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abstract

PURPOSE Clinical outcomes of patients with CNS lymphomas (CNSLs) are remarkably heterogeneous, yet
identification of patients at high risk for treatment failure is challenging. Furthermore, CNSL diagnosis often
remains unconfirmed because of contraindications for invasive stereotactic biopsies. Therefore, improved
biomarkers are needed to better stratify patients into risk groups, predict treatment response, and noninvasively
identify CNSL.

PATIENTS AND METHODSWe explored the value of circulating tumor DNA (ctDNA) for early outcome prediction,
measurable residual diseasemonitoring, and surgery-free CNSL identification by applying ultrasensitive targeted
next-generation sequencing to a total of 306 tumor, plasma, and CSF specimens from 136 patients with brain
cancers, including 92 patients with CNSL.

RESULTS Before therapy, ctDNA was detectable in 78% of plasma and 100% of CSF samples. Patients with
positive ctDNA in pretreatment plasma had significantly shorter progression-free survival (PFS, P, .0001, log-
rank test) and overall survival (OS, P 5 .0001, log-rank test). In multivariate analyses including established
clinical and radiographic risk factors, pretreatment plasma ctDNA concentrations were independently prog-
nostic of clinical outcomes (PFSHR, 1.4; 95%CI, 1.0 to 1.9; P 5 .03; OSHR, 1.6; 95%CI, 1.1 to 2.2; P 5 .006).
Moreover, measurable residual disease detection by plasma ctDNA monitoring during treatment identified
patients with particularly poor prognosis following curative-intent immunochemotherapy (PFS, P 5 .0002; OS,
P 5 .004, log-rank test). Finally, we developed a proof-of-principle machine learning approach for biopsy-free
CNSL identification from ctDNA, showing sensitivities of 59% (CSF) and 25% (plasma) with high positive
predictive value.

CONCLUSION We demonstrate robust and ultrasensitive detection of ctDNA at various disease milestones in
CNSL. Our findings highlight the role of ctDNA as a noninvasive biomarker and its potential value for per-
sonalized risk stratification and treatment guidance in patients with CNSL.

J Clin Oncol 41:1684-1694. © 2022 by American Society of Clinical Oncology

INTRODUCTION

The clinical management of patients with CNS lympho-
mas (CNSLs) is characterized by two major challenges.
First, despite effective therapies for newly diagnosed pri-
mary CNSL and isolated secondary CNSL, clinical out-
comes remain highly heterogeneous and many patients
nevertheless experience lymphoma progression and
mortality.1,2 Widely used clinical risk models, such as the
Memorial Sloan Kettering Cancer Center or International
Extranodal Lymphoma Study Group scores, have shown
insufficient prognostic value in the era of intensified
therapies.3-6 Separately, the role of response assessment
by contrast-enhancedmagnetic resonance imaging (MRI)

for risk stratification remains largely unclear.7-10 Therefore,
novel approaches for improved prediction of CNSL out-
comes are needed to facilitate personalized treatment
strategies. Second, the diagnosis of CNSL requires inva-
sive neurosurgical procedures that often cannot be safely
performed in certain high-risk situations (eg, in elderly/frail
patients or when lesions are located in deep brain
structures) or are delayed because of concurrent corti-
costeroid or antiplatelet therapies.11-15 Conventional
analysis of CSF by cytopathology or flow cytometry and
diagnostic MRI have demonstrated suboptimal sensitivity
and discriminative capacity to allow surgery-free CNSL
diagnosis.7-9,16-21 Thus, improved methods that overcome
these limitations and allow reliable noninvasive
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identification of CNSL would be transformative for the clinical
care of patients with suspected brain lymphomas.

Profiling of circulating tumor DNA (ctDNA) from plasma or CSF
has emerged as apromisingbiomarker in solid andhematologic
malignancies, including systemic diffuse large B-cell lymphoma
(DLBCL).22-26 Previous studies in CNSL, however, have shown
suboptimal ctDNAdetection rates,mostly because of soberingly
low ctDNA concentrations in blood plasma and limitations
intrinsic to single-gene assays.27-40 Here, we optimized a
customized targeted sequencing approach for improved ul-
trasensitive ctDNA profiling and explored its utility for non-
invasive risk stratification and biopsy-free CNSL identification.

PATIENTS AND METHODS

Patient Enrollment and Sample Collection

We collected 282 tumor, CSF, and plasma samples from 92
patients with primary CNSL or isolated secondary CNSL and 44
patients with other CNSmalignancies or inflammatory diseases
(non-CNSL), as well as 24 plasma samples from healthy in-
dividuals (Data Supplement, online only [Appendix Fig A1,
Supplemental Tables S1 and S2]). All patients provided in-
formed consent approved by the local ethics committee in
accordance with the Declaration of Helsinki (DRKS00015307)
and were continuously enrolled between January 2016 and
April 2021 at the University Medical Center Freiburg. Patients
were divided into two cohorts: Themain CNSL cohort consisted
of 67 CNSL cases with available tumor genotyping and
matched tumor-plasma/CSF samples (Data Supplement
[Appendix Fig A1]). This cohort was used for tumor genotyping,
tumor-informed ctDNA quantification/monitoring (Data Sup-
plement [Appendix Fig A1, red part]), and CNSL classification
(Data Supplement [Appendix Fig A1, blue part). Median follow-
up of this cohort was 14.0 months. The extended cohort
consisted of patients with CNSL without matched tumor
genotyping specimens and additional non-CNSL patients, and

was used for biopsy-free CNSL identification (ie, the classifi-
cation approach) and tumor-agnostic CSF-ctDNA genotyping
(Data Supplement [Appendix Fig A1, blue part]). All patients
underwent routine diagnostic procedures and treatment
according to study protocols where applicable (Clinical-
Trials.gov identifier: NCT02531841 or DRKS00011932), or
institutional standards and national/international guidelines.
Further details are provided in the Data Supplement.

Sequencing and ctDNA Quantification

Cancer Personalized Profiling by Deep Sequencing (CAPP-
Seq) was performed as previously described, with detailed
information provided in the Data Supplement.42,43 Targeted
genomic regions covered by the customized panel are
summarized in the Data Supplement (Supplemental
Table S3).22,41,43 For CSF samples, cell-free and sonicated
cellular DNA were pooled before library preparation, with all
tumor-derived molecules denoted as CSF-ctDNA throughout
the manuscript. For genotyping purposes, somatic alterations
were called by paired analysis of either tumor, CSF, or pre-
treatment plasmawith germline DNA, as described before.42-44

We used Phased Variant Enrichment and Detection Se-
quencing to quantify ctDNA and monitor phased reporters
identified from tumor genotyping samples in plasma or CSF.44

To determine whether a given sample was positive for ctDNA
exceeding the background signal, we applied a previously
described Monte Carlo framework.43,44 Specificity was
assessed by monitoring for tumor-derived reporters in plasma
samples of healthy donors or in unmatched CSF samples
(Data Supplement). Finally, levels of ctDNA were quantified as
haploid genome equivalents per milliliter plasma or CSF,
determined as the product of total cell-free DNA concentration
and the mean allele fraction of somatic reporters.22,41

Noninvasive Brain Lymphoma Classification

To noninvasively identify CNSL using ctDNA from plasma
and CSF, we built a machine learning algorithm (ensemble
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of Kernel Bayesian models) leveraging mutation calls from
tumor samples from a large training data set to distinguish
between CNSL and non-CNSL lesions. The development of
the classifier is detailed in the Data Supplement. The following
features were included in the model: total mutation count
within the target space, presence of MYD88 and CD79B
hotspot mutations, sample assignment to match one of six
mutational clusters, as well as mutation counts of the top three
defining regions of each cluster (Data Supplement [Supple-
mental Table S4]). The final model was then applied to an
independent withheld set of 183 specimens fromboth patients
with CNSL (n 5 62) and patients with other brain cancers
or inflammatory processes (ie, non-CNSL patients, n5 44), all
of whom underwent invasive neurosurgery as diagnostic
workup for a contrast-enhancing brain lesion by MRI (Data
Supplement [Appendix Fig A1, blue part, and Supplemental
Tables S1 and S5]). Importantly, all patients of the validation
cohort had no sign of systemic disease at the time of
CSF/plasma analysis. The classifier results were compared
with the histopathologic diagnosis as the gold standard.

Statistical Analysis

We used the non-parametric Mann-Whitney U test to com-
pare continuous variables and the Fisher’s exact test for
categorical variables. Linear relationships were determined
using Spearman’s correlation coefficient (r) or Pearson cor-
relations. Time-to-event variables were visualized using the
Kaplan-Meier method. Log-rank test was used to evaluate
survival differences. Survival associations were analyzed using
Cox proportional-hazards regression. Normalized hazard
ratios (z-scores) are reported throughout the manuscript.
Progression-free survival (PFS) and overall survival (OS) were
estimated according to the revised response criteria for
malignant lymphoma.45 PFS and OS were calculated from
start of therapy, or the respective landmark as noted.

RESULTS

Improved ctDNA Detection in Pretreatment Samples

We identified somatic alterations in 100% of tumor genotyping
specimens by CAPP-Seq, including recurrent mutations in
known driver genes such asMYD88 (82% of patients;MYD88
L265P: 73%), PIM1 (70%), and CD79B (61%; Data Sup-
plement [Appendix Fig A2]). The median number of detected
mutations per patient was 288 (range, 31-536), with most
variants locatedwithin the immunoglobulin loci (median, 61%;
range, 24-88; Data Supplement [Supplemental Table S6]).We
then applied Phased Variant Enrichment and Detection Se-
quencing to matched pretreatment samples obtained before
treatment initiation, either at initial diagnosis or at disease
progression, to assess tumor-informed ctDNA detection rates
in both plasma and CSF. We identified ctDNA in 61/78 (78%)
plasma samples and 24/24 (100%) CSF specimens, with
specificities of 96% and 97%, respectively (Fig 1A).

In general, ctDNA levels were highly variable, with significantly
higher concentrations observed in CSF comparedwith plasma

(median of 4.16 v 0.55 haploid genome equivalents per
milliliter, P5 .0004, Fig 1B and Data Supplement [Appendix
Fig A3A]). We further found that CNSL plasma ctDNA con-
centrations were substantially lower than those in systemic
DLBCL (Data Supplement [Appendix Fig A3B and A3C]),
even when normalized to radiographic tumor volumes
(P , .0001, Fig 1C and Data Supplement [Appendix
Fig A3D]). By contrast, CSF-ctDNA levels in CNSL were
similar to plasma ctDNA concentrations in DLBCL after
adjusting for total radiographic tumor volumes (TRTV; Fig 1C).

Clinical Correlates of Pretreatment ctDNA

We next explored whether pretreatment ctDNA detection in
plasma and CSF was associated with clinical risk indices or
radiographic tumor characteristics. Notably, we did not ob-
serve a significant difference in plasma ctDNA levels between
patients who received corticosteroids and those without
steroid treatment before ctDNA analysis (Fig 1D). In both
compartments, ctDNA concentrations at initial diagnosis
were not significantly associated with conventional Memorial
Sloan Kettering Cancer Center or International Extranodal
Lymphoma Study Group scores, the number of lymphoma
lesions, and infratentorial, bihemispherical, or deep brain
involvement (Data Supplement [Appendix Fig A4A-M]).
However, patients with detectable ctDNA in pretreatment
plasma had higher tumor volumes (P 5 .006, Fig 1E and
Data Supplement [Appendix Fig A5A]) and ctDNA con-
centrations were strongly correlated with TRTV (r 5 0.53,
P , .0001; Fig 1F). Consequently, when monitoring indi-
vidual single-nucleotide variant alleles identified in tumor
biopsies, plasma ctDNA detection rates were markedly
higher in patients with high tumor volumes (mean of 37% v
12%, P , .0001, unpaired t-test), including for key MYD88
and CD79B driver mutations (55% v 18%; Data Supplement
[Appendix Fig A5B and A5C]).

By contrast, ctDNA concentrations in CSF did not correlate
with TRTV (Data Supplement [Appendix Fig A5D]). Here,
we found significantly higher ctDNA yields in patients with
periventricular involvement compared with those with
lymphomas located in other parts of the brain (P 5 .005;
Fig 1G and Data Supplement [Appendix Fig A4I]). As a
result, significantly more genetic variants were recovered by
CSF-ctDNA monitoring in patients with periventricular in-
volvement (P 5 .01, unpaired t-test; Fig 1H and Data
Supplement [Appendix Fig A5E]).

Noninvasive Genotyping From CSF

Having demonstrated that normalized CSF-ctDNA yields in
CNSL were comparable with those in DLBCL plasma, we
hypothesized that CSF-ctDNA could also be used for tumor-
agnostic genotyping by CAPP-Seq.22,24 Indeed, we identi-
fied at least one somatic mutation in 76% of CSF samples,
with a median of 47 aberrations per patient (Fig 1I). Yet, the
ability to detect aberrations was strongly associated with
periventricular involvement and CSF DNA input, achieving
a 100% detection rate above a threshold of 33 ng (Fig 1I
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FIG 1. Tumor-informed ctDNA detection/quantification and CSF-ctDNA genotyping in patients with CNSL. (A) ctDNA monitoring in pretreatment plasma
and CSF using PhasED-seq. Left: specificity (blue) and sensitivity (purple) of ctDNA monitoring in pretreatment plasma, compared with previous reports
using high-throughput sequencing technologies (gray).29,30,36,37 Right: specificity (blue) and sensitivity (teal) of ctDNA monitoring in pretreatment. (B)
Comparison of ctDNA concentrations (in hGE/mL) between pretreatment plasma and CSF in ctDNA-positive cases. (C) Comparison of pretreatment
plasma and CSF ctDNA concentrations in CNSL with pretreatment plasma ctDNA concentrations in patients with DLBCL, normalized to TRTV. TRTVs and
ctDNA concentrations in patients with DLBCL were derived from a previously published study reported by Kurtz et al.41 (D) Comparison of ctDNA levels in
pretreatment plasma samples between patients receiving corticosteroid treatment and patients without corticosteroid treatment before sample collection.
(E) Comparison of TRTV between ctDNA-positive and ctDNA-negative pretreatment plasma samples. (F) Correlation between TRTV and ctDNA con-
centrations in ctDNA-positive pretreatment plasma samples. (G) Comparison of ctDNA concentrations in pretreatment CSF between patients with
periventricular involvement and patients with no sign of periventricular lymphoma localization. Statistical comparisons in (B), (C), (D), (E), and (G) were
performed using the Mann-Whitney U test. Medians and ranges are indicated. (H) Bar plots depicting the monitoring performance of individual SNVs in
pretreatment CSF samples, contrasting patients with (left) or without periventricular involvement (right). Dotted lines show the mean fraction of SNVs
detected. Squares below the bar plots show whether ctDNA was detected (teal) or not detected (orange). (I) Biopsy-free genotyping from pretreatment
CSF. Individual dots represent the percentage of patients with at least one SNV detected by tumor-agnostic genotyping from pretreatment CSF, ordered by
increasing DNA inputmass. Dotted lines indicate thresholds at 7 ng and 33 ngDNA input. ng, nanogram. CNSL, CNS lymphoma; ctDNA, circulating tumor
DNA; DLBCL, diffuse large B-cell lymphoma; hGE/mL, haploid genome equivalents permilliliter; HTS, high-throughput sequencing; ND, not detected; NS,
not significant; PhasED-seq, Phased Variant Enrichment and Detection Sequencing; r, Spearman correlation coefficient; SNV, single-nucleotide variant;
TRTV, total radiographic tumor volumes.
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and Data Supplement [Appendix Fig A5F]). Importantly, we
observed highly concordant plasma ctDNA allelic fractions
regardless of whether estimated either from tumor- or CSF-
informed genotypes (r 5 0.99, P 5 .0002; Data Supple-
ment [Appendix Fig A5G]). Thus, although tumor geno-
typing remains the gold standard for molecular profiling in
CNSL, our results indicate that mutation detection and
monitoring from CSF can be a valid alternative in selected
cases (Data Supplement [Appendix Fig A6]).

Prognostic Value of Pretreatment Plasma ctDNA

We next investigated whether pretreatment plasma ctDNA
assessed before treatment initiation at initial diagnosis and at
lymphoma progression could enable identification of pa-
tients at highest risk for unfavorable clinical outcomes.
Eighty-two percent of ctDNA-positive cases experienced
lymphoma progression within 1 year and 78% of such
patients died within 2 years of plasma profiling. By contrast,
when ctDNA was undetectable, 68% of patients remained
disease-free and 90% were alive at these same landmarks
(Figs 2A and 2B). In log-rank analyses, ctDNA-positive
patients had significantly shorter PFS and OS, with
corresponding hazard ratios of 4.6 (95% CI, 2.7 to 8.0;
P , .0001) and 9.6 (95% CI, 5.0 to 18.3; P 5 .0001;
Figs 2C and 2D).

In multivariate Cox regression analyses accounting for key
clinical and radiographic features known to carry prog-
nostic value, higher continuous ctDNA levels (HR, 1.4;
95% CI, 1.0 to 1.9; P 5 .03; HR, 1.6; 95% CI, 1.1 to 2.2;
P 5 .006) and lower Karnofsky performance status (HR,
1.6; 95% CI, 1.1 to 2.2; P 5 .005; HR, 1.7; 95% CI, 1.1 to
2.5; P 5 .004) were significantly and independently as-
sociated with inferior PFS and OS (Figs 2E and 2F). Im-
portantly, the prognostic value of ctDNA was maintained
when restricting analyses to frontline assessment of
treatment-naive patients (Data Supplement [Appendix
Fig A7]).

Prognostic Value of On-Treatment Plasma ctDNA

Evaluation of ctDNA early during treatment has emerged as
a promising biomarker in diverse tumor types.23,41,46-48

Therefore, we investigated the performance of on-
treatment measurable residual disease monitoring for
outcome prediction by profiling ctDNA in plasma samples
collected during curative-intent induction immunoche-
motherapy from 28 CNSL cases (Fig 3A). Although ctDNA
was identified in 76% of patients experiencing lymphoma
progression or death, it was not detectable during treatment
in 91% of cases who were disease-free after therapy
completion (Data Supplement [Appendix Fig A8A]). Con-
sequently, we found that patients with positive ctDNA at any
time point during treatment had significantly inferior PFS
(HR, 6.2; 95%CI, 2.3 to 16.7; P5 .0002) and OS (HR, 7.9;
95% CI, 2.6 to 23.9; P5 .004) than ctDNA-negative cases
(Fig 3B and Data Supplement [Appendix A8B]). To control
for guarantee-time bias, we explored whether this

association remained significant in a landmark analysis,
assessing ctDNA within the first two cycles of induction.
Indeed, ctDNA profiling in blood plasma within this 3-week
window reflected clinical outcomes, with ctDNA positivity
strongly predicting unfavorable PFS (HR, 4.7; 95% CI, 1.5
to 15.1; P 5 .003) and OS (HR, 6.5; 95% CI, 1.8 to 23.8;
P 5 .001; Fig 3C). However, three on-treatment plasma
samples were ctDNA-negative in patients with overt ra-
diographic CNSL, representing false-negative results
(Fig 3A). Collectively, our data suggest that serial ctDNA
monitoring early during therapy could provide key advan-
tages for CNSL response assessment in individual patients
(Data Supplement [Appendix Fig A9]).

Biopsy-Free Diagnosis of CNSL by ctDNA Profiling

Distinguishing CNSL from other primary brain tumors or
brain metastases through surgery-free procedures remains
challenging.8,17 Thus, we next sought to develop a method
that facilitates noninvasive diagnosis of CNSL on the basis
of ctDNAmutational patterns and burden in CSF or plasma.
We first trained statistical models to distinguish CNSL from
non-CNSL malignancies informed by the distribution and
frequency of mutations in tumor tissue, and summarized
these models into a classifier score. For this purpose, we
combined CNSL tumor sequencing profiles from this study
(n 5 30) with tumor mutational landscapes of non-CNSL
malignancies retrieved from public databases (n 5 2,647;
Data Supplement [Appendix Fig A1, Supplemental
Table S7]). We then benchmarked the classifier’s perfor-
mance in 53 withheld tumor specimens, where it correctly
identified CNSL in 34/35 (97%) cases and non-CNSL in
18/18 (100%) patients (Fig 4A). Finally, we validated the
classifier in an independent withheld set of 130 CSF and
plasma samples profiled by CAPP-Seq. Our approach
achieved a sensitivity of 59% (27/46) from CSF and 25%
(13/52) from plasma for correctly identifying CNSL,
reflecting the difference in ctDNA concentrations and al-
lelic fractions between the two compartments (Fig 1B). Of
note, the classifier maintained 100% specificity and pos-
itive predictive value (PPV) in our study for single diagnostic
plasma (n5 16) and CSF samples (n5 16) obtained from
non-CNSL patients (Figs 4A and 4B). Conventional CSF
analyses by flow cytometry and cytopathology identified
CNSL in 22% of patients (Fig 4B).

DISCUSSION

We here describe the efficacy of an improved high-
throughput molecular profiling approach for noninvasive
ctDNA assessment in patients with CNSL.29-31,36,37 By using
single-gene assays covering clonotypic immunoglobulin
V(D)J rearrangements or the MYD88 L265P hotspot mu-
tation, several previous studies have shown in principle that
ctDNA is present in plasma and CSF of patients with
CNSL.27-37 However, plasma ctDNA detection rates in these
studies were suboptimal even before initiation of therapy,
mostly because of minute amounts of ctDNA in patients with
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brain cancer and limited applicability of those single-gene
assays.27-32,38-40 Thus, ctDNA has not yet emerged as a
useful clinical biomarker for risk stratification, outcome
prediction, disease detection, or assessment of clonal het-
erogeneity in CNSL.31 Here, we overcome some of these
obstacles and demonstrate substantial improvements in
ctDNA detection and profiling through novel methodologic
advances of our high-throughput sequencing–based
technologies.44 Despite being in part limited by small
samples sizes, this allowed us to unveil ctDNA character-
istics in both plasma and CSF in relation to radiographic
features assessed by MRI and other clinical properties.41 For
example, we revealed that plasma ctDNA accurately mirrors
tumor burden in the CNS, while CSF-ctDNA levels are largely
reflective of disease localization. Furthermore, although we
found numerically higher ctDNA levels in plasma after
corticosteroid therapy that were not statistically significant,
these observations require further examinations in larger
patient cohorts also adjusting for dose and duration of such
exposure. Most importantly, to the best of our knowledge,

this study is the first to demonstrate potential utility of ctDNA
at various disease milestones in CNSL.

One major finding of our study was the association of ctDNA
detection with clinical outcomes in CNSL. We observed ctDNA
detection in plasma before therapy and early during treatment
to be a strikingly strong and independent prognostic bio-
marker. These results may help to overcome limitations of
radiographic response assessment,8-10 and might also have
significant implications for future risk-adapted treatment
strategies. The identification of patients at exceptionally low or
high risk for diseaseprogression could provide opportunities for
early interventions and adjustments to current standard
therapies. Although high-risk patients might benefit from early
treatment intensification or alternative innovative strategies
such as CNS bioavailable small molecules, immunomodula-
tory drugs, or chimeric antigen receptor T-cell therapies,
patients with predicted favorable outcomes on the basis of
ctDNA could do just as well with treatment de-escalation.49-53

Interestingly, in contrast to other recent reports,54-57 age was
not a prognostic factor in our study, whichmay reflect selective
inclusion of elderly patients with good performance status.
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Histopathologic tumor assessment following invasive
stereotactic biopsy is the gold standard procedure to diag-
nose brain lymphomas. However, in high-risk situations or
when patients obtain concurrent corticosteroids or anti-
platelet treatment, stereotactic biopsies are often delayed, or
a final diagnosis remains unconfirmed. In these situations,
noninvasive disease classification could have transformative
impact on the clinical management of patients with

suspected intracranial lymphoma, particularly in the light of
low CNSL identification rates by conventional CSF analyses or
diagnostic imaging.8,9,16,17,19-21,58-60 Previous seminal studies
have shown in principle that assessment of CSF-ctDNA
allows noninvasive identification of brain cancers and
metastases.19,38,59,61-64 In CNSL specifically, prior work
explored strategies leveraging specific proteins, microRNAs,
or genetic aberrations for biopsy-free identification of CNSL

FIG 3. (Continued). Black arrows indicate further treatment following disease progression during treatment. Triangles show the ultimate
clinical outcome, either progression/death (black triangle, always accompanied by radiographic or clinical disease progression) or CR (open
triangle). Redbars represent HD-CTx followed by auto-SCT. Purple circle, ctDNAdetected; open circle, ctDNAnot detected; black rectangle,
PD byMRI/CT scan; dark gray rectangle, SD byMRI/CT scan; light gray rectangle, PR byMRI/CT scan; open rectangle, CR byMRI/CT scan.
(B) Kaplan-Meier analysis of PFS (left) and OS (right) in patients with at least one ctDNA-positive plasma sample at any time point during
induction therapy (red) compared with patients without detectable ctDNA during induction therapy (blue). (C) Kaplan-Meier analysis of PFS
(left) and OS (right) in patients with positive ctDNA within the first two cycles of induction therapy (red) compared with patients without
detectable ctDNA during the first two cycles of induction treatment (blue). Significance in (B) and (C) was assessed using the log-rank test.
auto-SCT, autologous stem-cell transplantation; CR, complete remission; CT, computed tomography; ctDNA, circulating tumor DNA; HD-
CTx, high-dose chemotherapy; HR, hazard ratio; MRI, magnetic resonance imaging; OS, overall survival; PD, progressive disease; PFS,
progression-free survival; PR, partial remission; SD, stable disease.
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from CSF.16,17,19,39,61,65-68 However, these studies are in part
limited by low samples sizes and lack of independent vali-
dation, which introduces the risk of overfitting. This is
particularly relevant for protein biomarkers such as inter-
leukin 10 and interleukin 6, for which various and unvalidated
thresholds have been used.17,65,66,68-70 Furthermore, most
methods have shown suboptimal specificity, which would
lead to inappropriate treatment of non-CNSL cases that are
misclassified as CNSL.17 Finally, single-gene assays do not
capture the genetic complexity of the disease, limiting the
applicability of these approaches.17,19,39,69 Here, we propose a
novel machine learning model leveraging the genomic pat-
tern and burden of somatic mutations for biopsy-free CNSL
identification from ctDNA. We demonstrated robust perfor-
mance of our assay with 59% sensitivity from CSF-ctDNA,
maintaining high specificity and PPV in our cohort.

Although the results presented here are highly promising,
hurdles remain to be overcome. First, the value of ctDNA as
a biomarker for CNSL identification and monitoring needs
to be validated in additional prospective studies, including

detailed comparisons with state-of-the-art imaging tech-
niques and assessing the role of concomitant corticosteroid
therapy. Specifically, our noninvasive classifier requires
further testing on larger cohorts of nonlymphoma patients
comprising a wide range of malignant and nonmalignant
entities to confirm its high PPV and to further assess the role of
certain parameters such as tumor mutational burden. Fur-
thermore, the classifier needs to be vetted in clinical settings
that include the necessity for real-time sample collection and
processing, and applied in clinically challenging situations
that often delay or prohibit biopsies (eg, corticosteroid or
antiplatelet treatment, inaccessible location of suspected
lesions). Finally, additional technical advances are required to
further enhance the sensitivity of our approach and reduce
the rate of false-negative ctDNA analyses.

In summary, we have developed a promising noninvasive
approach to identify andmonitor CNSL that, despite current
limitations, might allow to complement clinical standard
procedures in the future.
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