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Abstract: HER2 (Human Epidermal Growth Factor Receptor 2)-positive breast cancer is characterized
by amplification of the HER2 gene and is associated with more aggressive tumor growth, increased
risk of metastasis, and poorer prognosis when compared to other subtypes of breast cancer. HER2
expression is therefore a critical tumor feature that can be used to diagnose and treat breast cancer.
Moving forward, advances in HER2 in vivo imaging, involving the use of techniques such as positron
emission tomography (PET) and single-photon emission computed tomography (SPECT), may allow
for a greater role for HER2 status in guiding the management of breast cancer patients. This will
apply both to patients who are HER2-positive and those who have limited-to-minimal immuno-
histochemical HER2 expression (HER2-low), with imaging ultimately helping clinicians determine
the size and location of tumors. Additionally, PET and SPECT could help evaluate effectiveness
of HER2-targeted therapies, such as trastuzumab or pertuzumab for HER2-positive cancers, and
specially modified antibody drug conjugates (ADC), such as trastuzumab-deruxtecan, for HER2-low
variants. This review will explore the current and future role of HER2 imaging in personalizing the
care of patients diagnosed with breast cancer.

Keywords: HER2; breast cancer; oncology; PET/CT; PET; SPECT/CT; SPECT medical imaging

1. Introduction

Breast cancer is the most commonly diagnosed cancer in women and the eighth
leading cause of female mortality worldwide [1,2]. Screening for breast cancer typically
begins around age 50 (per guidelines such as the United States Preventative Service Task
Force (USPSTF)) and can help identify early-stage disease as well as decrease delays
in treatment initiation, ultimately leading to better outcomes. Once a breast cancer is
identified, it can be further characterized by its underlying mutations. Of particular interest
are mutations involving the HER2 gene, which encodes a membrane tyrosine kinase in
the epidermal growth factor (EGFR) family of receptors that are essential for epithelial cell
growth, differentiation, and angiogenesis [3]. Pathologic amplification of this oncogene
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results in HER2 receptor overexpression and is a major driver of tumor development and
progression in about 15% of all breast cancers [3,4]. Detailed characterization of HER2 status
in tumors allows for the deployment of highly-targeted and effective treatments. Herein,
we first review these treatments before describing how HER2 status has traditionally been
determined and how imaging is being employed as an alternative diagnostic strategy. Then,
we detail recent research in specific radiotracers for improved HER2 quantification before
looking into combined diagnostic/therapeutic modalities, exploring the applications of
HER2 imaging beyond diagnostics (e.g., staging, prognostication, response assessment,
and surveillance), and, finally, looking into new areas of active exploration in the field as
well as identifying current gaps in knowledge.

2. Overview: HER2 Diagnostics and Therapeutics

Identification, at baseline and throughout treatment, of overall HER2 surface presence
and distribution in a patient’s cancer could help clinicians make decisions about treatment
dosing, length, and an eventual switch in primary agent if the need arises.

2.1. HER2 Targeted Therapy

Development of HER2-targeted therapies using monoclonal antibodies (e.g., per-
tuzumab and trastuzumab) and tyrosine kinase inhibitors (including tucatinib, which
has been found to be superior to the previously used lapatinib) over the last decade has
led to significant improvement in the survival of patients with known HER2-positive
breast cancer. The former, antibody-based treatments target the extracellular portion of
the HER2 receptor and are currently used in almost all lines of treatment, except for those
regimens that only employ tyrosine kinase inhibitors. By antagonistically binding at the
cell surface, they act to both decrease HER2-initiated cellular signaling (causing arrest in
cell division) and increase immune-mediated cytotoxicity as the patient’s own defenses
recognize antibody opsonization. However, despite the development of specific agents,
HER2-targeted therapy still remains challenging, with a significant number of patients
not responding or eventually becoming resistant to currently available therapies. To ad-
dress this resistance, several new molecular entities have begun to enter the literature,
including antibody-based fragments (Fab), diabodies, minibodies, nanobodies, affibodies,
and various other monoclonal antibodies (mAb) [5]. Of particular note, a trastuzumab
antibody conjugate (trastuzumab-deruxtecan, T-DXd), was recently approved by the FDA
for treatment of HER2-low metastatic breast cancer after demonstrating superior outcomes
over chemotherapy in the DESTINY-Breast04 trial [6].

2.2. HER2 In Vitro Diagnostic Testing

Due to the utility of mutated HER2 cancer as a therapeutic target, accurate charac-
terization of tumors is paramount. The current standard-of-care for HER2 status deter-
mination includes immunohistochemistry (IHC) and fluorescence in situ hybridization
(FISH) with an average sensitivity of 75.4% (range of 47% and 100%) and false negative
rate of 24.6% [7,8]. IHC measures the expression of HER2 receptors on the cellular sur-
face of a biopsied tissue sample, which can be graded as 0, 1+, 2+, or 3+, with 0 and 1+
classified as HER2-negative, 2+ classified as borderline/equivocal/HER2-low, and 3+ clas-
sified as HER2-positive [7]. For borderline/equivocal results, FISH analysis can describe
amplification of the HER2 gene by direct visualization. Cancers that are HER2-positive,
as determined by IHC and FISH, are the most aggressive and have historically been ap-
proached with HER2-targeted medications. However, it is important to note that current
IHC assays were developed in order to detect HER2-positive tumors, not to distinguish
between HER2-low and HER2-negative tumors, thus confounding specific characterization
of the latter two. Given that HER2-low tumors can now be targeted with novel approved
therapies, there is an urgent need to refine methodology in order to accurately detect and
characterize tumors with low levels of HER2 expression [6].
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In addition to the challenge of differentiating HER2-low tumors, in vitro diagnostic
testing is limited by multiple dynamic factors, including intratumoral heterogeneity, the
fact that HER2 expression can change over time, and the possibility that HER2 expression
at the primary cancer biopsy site can be different when compared to that of a metastatic
lesion (with discordance rates from 3% to 16%) [9,10]. This latter example is demonstrated
by the case study in Figure 1. Ultimately, biochemical tests used to identify HER2 status
are limited by the spatial and temporal heterogeneity of HER2 expression, an idea that is
addressed with more systematic HER2 imaging.
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Figure 1. This is a 43-year-old female with left breast invasive ductal carcinoma (ER+, PR+, and
HER2−) and metastases to the left supraclavicular, thoracic, and retroperitoneal nodes and left adrenal
gland. She was on everolimus and exemestane at the time of 89Zr-trastuzumab PET/CT. Tracer avidity
was visualized in a known left adrenal metastasis (blue arrow), with SUVmax 9.2. Additional FDG-
avid left supraclavicular, thoracic, and retroperitoneal nodes were not tracer avid on 89Zr-trastuzumab
PET/CT (green arrows), suggesting lack of HER2 expression and HER2 intertumoral heterogeneity
of metastatic lesions.

2.3. HER2 In Vivo Diagnostic Testing with Imaging
18F-FDG PET/CT is already a nearly ubiquitous method for whole-body tumor diag-

nosis and in-treatment monitoring in breast cancer due to its high sensitivity and specificity
for the detection of metastatic disease [11]. This broad scope tracer demonstrates variable
uptake (or avidity) in different cancers according to individual glucose distribution and
metabolism. Certain subtypes of breast cancer, such as invasive ductal carcinomas, show
increased uptake in comparison to noninvasive ductal carcinomas, while even large sized
lobular breast cancers may remain occult due to decreased 18F-FDG uptake [12,13]. FDG
avidity of breast cancer also widely varies depending on receptor status, with ER-negative
tumors showing higher radiotracer activity than ER-positive tumors [14].

However, while 18F-FDG PET/CT is generally effective for actively metabolizing
entities, it is not a tumor specific tracer. Benign conditions associated with inflammation
or infection can cause false-positives relating to tracer uptake, which, in turn, could lead
to unnecessary or excess treatment [1]. By employing a strategy parallel to that described
above for treatment, PET/CT and SPECT/CT (a technique that allows for the precise
description of tissue perfusion and functionality) can be augmented for targeted detection
of HER2-positive breast cancer. Receptor-specific SPECT- or PET-intense radiotracers allow
for the localization and quantification of tumor HER2 surface protein expression.

3. HER2-Specific Imaging

Improving the specificity of radiotracer targeting could help with the optimization of
treatment and prediction of overall therapeutic response. The HER2 receptor represents
a critical radiolabeling target of interest, and several approaches have been developed
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for characterizing HER2-positive primary tumors and distant metastases. A summary of
studies on the in-human use of HER2-specific radiotracers, collected via database searches
of terms relating to PET/SPECT, HER2, and targeted radiotracers, is displayed in Table 1.

Table 1. Summary of in-human studies investigating HER2-targeted radiotracers.

Imaging
Modality n Patients Radiotracer Primary Objective Year First

Author PMID Citation

PET/CT

16

89Zr-Trastuzumab

Treatment response 2014 Gaykema 25085789 [15]

11 Detection of HER2+
metastases 2017 Ulaner 28872549 [16]

14 Feasibility study 2010 Dijkers 20357763 [17]

9 Detection of HER2+
metastases 2016 Ulaner 27151988 [18]

20 HER2 status determination 2018 Bensch 30058029 [19]
34 HER2 status determination 2018 Dehdashti 29442264 [20]
12 Feasibility study 2016 Laforest 27146421 [21]
10 HER2 status determination 2019 Jauw 31147401 [22]

PET/CT 22 89Zr-Atezolizumab Feasibility study 2018 Bensch 30478423 [23]

PET/CT 6 89Zr-Pertuzumab Feasibility study 2017 Ulaner 29146695 [24]

24 89Zr-Pertuzumab
Detection of HER2+

metastases 2020 Ulaner 32515679 [25]

PET/CT 1 89Zr-Fab * Feasibility study 2020 Richter,
Knorr 32377263 [26]

PET/CT 1 68Ga-ZHER2
Detection of HER2+

metastases 2020 Zhou 31833926 [27]

PET/CT 20 68Ga-nanobody Feasibility study 2015 Keyaerts 26449837 [28]

PET/CT
16

68Ga-affibody
Feasibility study 2016 Sorensen 26877784 [29]

24 HER2 status determination 2022 Miao 35712499 [30]
8 Feasibility study 2016 Sandstrom 26912439 [31]

PET/CT

6

64Cu-Trastuzumab

Feasibility study 2013 Tamura 24029656 [32]
38 HER2 status determination 2017 Sasada 28505219 [33]
8 Feasibility study 2016 Carrasquillo 27171605 [34]

5 Detection of HER2+
metastases 2015 Kurihara 25853014 [35]

8 HER2 status determination 2014 Mortimer 24337604 [36]
11 HER2 status determination 2018 Mortimer 28637802 [37]
7 Feasibility study 2021 Lee 33475899 [38]
1 HER2 status determination 2022 Lee 35133094 [39]
1 HER2 status determination 2017 Sasada 28770275 [40]

PET/CT 7 64Cu-SAR † Feasibility study 2022 Wong 35890071 [41]

PET/CT 11 177Lu-Trastuzumab Feasibility study 2021 Nautiyal 34406146 [42]

PET/CT 3 111In/68Ga-affibody HER2 status determination 2010 Baum 20484419 [43]
SPECT/CT 23 Feasibility study 2017 Sandberg 28261749 [44]

SPECT/CT 7 111In-affibody Feasibility study 2014 Sörensen 24665085 [45]

* Fab indicates antibody fragment. † SAR indicates a Sarcophagine ligand.

3.1. Monoclonal Antibodies

One of the more basic approaches for targeting HER2 receptors is by co-opting the exist-
ing, known, specific monoclonal antibody trastuzumab and combining it with a radiotracer
detectable by PET imaging. A current formulation includes labeling with a desferrioxamine-
chelated (DFO) zirconium ion, which, with optimal dosage and timing, allows for accurate
visualization and quantification of HER2-expressing tumors by PET scan 4–5 days after
tracer administration [17]. Additionally, in several patients with HER2-negative breast
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cancers, unexpected metastases were detected with 89Zr-DFO-trastuzumab [18]. This tracer
is also being investigated for response assessment purposes, with several PET imaging
studies including the IMPACT trial (IMaging PAtients for Cancer Drug SelecTion) at the
University Medical Center Groningen, utilizing 89Zr-DFO-trastuzumab for baseline scans
in order to predict eventual therapeutic response [14]. These are promising results despite
the relatively short half-life of 89Zr (~78 h), which generally serves to make timed detection
particularly challenging [46].

An alternate tracer utilizes radioactive copper with a 1,4,7,10-tetraazacyclododecane-
1,4,7,10-tetraacetic acid (DOTA) chelate, similarly affixed to a trastuzumab monoclonal
antibody core. Studies of this 64Cu-DOTA-trastuzumab label show that it has comparable
radiation exposure to 18F-FDG PET and is capable of assisting with detection of both HER2-
positive primary and metastatic breast cancer [32]. Additionally, 64Cu-DOTA-trastuzumab
enhanced PET can efficiently diagnose brain metastases, thereby suggesting free passage
across the blood brain barrier [35]. Further support for the precision and utility of this
tracer are its high tumor-to-background and non-cardiotoxic cardiac uptake [14,47].

Trastuzumab, while supplying an important base for many burgeoning radiolabels,
has been implicated in the occasional detection of false positives. In response, pertuzumab,
an antibody that binds to a distinct HER2 site, is being investigated with 89Zr based
radiotracers [25,48]. A case example of a pertuzumab containing tracer is illustrated in
Figure 2.
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Figure 2. This is a 69-year-old female with left breast invasive ductal carcinoma (ER+, PR+, and
HER2+) who has received several rounds of HER2-targeted therapy, including ado-trastuzumab
emtansine (TDM-1), and was on gemcitabine, trastuzumab, and pertuzumab therapy at the time of
89Zr-pertuzumab PET/CT. Tracer avidity was visualized in a known left supraclavicular lymph node
metastasis (blue arrows), with SUVmax 5.1.

3.2. Affibodies and Nanobodies

Molecular imaging using affibodies is a new development in detecting and predicting
HER2 status in breast cancers. Affibodies are small molecules approximately 6.5 kDa in size
that are based on an immunoglobulin scaffold. 111Indium-ABY-002 and 68Gallium-ABY-002
are two examples that have been shown to have antibody-binding properties with fast
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pharmacokinetics. These were first studied in 2010, when Baum and colleagues utilized
them for imaging HER2-positive breast cancer [43]. Patients with known metastases
received radiolabeled affibodies, and good quality SPECT/CT and PET/CT images were
obtained 2 h after injection. Most metastatic lesions identified on 18F-FDG PET were also
seen on ABY-002 imaging, but lesions near the kidney and liver were not identified due to
high background accumulation. An additional study by Sörensen and colleagues looked at
a reengineered affibody, ABY-025, which had better tumor/background ratios and overall
improved tumor uptake properties, helping to characterize liver metastasis [45].

Nanobodies, on the other hand, are “miniaturized” variants of monoclonal antibodies
containing only two heavy chains with a single antigen-binding variable region. These
entities retain antibody-binding properties but are highly modular and easily manipulated
without requiring extensive assembly or technical optimization [49]. Keyaerts et. al.
assessed safety, dosimetry and biodistribution of a 68Gallium based nanobody, showing
that it had low background uptake and a favorable activity profile for the delineation of
primary and metastatic disease [28]. Xavier et. al. reengineered a guanosine-phosphate
HER2-nanobody, labeling it with 18F, and showed rapid clearance from the kidneys. This
nanobody, when coadministered with trastuzumab, was also used to monitor therapeutic
response [50].

3.3. SPECT/CT Imaging

The integration of SPECT and CT into a hybrid system brings new advantages for the
diagnosis and treatment of breast cancer. CT provides comprehensive anatomic imaging
while SPECT focuses on relaying information on tumor perfusion. Combined, SPECT/CT
can be diagnostic by fusing morphologic and functional information, for example by
detecting the precise locations of tumor metastases and mapping lymphatic drainage. The
latter point specifically, and the resulting ability to help precisely localize lymph nodes, is
an emerging application of SPECT/CT as sentinel lymph node dissection replaces axillary
lymph node dissection for initial breast cancer staging [51]. Diagnostically, SPECT/CT has
been shown to be as accurate as PET/CT while also providing the advantage of being more
widely available and less costly [51].

SPECT/CT has a significant potential role in the future of HER2-targeted imaging.
Targeted molecules radiolabeled with short half-life isotopes may be beneficial for patients
due to faster HER2-positive tumor uptake and tissue clearance, decreasing overall radi-
ation burden. SPECT/CT allows clinicians to work within the short half-lives of these
tracers, such as those containing 111In and 99mTc, as these images can be acquired more
quickly after tracer administration than with PET/CT [52]. In one study, imaging using
99mTc-HYNIC-H6F (with H6F being a HER2-specific peptide) was proven to detect HER2-
positive tumors during trastuzumab therapy while not interrupting or blocking treatment
administration [53]. SPECT/CT was able to visualize a significant amount of tracer uptake
and detect HER2-positive tumors within 30 min of injection. The marker’s specificity also
allowed it to quickly clear HER2-negative tissues, reducing unnecessary radiation applied
to normal tissue.

4. HER2 Radionucleotide Therapy

Radiopharmaceuticals used to target HER2-positive cells can be used for both diag-
nostic and therapeutic purposes depending on the type of radionuclide attached to the
biomarker or tracer. A radionuclide that emits tissue-penetrating gamma radiation is
useful for imaging, whereas one that releases cytotoxic alpha, beta, or auger radiation
can be used to eliminate tumor cells in the vicinity of the tracer. This forms the basis
of radionuclide therapy, a novel treatment modality that can deliver systemic radiation
directly and specifically to tumor cells. A radionuclide that can emit a detectable level of
both kinds of radiation (gamma and cytotoxic) has great theragnostic value as it can be
used to simultaneously treat as well as monitor response [54].
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Targeted systemic radiation therapy requires an effective vehicle that can selectively
deliver radionuclide to tumor cells alone and remain stable in the presence of emitted radi-
ation. Trastuzumab has been the foremost tracer used to develop several radiotherapeutic
agents in the past decade, as described above, and has been utilized in conjunction with a
number of radioactive markers, such as 131I, 177Lu, 64Cu, 111In, and 90Y [55].

Among the radionuclides used to target HER2, beta-emitters have gained favor as a
result of their short-range cytotoxic effects and ease of imaging due to concurrent gamma
emission, a feature that could be useful in calculating overall radiation dose delivered. 131I
specifically is widely used in therapy because of its cost-effectiveness, ease of manipulation
and combination with antibodies, and reasonable half-life (t1/2 = 8.1 days) [56]. 177Lu,
another beta-emitting isotope, can similarly be produced on a large scale at a low cost. It
was shown to be cytotoxic in vitro on a breast cancer cell line while maintaining immunore-
activity with trastuzumab [57]. Alpha and Auger-emitters, such as 111In, might be better
adapted for the treatment of small tumor foci due to shorter path length in the range of the
cell’s diameter. A nuclear localizing signal (NLS) could also be used to efficiently deliver
this tracer into tumor nuclei, thereby limiting toxicity to adjacent non-tumor cells [58].

Radionuclide therapy confers many benefits when compared to treatment with trastuzumab
alone, including the ability to monitor dosage and progress, while potentially decreasing
the required effective dosage of trastuzumab [59]. Research in the development of new ra-
diopharmaceuticals is promising, and these preclinical studies warrant further investigation
in clinical trials before becoming a part of the standard treatment regimen.

5. HER2 Imaging for Staging and Prognostication

Traditional breast cancer staging is based on the TNM classification system per the
American Joint Committee on Cancer (AJCC) Staging Manual, which includes the primary
tumor size (T), regional lymph node involvement (N), and distant metastasis (M) [60].
A combination of these factors determines the overall anatomic stage from 0 to IV, help-
ing to guide treatment decisions. The 8th edition of this manual introduced additional
characteristics to incorporate when determining stage, including tumor grade, biomarker
status (ER, PR and HER2), and genomic panels. This update followed publication of data
demonstrating superior prognostication ability of biomarker inclusion over TNM staging
alone [61,62]. Though HER2 status has traditionally been quantified by IHC into broad cate-
gories primarily focusing on the distinction of high vs. “other” HER2 expression (including
variants with low or no expression), more specific quantification may now be performed
through targeted imaging [63].

Treatment resistance in HER2-positive breast cancers remains an area of active investi-
gation. It is thought to result, at least in part, from failure to identify occult cancer foci on
initial staging with diagnostic imaging, leading to inaccurate assessment of disease, prog-
nostication, and associated treatment planning [64,65]. Certain tissues present diagnostic
challenges to clinicians; bone, for example, is a common site for breast cancer metastasis,
but is not well assessed for HER2 receptor status via IHC [66]. HER2 molecular imaging
offers a non-invasive way to assess various foci of disease, as opposed to a single tissue
which is traditionally obtained via biopsy. In their pilot study of 14 patients, Djikers et. al.
found exceptional anti-HER2 tracer uptake in almost all known metastatic sites and even
uncovered new foci of metastatic disease on delayed imaging [17].

6. HER2 Imaging for Response Assessment

There is currently a debate on the role for HER2 targeted PET/SPECT tracers in
response assessment and an existing paucity of literature on the subject (outside of the
ongoing and previously mentioned IMPACT trial). In theory, because HER2 tracers in-
herently only give information about surface expression of receptors, a decline in tracer
uptake on serial scans would not necessarily indicate response to treatment; such a decline
could just as easily mean that the tumor has mutated and lost HER2 expression due to
tumor heterogeneity. Compared to 18F-FDG PET, which measures metabolic activity in
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the entire tumor regardless of surface expression or mutation, HER2-targeted tracers do
not provide sufficient information for response assessment purposes. Perhaps the role
is presently confined instead to assessing variable sensitivity to therapeutic agents (e.g.,
trastuzumab) throughout a treatment course.

7. HER2 Imaging for Surveillance

Similar to response assessment, the role of HER2-targeted PET/SPECT tracers in
surveillance of breast cancer patients remains undetermined and needs to be evaluated
further. By targeting HER2, PET and SPECT imaging could provide a non-invasive means
to detect disease recurrence of HER2-positive tumors, offering higher sensitivity and
specificity than traditional imaging modalities, including 18F-FDG PET/CT. Integration
into routine surveillance protocols should be considered given its potential to improve
breast cancer patient outcomes by enabling timely interventions and optimization of
therapeutic strategy.

8. Future Directions
8.1. HER2-Low Cancers

Previously, only HER2-positive breast cancer could be targeted with anti-HER2 thera-
pies, while HER2-zero and HER2-low patients were excluded from specialized treatment.
Trastuzumab-deruxtecan, however, showed significant benefits compared to standard
chemotherapy for treatment of patients with HER2-low metastatic breast cancer, prolong-
ing both progression-free survival and overall survival [6]. These findings are leading to
changes in the classification of advanced breast cancer, and methods for assessing HER2
status are actively being revised to accurately identify HER2-low patients [67,68].

The development of highly specific radiotracers is crucial in this endeavor as it may
allow for more granular visualization of lesions with low HER2 expression, making patients
previously classified as HER2-zero now eligible for T-DXd. It could also become a predictive
marker of T-DXd efficacy and help identify patients who will not benefit from the treatment.

8.2. Artificial Intelligence and Radiomics

Radiomics is defined as extracting hidden parameters in the pixels of medical images
(including MRI, CT, PET, and SPECT) that are not usually seen by human eyes [69]. As
a non-invasive method, it offers several advantages, such as the possibility of studying
and following lesions without repeating biopsies [70]. Artificial intelligence (AI), on the
other hand, is a branch of computer science encompassing both machine learning and
deep learning, and is based on using a training dataset to answer different questions
when applied to new data [71]. Using these two techniques in combination with imaging
modalities has fundamentally changed the modern era of cancer diagnostics.

Several studies have demonstrated the accuracy and reliability of these techniques
in breast cancer diagnosis, staging, prognostication, and treatment response determina-
tion [69]. In addition, highly sensitive early screening tests for breast cancer, which by
definition have increased cancer detection rates, require follow-up diagnostic biopsies and
may introduce unacceptable morbidity to patients with benign or ambiguous lesions. PET
or SPECT augmented by AI/radiomics may allow for more accurate lesion description
both at the screening and diagnostic phases when compared to conventional methods,
circumventing the need for more invasive procedures [72]. However, many of these AI and
radiomics models are still in early development phases, and significant external validation
and stress testing is needed before they can be safely implemented in routine clinical
settings [73].

8.3. Multimodality Imaging for Response Assessment

Neoadjuvant (before surgery) application of targeted therapy for breast cancer allows
surgeons more flexibility in electing for conservative tumor resections. However, this
necessitates highly accurate response assessment by medical imaging in order to allow for
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rapid application of an alternate therapy or earlier transitions to surgical management if
there is failure of the primary treatment [74]. Further complicating this strategy is the fact
that there is currently no standardized assessment tool for reporting radiologic response
to neoadjuvant therapy, and post-treatment inflammatory changes and calcifications may
confound a simple size-based assessment [75].

Currently, mammography, US, and MRI are used for the evaluation of response to
neoadjuvant therapy, with 53%, 57%, and 52–61% of patients identified by individual
imaging modalities as responders experiencing response on pathology, respectively [76–79].
However, each modality has specific advantages: ultrasound is more likely to assess
early response to therapy while mammography has more potential to detect residual
disease prior to surgery, and MRI is the least likely to result in over- or underestimation
of remaining tumor size after therapy [74,76]. PET has also shown some promise for
evaluating neoadjuvant response and identifying nonresponders, but is overall limited
by difficulties in detecting small tumors less than 1 cm [75]. While, in isolation, imaging
techniques may have limited accuracy for evaluating the effectiveness of neoadjuvant
therapy, further research could focus on a multi-modality approach in which imaging
techniques are used in tandem to generate an overall picture of response assessment more
closely representative of pathologic findings.

8.4. HER2 Intratumoral Heterogeneity

As previously mentioned, even with HER2-targeted therapy, many patients eventually
relapse with highly morbid disease. Other than hidden metastatic foci, this can be attributed
to intratumoral heterogeneity, in which subpopulations of cancer cells differ genetically
and phenotypically—i.e., have differential HER2 expression—from the primary tumor; this
occurs in up to 40% of breast cancers [80,81]. When treatment is applied, subpopulations
may respond at variable rates, allowing for breakthrough expansion of certain resistant
phenotypes. Overall, the presence of HER2 intratumoral heterogeneity is a poor prognostic
indicator for those treated with anti-HER2 therapy [82,83]. This represents an ongoing
challenge for HER2-targeted diagnosis and treatment, and continuing investigation is
necessary to explore the combination of specific and non-specific agents in order to account
for molecular pockets of high and low HER2 expression.

8.5. HER2 beyond Breast Cancer

Overexpression of HER2 receptors has been reported in many solid tumors other than
breast cancer, including gastric cancer, gastroesophageal junction (GEJ) cancer, biliary tract
cancer, colorectal cancer, non-small cell lung cancer (NSCLC), and bladder cancer [84].

The incidence of HER2 amplification in gastric cancer is nearly 20%, similar to breast
cancer and greater than other solid organ tumors [84]. When compared to breast cancer,
HER2 expression in gastric cancer is more heterogeneous, and among different types of
gastric cancers, it is more common among the GEJ and intestinal types [85,86]. Furthermore,
unlike in breast cancer, in which whole membrane staining is needed to confirm the
diagnosis, gastric cancers have basolateral and/or lateral patterns due to their gland-
forming nature.

Despite the presence of HER2 overexpression in the aforementioned cancers, the
success achieved in treating breast cancers via HER2-targeted therapies cannot be replicated
in other solid tumors [84]. Possible reasons for this include increased HER2 receptor
heterogeneity as well as genetic diversity in immune cell receptor function, differential
density of antigens on tumor cells, and the variable function of immune cells in the setting
of each unique tumor environment [87].

9. Conclusions

Breast cancer is a widely prevalent cause of morbidity and mortality worldwide, and
specific molecular characterization is being explored as an avenue for future precision
medicine approaches. Specifically targeting HER2 surface receptors, an EGFR-class protein
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found in aggressive breast cancers, is an area that is being actively investigated with the
aim of offering diagnostic and treatment solutions for certain malignancies. Trastuzumab
and pertuzumab are highly effective, antagonist monoclonal antibodies currently used as
first-line treatments for HER2-positive breast cancer, and a trastuzumab antibody drug
conjugate, T-DXd, was recently approved for use in HER2-low variants (with many others
in the pipeline) [88]. Combining these targeted proteins with radionucleotides generates
radiotracers that can be visualized by both PET/CT and SPECT/CT imaging for accurate
characterization of HER2 presence on both primary and metastatic lesions. Further, with
careful selection of the specific tracer used, one could exploit radioactivity to not only pro-
vide a visual mapping of disease but also deploy localized radiotherapy in what represents
a true diagnostic and therapeutic combined approach. While this latter idea is largely ex-
perimental, one could envision a future in which radiolabeled antibody-based scaffolds are
used for detailed characterization of an individual patient’s tumor. An imaging signature
collected by PET or SPECT imaging could then be processed using AI and radiomics for
prognostication as well as prediction of adverse events or treatment response. Lastly, the
cancer could be subjected to varying therapeutic approaches, each carefully selected and
specific to an individual’s disease. While this summative description of precision medicine
may still be theoretical, research in the individual steps is well underway and will soon
reach a point when a full connection can be made.
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