. This is done through 

computing the number of potential synapses with different distance thresholds (Figure 4B), 

where we define potential synapses as pairs of pre- and post- synaptic sites within a distance 

threshold (Method, Figure 4A). When the threshold is 10μm, the normalized potential 

synapse counts from blockO1 to blockO2 to blockO3 to blockO1 are higher (1.66✕, 1.35✕, 

2.79✕) than those in the opposite direction (Figure 4B).

This suggests that blockO2 axons are close to blockO3 dendrites, and blockO3 axons 

are close to blockO1 dendrites. And blockO1 sends much fewer potential synapses to 

blockO3 than blockO2 and itself, suggesting that blockO3 dendrites do not overlap with 

blockO1 axons. So potential synapses do partially predict true connectivity. However, the 

intra-blockO1 potential connection becomes stronger than the blockO1 to blockO2 potential 

connection in Figure 4B, which does not match the cyclic structure of Figure 3A. In short, 

axodendritic overlap can partially predict true connectivity but fails to reproduce the cyclic 

structure.

The 3-block SBM applied to modO is almost identical (with only 9 neurons assigned 

differently) to a subset of three blocks that are discovered when a 5-block SBM is applied 

to the entire center subgraph (Figure 3E). Such consistency confirms the robustness of the 

3-cycle block structure of modO.

Discussion

One might question whether it makes sense to compare species as different as a worm 

and a fish, or an entire worm connectome with a small portion of a fish connectome. 

The comparison is motivated by the fact that both wiring diagrams can be regarded 

as sensorimotor circuits. Furthermore, our comparison has been at the level of general 

principles of organization; a cell-by-cell comparison seems impractical in species that are so 

different.

We discovered a strong overrepresentation of three-cell cycles in the oculomotor module 

(modO) of a neuronal wiring diagram reconstructed from a larval zebrafish brainstem 

(Figure 2E). We introduced the 3-unicycle coefficient, which compares the frequency of 

three-cell cycles vs. the frequency of feedforward loops (Figure 2F). This measure of 

recurrence is high in an absolute sense, and also high relative to a CFG model (Figure 2H). 

Similar results were found for the 3-cycle coefficient, another measure of recurrence that 

includes motifs with bidirectional connections (Figure 2G,I).
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As far as we know, this is the first finding of overrepresented three-cell cycles in any 

neuronal wiring diagram reconstructed by electron microscopy (EM). Three-cell cycles 

are underrepresented in the C. elegans connectome; this is a flip side of the well-known 

overrepresentation of the feedforward loop motif12,14. In an EM-reconstructed cortical 

wiring diagram, three-cell cycles occurred with frequencies consistent with chance, but were 

not especially common17.

Cortical motifs were also studied in small wiring diagrams obtained via multi-neuron 

patch-clamp recording. Based on one dataset15, three-cell cycles were reported to be 

overrepresented relative to generalized ER15 and a morphology-constrained null model31. 

However, based on a larger dataset, three-cell cycles were not overrepresented relative to 

generalized ER 16. Since studies have utilized different random null models, it is helpful to 

compare the absolute value of the 3-unicycle coefficient across studies. For cortical wiring 

diagrams, the 3-unicycle coefficient varies from (3 × 4 / 9) ≈ 1.3 in (Song et al. 2005), to 

less than 1 in (Perin et al. 2011), to only (3 × 75 / 355) ≈ 0.64 in the EM-reconstructed 

wiring diagram17. The last value is much less than the 3-unicycle coefficient in our zebrafish 

modO.

We also applied an SBM to modO to find a three-cycle of blocks (Figure 3A). The three-

cell cycles strongly aligned with the three-block cycle, indicating that the coarse-grained 

connectivity pattern of modO matches its highly recurrent local connectivity. However, the 

three-cell cycles are only partially explained by the probabilistic prediction of the SBM. The 

three-cell cycles return to the same cell more often than predicted by the degree-corrected 

SBM (Figures 3B, C). Cycles of connectivity between brain regions32,33 and cell types34 

have long been known.

One might ask, by analogy, whether the feedforward loop in C. elegans is aligned with an 

SBM. We investigated two versions of this idea. In the naive SBM, the blocks are sensory, 

inter-, and motor neurons. The connection probabilities between blocks form an asymmetric 

matrix, which has previously been interpreted as evidence for approximate feedforwardness 

of the C. elegans connectome9,11,12. In the SBM fit to the simple connectivity graph, 

the block memberships are adjusted along with the connection probabilities to optimize 

the posterior probability of the model. The three blocks end up being mostly (but not 

exclusively) sensory, inter-, and motor neurons. It turns out that only 6% of three-cell cycles 

are aligned with the naive SBM, and none are aligned with the fitted SBM. Our finding 

elaborates on the previous report that the feedforward loop remains overrepresented even in 

the subgraph of the C. elegans connectome consisting of interneurons only, i.e., the subgraph 

that remains after excluding sensory and motor neurons12. Interestingly, the feedforward 

loop is overrepresented in the pharyngeal35 as well as the somatic nervous system.

In C. elegans, the strong overrepresentation of bidirectional connections has been interpreted 

as an outcome of spatial adjacency 8,12. If neuron A synapses onto neuron B, they must 

be adjacent to each other, and therefore the likelihood of a nearby reciprocal synapse 

from B onto A is increased. In our vertebrate wiring diagram, synapses are generally 

axodendritic, and a nearby reciprocal synapse is not possible. Therefore one would expect 

the overrepresentation of bidirectional connections to be weaker here, and indeed that is 
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the case (Figure 2D). A quantitatively similar overrepresentation relative to the generalized 

CFG model has also been reported for a recent wiring diagram from mammalian cortex 17. 

Note that other reports of motif overrepresentation in cortex were relative to the Erdős-Rényi 

model 15,36.

We previously concluded that modO cells are largely excitatory, based on registration of 

the EM volume to gene expression patterns in the Z-Brain atlas13. The only exceptions 

are the secondary vestibular neurons, which are inhibitory37. The vast majority of 3-cycles 

do not contain secondary vestibular neurons (Figure 4E), and are hence expected to be 

all-excitatory loops mediating positive feedback.

Cyclic structure is reminiscent of the “closed chains” of neurons that were proposed long 

ago to maintain “reverberating activity”38. Cyclic structure could serve the function of 

mediating positive feedback, as in recurrent network models of temporal integration in the 

oculomotor system20,21. However, the functional role of cellular specificity is unclear; the 

3-block cycle would be sufficient for positive feedback.

Star★Methods

Resource Availability

Lead Contact—Further information and requests for resources should be directed to and 

will be fulfilled by the lead contact, Sebastian Seung (sseung@princeton.edu)

Materials Availability—The study did not generate new unique reagents.

Data and Code Availability

• All data reported in this paper was released with Vishwanathan et al. 202113. 

DOIs are listed in the key resources table.

• All original code has been deposited at GitHub and is publicly available as of the 

date of publication. DOIs are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

Method Details

Identification of center subgraphs with less truncated neurons—To alleviate 

the truncation effect, we restrict our analysis to subsets of neurons that possess relatively 

complete axons and dendrites within the reconstructed volume. The “completeness” of a 

neuron is determined by the total number of presynaptic sites and postsynaptic sites in 

the connectome (Figures S1A,B). When the number of synaptic sites of a neuron is small, 

the total number of synapses of that neuron among other neurons is likely bounded by 

the number of synaptic sites in the connectome, which indicate a notable truncation effect 

to that neuron. The presynaptic sites distribution is more skewed than the distribution of 

the postsynaptic site (Figures S1A,B). Varying two thresholds for the numbers of pre and 

postsynaptic sites result in subgraphs gθpre,θpost of different sizes (Figure 1A). The nodes in 

the subgraph mainly contain interneurons that are far away from the boundary of volume, 
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and the edges of the graph are synaptic connections. Specifically, we investigated two center 

subgraphs g50,100 and g100,100. There are 419 neurons in g50,100, of which 418 neurons 

are connected, and one neuron is isolated. All 334 neurons in g100,100 are connected. We 

manually proofread all synapses in center subgraph g50,100, and there are only 0.55% false 

positives. Distributions of the number of synapses per connection remain similar across 

different center subgraphs (Figure 1B). Our main analysis is based on g50,100, and we 

confirm a similar modular structure in g100,100 (Figure S1G).

Stochastic block modeling—We apply different variants of stochastic block modeling 

(SBM) algorithms with the graph-tool package25 to discover the block structure based 

on connectivity. The traditional SBM39 is composed of n vertices, divided into B blocks 

with nr vertices in each block, and with the probability, prs, that an edge exists from block r
to block s. Here we follow the equivalent microcanonical definition25, which uses average 

edge counts from the observed network ers = nrnsprs to replace the probability parameters. 

The degree-corrected stochastic block model (DC-SBM)40 further specifies the in- and 

out-degree sequences ki
+, ki

−  of the graph as additional parameters.

To infer the best block membership bi of the vertices in the observed graph G, we can 

maximize the likelihood P G| bi = 1/Ω ers , nr , where Ω ers , nr  is the total number 

of different graph realizations with the same degree distribution ki
+, ki

− , and ers  edges 

among and within blocks of sizes nr , corresponding to the block membership bi . 

Therefore, maximizing likelihood is equivalent to minimizing the microcanonical entropy41, 

S ers , nr = In Ω ers , nr , which can be calculated as

S ≃ − M − ∑
i

In ki
+! − ∑

i
In ki

−! − ∑
rs

ersIn
ers

∑s ers∑r ers
,

where M = ∑ers is the total number of edges. In practice, we also consider some 

noninformative priors on block sizes and degree distribution within each block, as described 

in [25]. Maximizing a posterior that considers all these priors induces additional terms to the 

entropy S.

Given the number of blocks B, solving the best block membership that minimizes the 

above microcanonical entropy can be achieved by a Markov Chain Monte Carlo (MCMC) 

approach. At each step, we randomly propose a vertex i moving its membership r s, with 

acceptance probability

p = min e−βΔS∑m pm
i p s r m

∑m pm
i p r s m , 1 ,

where β is the inverse temperature, pt
i is the fraction of neighbors of vertex i in block m, 

and p r s|m = ems + ϵ /∑s ems + ϵ  is computed before the proposed move with a parameter 

ϵ > 0 ensuring ergodicity, and p s r|m  is computed after the move. One MCMC sweep is 

of time complexity O E , where E is the edge set of G.
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To bisect the central subgraphs using DC-SBM, we apply the above algorithm to the 

unweighted, directed network of the identified less truncated neurons. We set B=2, ϵ = 1, 

and anneal β from 1 to 10 until S is no longer decreasing. We take the solution with minimal 

entropy from 10 independent runs. Figure 1E shows the average Rand index of the inferred 

block membership from 10 runs, which indicates the discovered modular structure is very 

stable.

We explore clustering the center subgraph with more blocks by setting B=3,4,5,6. The 

entropy S is monotonically increasing when we have more blocks. However, the 4-block 

structure and 6-block structure is less stable with average Rand indices =0.913 and 0.904, 

from 10 independent runs. The 3-block structure and 5-block structure are more stable with 

average Rand indices=0.984 and 0.963 (Figure 1D). 2-block, 3-block, and 5-block structures 

are nested and nearly hierarchical (Figure 1D), which validates the topological stability of 

the 2-block structure.

We also use the non-degree-corrected SBM and a “multi-graph” variant, where edges are 

weighted by the number of synapses, to obtain the structure of the center subgraph (Figure 

S2A). All algorithms consistently reveal the modO and modA structure, with only maximal 

16 cells being assigned differently.

To further obtain the 3-block structure of modO, we apply the same DC-SBM algorithm to 

the unweighted, directed network of the modO neurons with B=3. We stably obtain the same 

3-block structure of modO as the minimal entropy solution from 10 independent runs. The 

average Rand index for results from 10 runs is 0.893.

Definition of 3-unicycle coefficient (U3) and 3-cycle coefficient (C3)—The “3-

unicycle coefficient” (U3) is defined to be the probability ratio between completing a 

unidirectional 3-cycle (motif #11) and making a feedforward loop (motif #10) among three 

neurons, conditioned on two consecutive unidirectional connections (Figure 2F).

The probability of completing a unidirectional 3-cycle (motif #11) conditioned on two 

consecutive unidirectional connections is given by (3× number of motif #11 / number of 

consecutive unidirectional connections), where the 3x factor accounts for the number of 

ways of getting two consecutive unidirectional connections in motif #11, which also insures 

a maximum value of unity. The probability of completing a feedforward loop (motif #10) 

conditioned on two consecutive unidirectional connections is given by (number of motif 

#10 / number of consecutive unidirectional connections). Thus, the ratio of the probability is 

calculated as (3× number of motif #11 / number of motif #10).

The “3-cycle coefficient” (C3) is defined similarly to the 3-unicycle coefficient, but allows 

bidirectional connections (Figure 2G). Given three neurons α, β, and γ with two consecutive 

connections (β α and α γ), it calculates the probability ratio of there existing a feedback 

connection between neurons β and γ and a unidirectional connection from β to γ.

The probability of completing a 3-cycle (motifs #11, #13, #15, or #16) conditioned on two 

consecutive connections is given by ((3× number of motifs #11, #13, #15 + 6× number 

of motif #16) / number of consecutive connections), where the 3× and 6× factors accounts 
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for the numbers of ways of getting two consecutive unidirectional connections in motifs 

#11, #13, #15 and #16, which also insures a maximum value of unity. The probability of 

completing with feedforward connection (motifs #10, #12, #14, or #15) conditioned on two 

consecutive connections is given by ((number of motif #10 + 2× number of motifs #12, 

#14 + number of motif #15) / number of consecutive connections). Motif #15 is counted in 

both cases because its unidirectional connection can be seen as feedforward or feedback, 

condition on the direction of two given consecutive connections. Finally, the ratio of these 

two probabilities is calculated as ((3× number of motifs #11, #13, #15 + 6× number of motif 

#16) / (number of motif #10 + 2× number of motifs #12, #14 + number of motif #15)).

Comparing connectivity motifs with random graphs—We compare the local 

connectivity pattern in different zebrafish subnetworks and C. elegans networks by 

contrasting them with random graphs.

We first use a directed Erdős-Rényi (ER) model 42, G(n,p), as a baseline for comparing 

2-neuron motifs, where a directed edge between any two distinct vertices is uniformly 

drawn at random with a probability p. The expected number of edges of a directed ER 

model is m=n(n-1)p. To match the data, for example, the zebrafish modO, we set n=223, 

m=2725, and p=m/[n(n-1)]=0.055. We directly calculated the expected number of different 

two-neuron motifs in this ER model. The bidirectionally connected pairs are significantly 

overrepresented in all networks. Figure 2D shows the 2-neuron motif results for modO.

We also use a directed configuration model, G(n, k+,k−), which generates rewired graphs 

preserving the original degree distribution uniformly at random, where k+ and k− are 

predefined in- and out-degree sequences of the network. We sample 1,000 random networks 

uniformly from a set of graphs with the same degree sequences as the observed network by 

applying the switch-and-hold algorithm43 (Figure 2A), where we randomly select two edges 

in each iteration and swap their target endpoints if that does not introduce self-loops or 

multiple edges (switch), or otherwise keep them unchanged (hold). In the original paper, the 

switch step is implemented by selecting four vertices at random, while our implementation 

selects two edges at random because that is more efficient on a sparse network. In general, 

the Markov chain for our sampling procedure is reducible, so samples are drawn from only 

one ergodic component of the set of all simple graphs with the same degree sequence44. 

However, all ergodic components share the same motif frequencies, so the lack of ergodicity 

has no consequence for our analysis45. A more complex Markov-chain sampling procedure 

with true ergodicity is known46, but as mentioned above would yield the same motif 

frequencies. To generate one sample, we run the algorithm for 10,000 iterations from the 

previously sampled network.

When studying recurrence scores U3 and C3 based on 3-neuron motifs, we use generalized 

ER (Figure 2B) and generalized configuration models (Figure 2C) to preserve two-neuron 

motif statistics. We directly calculated the expected number of different three-neuron motifs 

in the generalized ER model. For the generalized configuration model, we modify the 

switch-and-hold algorithm such that the number of bidirectional edges for each neuron is 

preserved (gCFG, Figure 2C). Sampling from the first generalized configuration model, we 

constrain the switch operation to swap two bidirectional connections or two unidirectional 
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connections. In the experiment, we sampled 1,000 random networks to estimate the mean 

gCFG U3 and C3 for all networks in Figures 2H,I.

We can also use a fitted degree-corrected SBM as a null model. The expected number of 

3-unicycle motifs from the 3-block SBM of modO (Figure 3A) is 391.23, which is 2.20 

times lower than our observation (Figure 3B, p < 0.001). Similarly, the expected number of 

3-cycle motifs from 3-block SBM is 450.67, which is 2.15 times lower than our observation. 

In other words, 3-cycles are overrepresented relative to the prediction of the 3-block SBM 

(Figure 3C, p < 0.001), indicating positive correlations between inter-block connections, 

rather than the statistical independence assumed by the SBM.

Potential Synapse Formalism—We define a potential synapse as a (presynaptic site, 

postsynaptic site) pair within a certain threshold distance (Figure 4A). This definition 

is somewhat different from the light microscopic approach, which defines a potential 

synapse47,48 as an approach of an axon and dendrite within some threshold distance. Also, 

we use neurons reconstructed from a single animal, while the light microscopic approach 

aggregates neurons from multiple animals, or “clones” a single neuron many times49.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• Larval zebrafish oculomotor module exhibits highly overrepresented three-

cell cycles.

• These cellular cycles are aligned with a global cycle of inferred neuronal 

groups.

• Cellular cycles are surprisingly more precise than can be explained by group 

cycles.

• The discovered cyclic structure is relevant for theories of oculomotor 

function.

Yang et al. Page 17

Curr Biol. Author manuscript; available in PMC 2024 June 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Modularity of the center subgraph.

A. Sizes of center subgraphs defined by thresholds for presynapse and postsynapse numbers. 

Star indicates the version of the center subgraph used in our main analysis. Results are 

similar for other center definitions (Figure S1G).

B. Distribution of the number of synapses per connection for different center definitions.

C. (Top) Matrix of connections in the center, with neurons grouped into two modules 

(modO, modA) found by the SBM. (Bottom) Matrix of connections from center to abducens 

(ABD) neurons and selected reticulospinal (RS) in the unclustered periphery.

D. Sankey diagram illustrating the hierarchical organization of blocks found by the SBMs as 

the block number increases. The thinness of gray lines indicates that few cells switch block 

membership
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E. (middle) Modularity structures inferred by a degree-corrected SBM algorithm. Numbers 

indicate normalized synapse counts. Columns are presynaptic. (left and right) Modularity 

structures in the weak subgraph and strong subgraph are inferred by a degree-corrected SBM 

algorithm. The weak subgraph only contains single-synapse connections (64.3% of total 

connections), and the strong subgraph only contains multiple-synapse connections (35.7% of 

total connections).

See also Figures S1 and S2
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Figure 2. 
Quantification of modO recurrence.

A. Illustration of the configuration model.

B. Illustration of the generalized ER model.

C. Illustration of the generalized CFG model.

D. 2-cell motif frequencies in modO and a configuration model (CFG) relative to the ER 

model. The shaded region shows the smoothed distribution of motif counts sampled from the 

configuration model. White points indicate medians, solid vertical lines indicate quartiles, 

and dashed lines indicate the 95% confidence interval for 1,000 samples.

E. 3-cell motif frequencies in the modO and the configuration model relative to a 

generalized ER model (gER). The violin plot shows the smoothed distribution of the motif 

counts sampled from the generalized configuration model (gCFG). White points indicate 
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medians, solid vertical lines indicate quartiles, and dashed lines indicate the 95% confidence 

interval for 1,000 samples.

F. 3-unicycle coefficient is the probability ratio of completing two consecutive unidirectional 

edges with a 3-cycle rather than a feedforward motif.

G. 3-cycle coefficient is the probability ratio of completing two consecutive edges with one 

recurrent edge rather than a feedforward edge.

H-I. Comparisons of 3-unicycle coefficients and 3-cycle coefficients, respectively. Green 

bars indicate the measurement of observed networks, yellow bars indicate the expected 

values from the configuration model, and gray error bars indicate standard deviations 

(N=1,000). modO|ss stands for the strong subgraph of modO. The last two columns include 

results for the C. elegans interneuron subnetwork (79 neurons) and the entire wiring diagram 

(270 neurons + 115 end-organ cells).

See also Figure S4.
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Figure 3. 
3-cycle block structure of modO.

A. Connection probability matrix of 3-cycle blocks. Blocks in columns send connections to 

blocks in rows. Cyclic inter-block connections are highlighted.

B. Counts of 3-unicycles from different blocks. Gray bars indicate observed 3-unicycle 

counts between blocks. Pink bars report the mean counts of 3-unicycles in graphs sampled 

from the 3-block SBM in Figure 3A, with error bars indicating the standard deviations 

(N=1,000).

C. Counts of motifs containing 3-cycles from different blocks. Gray bars indicate observed 

3-cycle counts between blocks. Pink bars report the mean counts of 3-cycles in graphs 

sampled from the 3-block SBM in Figure 3A, with error bars indicating the standard 

deviations (N=1,000).
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D. Matrix of normalized synapse counts of 3-cycle blocks. Numbers in blocks are synapse 

counts normalized by the numbers of input and output neurons. Blocks in columns send 

connections to blocks in rows.

E. Matrix of normalized synapse counts of 3 blocks (5-1, 5-4, and 5-5) in the 5-block SBM 

of Figure 1D that correspond best to the 3-block SBM. Numbers in blocks are synapse 

counts normalized by the numbers of input and output neurons.

F. Normalized output synapse counts matrix of 3-cycle blocks to abducens motor neurons 

(ABDM) and abducens interneuclear neurons (ABDI).

G. Soma distribution of blockO1 and blockO3. Ve2 neurons are identified by soma locations.

H. Synapse from neurons in blockO3 to neurons in blockO1. For clarity reasons, only 15 

neuron skeletons are visualized for each block.

I. Post-synapse distribution of synapse from neurons in blockO3 to neurons in blockO1.

See also Figure S3.
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Figure 4. 
Potential synapses partially predict the 3-block structure.

A. Illustration of potential synapses defined by proximity of pre and postsynaptic sites.

B. 3-block structure of modO. Numbers in blocks are potential synapse counts normalized 

by the numbers of input and output neurons. Blocks in columns send connections to blocks 

in rows.

C. All neurons from blockO1 (red), blockO2 (green), blockO3 (blue) that participate in 

3-unicycles.

D. Participation in 3-unicycles and connectivity to ABD neurons of neurons in each block.

E. Number of 3-unicycles among blocks having Ve2 neurons versus having generic blockO1 

neurons.
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Morphological segmentation Vishwanathan et al. 2021 https://seung-lab.github.io/zebrafish/data/

Synaptic connectivity tables Vishwanathan et al. 2021 https://seung-lab.github.io/zebrafish/data/

C. elegans wiring diagram Cook et al. 2019 https://www.wormwiring.org/pages/emmonslab.html

Cell skeletons used for analysis Vishwanathan et al. 2021 https://seung-lab.github.io/zebrafish/data/

Analysis intermediate data This paper https://github.com/RunzheYang/ZfishCycles

Software and algorithms

Python 3 Python.org python.org

Graph-Tool Peixoto, 2014 https://graph-tool.skewed.de

Neuroglancer Google https://github.com/google/neuroglancer

Data analysis source code This paper https://github.com/RunzheYang/ZfishCycles
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