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abstract

PURPOSE Low-dose computed tomography (LDCT) for lung cancer screening is effective, although most eligible
people are not being screened. Tools that provide personalized future cancer risk assessment could focus
approaches toward thosemost likely to benefit. We hypothesized that a deep learningmodel assessing the entire
volumetric LDCT data could be built to predict individual risk without requiring additional demographic or
clinical data.

METHODSWe developed a model called Sybil using LDCTs from the National Lung Screening Trial (NLST). Sybil
requires only one LDCT and does not require clinical data or radiologist annotations; it can run in real time in the
background on a radiology reading station. Sybil was validated on three independent data sets: a heldout set of
6,282 LDCTs from NLST participants, 8,821 LDCTs from Massachusetts General Hospital (MGH), and 12,280
LDCTs from Chang Gung Memorial Hospital (CGMH, which included people with a range of smoking history
including nonsmokers).

RESULTS Sybil achieved area under the receiver-operator curves for lung cancer prediction at 1 year of 0.92
(95% CI, 0.88 to 0.95) on NLST, 0.86 (95% CI, 0.82 to 0.90) on MGH, and 0.94 (95% CI, 0.91 to 1.00) on
CGMH external validation sets. Concordance indices over 6 years were 0.75 (95% CI, 0.72 to 0.78), 0.81 (95%
CI, 0.77 to 0.85), and 0.80 (95% CI, 0.75 to 0.86) for NLST, MGH, and CGMH, respectively.

CONCLUSION Sybil can accurately predict an individual’s future lung cancer risk from a single LDCT scan to
further enable personalized screening. Future study is required to understand Sybil’s clinical applications. Our
model and annotations are publicly available.
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INTRODUCTION

Two large randomized controlled trials have established
the efficacy of lung cancer screening (LCS) using low-
dose computed tomography (LDCT) in cigarette
smokers, with 20% and 24% decreases in lung cancer
mortality in the National Lung Screening Trial (NLST)
and the NELSON trial, respectively.1 Hence, the US
Preventive Services Task Force recommends annual
LDCTs for those age 50 years and older with a 20 pack-
year history of smoking.2 There are currently major
shortcomings in achieving appropriate LCS. For in-
stance, in the United States, a dismal , 10% of the
eligible population is being screened.3-5 Evidence also
suggests those being screened are not being optimally
routed to follow-up or kept engaged in long-term
screening.6-8 In parallel, lung cancer diagnoses
among never- and lighter-smokers are rapidly rising,9,10

suggesting that if we continue to focus research about
LCS only on heavier smokers, a gap will persist between
the screen population and the disease population.

One strategy that could help address these disparate
LCS obstacles is to improve the efficiency and benefits
of LCS by individualizing assessment of future lung
cancer risk. Past efforts to improve LCS rates have
focused on identifying those at the highest risk for lung
cancer and directing available resources to screen
them. To that end, significant progress has been made
using clinical and demographic variables as well as
chest radiographs to model lung cancer risk among
smokers, and an ongoing clinical trial is examining the
utility of one such clinical model (PLCOm2012) to
select patients for LDCT screening.11-16

Once patients have started LCS, determining follow-up
imaging frequency relies primarily on visible pulmo-
nary nodule assessment.17 Ardila et al18 leveraged
LDCTs from the NLST to develop a cancer detection
algorithm that identifies pulmonary nodules, pro-
cesses the region surrounding a visible nodule using
deep learning, and accurately predicts lung cancer
within 1 and 2 years. Others showed improved risk
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predictions when combining PLCOm2012 with outcomes
from the last three screens, but did not leverage image data
directly.18,19 In more recent work, Robbins et al20 used risk
factors and image-based features to recommend person-
alized screening intervals.

We hypothesize that LDCT images contain information that
is predictive of future lung cancer risk beyond currently
identifiable features such as lung nodules. An algorithm
that goes past visible nodules to predicting future lung
cancer risk over several years could further enhance pa-
tient management and LCS implementation strategies.
Therefore, we aimed to develop and validate a deep
learning algorithm that predicts future lung cancer risk out
to 6 years from a single LDCT scan, and assess its potential
clinical impact.

MATERIALS AND METHODS

NLST Data

The NLST eligibility criteria and patient demographics
have been described in previous work.1,21 We applied for
and were granted access to the radiologic and clinical data
from a sample of 15,000 NLST participants in the LDCT
arm, including all lung cancers in that arm. The data
included participants’ initial LDCT and up to two annual
follow-up LDCTs when available. All participants signed
an institutional review board (IRB)–approved informed
consent form.

NLST Training, Development, and Test Sets

NLST participants were split into training, development,
and test sets, as per standard practice in computer science
methodology.22 LDCTs from participants included in the

Ardila et al18 test set were assigned to our test set
(n5 2,328) and remained unseen during training. All other
participants were randomly assigned to either the training set
(n5 10,200) or the development set (n5 2,472), which is a
proxy for the test set during algorithm development. We
considered each LDCT as a unique data point, and did not
link or associatemultiple scans from an individual participant
to each other (other than to ensure they were coassigned
within the same set by allocating the set at the participant
level). Within each LDCT, we selected the single series with
the thinnest CT image slices for inclusion in the analysis and
considered any given LDCT positive in terms of future cancer
risk if biopsy-confirmed lung cancer was diagnosed within
6 years, independent of presence/absence of nodules or
other abnormalities on that examination.

NLST Image Annotations

To help train the model, two fellowship-trained thoracic
radiologists jointly annotated suspicious lesions on NLST
LDCTs using MD.AI software23 for all participants who
developed cancer within 1 year after an LDCT. Each lesion’s
volume was marked with bounding boxes on contiguous
thin-cut axial images (Fig 1A).

Independent External Validation Data Sets

Following IRB-approvals, we retrospectively obtained 13,309
LDCTs from 6,392 consecutive adult patients receiving
standard-of-care LCS at Massachusetts General Hospital
(MGH; Boston, US) between 2015 and 2021, and 12,480
LDCTs from 10,696 adult patients who had undergone
LDCTs for LCS at Chang Gung Memorial Hospital (CGMH;
Linkou and Taoyuan, Taiwan) between 2007 and 2019. Note
that unlike the NLST and MGH cohorts, at CGMH, any adult
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without a personal cancer history can obtain an LDCT, re-
gardless of smoking history (Data Supplement, online
only).24-26 Patients without clinical follow-up or imaging series
not suitable for analysis were excluded (Data Supplement).

Algorithm Development

Sybil was designed to predict future lung cancer risk using a
3D convolutional neural network architecture (Appendix
Fig A1, online only). A detailed description of data

processing, algorithm design, and hyperparameter choices
selected during Sybil’s build can be found in the Data
Supplement. Sybil’s outcome is a set of six scores repre-
senting calibrated probabilities of lung cancer diagnosis
extending 1 to 6 years following the LDCT.

Future Lung Cancer Prediction

To assess Sybil’s performance, we computed Uno’s con-
cordance (C)–index27 and area under the receiver operating
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FIG 1. (A) Annotation of lung cancers in Sybil training. For NLST participants who were diagnosed with lung cancer within 1 year of an LDCT examination,
thoracic radiologists drew two-dimensional bounding boxes (purple) on every image showing the lesion, generating a 3D volume of each cancer to assist
with model training. Each image below shows a different cancer from the NLST data set. (B) Data set construction flowcharts. Disposition of patients, LDCT
examinations, and individual series within LDCTs from the data sets received from the NLST (left), MGH (center), and CGMH (right). Red font indicates a
data filtration step. CGMH, Chang Gung Memorial Hospital; LDCT, low-dose chest computed tomography; MGH, Massachusetts General Hospital; NLST,
National Lung Screening Trial.
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characteristic (ROC) curve for each year up to 6 years
following a positive LDCT. The C-index expresses how likely
in a randomly selected pair of LDCTs the scan closer to a
cancer diagnosis had a higher predicted risk, while the ROC
curve characterizes themodel’s tradeoff between sensitivity
and specificity. For instance, when the aim is to limit false
positives, the left portion of the ROC curve is most relevant
for choosing a risk threshold. Bootstrapped CIs were
computed with 5,000 resamples after clustering LDCTs by
participant. To our knowledge, no other algorithm exists
that uses a single LDCT scan to predict an overall future
lung cancer risk up to 6 years, independent from visible
nodules. Hence, there was no clear standard against which
to compare Sybil’s performance. We considered a P value
of .05 statistically significant for all tests.

Additional Analyses

We performed additional analyses to better understand the
inner workings of Sybil and explore clinical utility. For
specificity analyses within the NLST test set, we considered
true-positive LDCTs as those with a visible nodule(s) known to
subsequently be confirmed as lung cancer, and true-negative
LDCTs as those without lung cancer diagnosed after 6 years
of follow-up. LDCTs that fit neither the true-positive nor true-
negative definition were excluded from these analyses. This
yielded 4,201 examinations with 93 true positives from the
NLST test set. Within this subset, we retrospectively assigned
the same Lung Imaging Reporting and Data Systems (Lung-
RADS) 1.0 scores as calculated by Ardila et al,18 and clas-
sified Lung-RADS scores of 1 and 2 as negative and scores of
3 and 4 as positive as per Pinksy et al.28 Finally, we compared
Sybil’s false-positivity rate (FPR, defined as 1-specificity) to
that of Lung-RADS 1.0 at the same sensitivity using the
McNemar test.28,29 Additional details about these and the
other analyses can be found in the Data Supplement.

RESULTS

Future Lung Cancer Prediction

We obtained data on 15,000 participants from the NLST’s
LDCT arm. Filtration for image and data suitability resulted

in 28,162 LDCTs in the Sybil training set, 6,839 LDCTs in
the development set, and 6,282 LDCTs in the test set, with
1,444 (5.1%), 337 (4.9%), and 299 (4.8%) positive LDCTs,
corresponding to lung cancers diagnosed over the sub-
sequent 6 years, respectively (Fig 1B, Appendix Table A1,
online only). After Sybil was developed using the NLST
training and development sets, we evaluated its ability to
predict future lung cancer risk on the NLST test set by
computing area under the curves (AUCs) for each year out
to 6 years and the C-index (Fig 2, Table 1). For testing,
Sybil’s input was limited to LDCT images only; no image
annotation or clinical information was provided. Examining
Sybil’s accuracy in predicting future lung cancer, the model
achieved a 1-year AUC of 0.92 (95% CI, 0.88 to 0.95), a 2-
year AUC of 0.86 (95%CI, 0.82 to 0.90), and a C-index over
the 6 years of prediction of 0.75 (95% CI, 0.72 to 0.78).
Additionally, Sybil maintained performance across sex,
age, and smoking history subgroups (Appendix Table A2,
online only).

We next applied Sybil to two independent test sets. From
MGH, we used 8,821 LDCTs, including 169 confirmed
cancers (Fig 1B, Appendix Table A3, online only). From
CGMH, we used 12,280 LDCTs including 101 cancers.
Note that unlike the NLST and MGH cohorts, CGMH does
not require a positive smoking history to access LDCTs; so,
the cohort includes some people who have never smoked
(Data Supplement). Sybil’s risk prediction in the MGH and
CGMH cohorts was similar to its power in the NLST test set,
with comparable C-indices of 0.81 (95% CI, 0.77 to 0.85)
and 0.80 (95% CI, 0.75 to 0.86) in the MGH and CGHM
sets, respectively (Table 2).

Additional Analyses

Although Sybil does not require a radiologist to identify
nodules, we wished to understand when the risk score likely
relies on the presence of a nodule and when it does not. To
estimate the influence of radiographically visible cancerous
nodules on Sybil’s risk assessment, we analyzed the per-
formance on the NLST test set after excluding cases an-
notated by our radiologists as having visible nodules in the
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FIG 2. Receiver operating characteristic curves displaying Sybil’s ability to predict future lung cancer over 6 years following a single low-dose computed
tomography from the (A) NLST, (B) MGH, and (C) CGMH test sets. CIs for each curve can be found in Table 1. AUC, area under the curve; C-index,
concordance index; CGMH, Chang Gung Memorial Hospital; MGH, Massachusetts General Hospital; NLST, National Lung Screening Trial.
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TABLE 1. Sybil’s Future Lung Cancer Predictions per Year in the NLST Test Set and the MGH and CGMH External Validation Sets
Data Set 1-Year Risk, AUC (95% CI) 2-Year Risk, AUC (95% CI) 3-Year Risk, AUC (95% CI) 4-Year Risk, AUC (95% CI) 5-Year Risk, AUC (95% CI) 6-Year Risk, AUC (95% CI) C-Index (95% CI)

NLST 0.92 (0.88 to 0.95) 0.86 (0.82 to 0.90) 0.80 (0.77 to 0.84) 0.77 (0.73 to 0.81) 0.75 (0.72 to 0.79) 0.75 (0.72 to 0.78) 0.75 (0.72 to 0.78)

MGH 0.86 (0.82 to 0.90) 0.82 (0.77 to 0.86) 0.79 (0.75 to 0.84) 0.79 (0.74 to 0.83) 0.78 (0.73 to 0.83) NA 0.81 (0.77 to 0.85)

CGMH 0.94 (0.91 to 1.00) 0.87 (0.81 to 0.95) 0.81 (0.75 to 0.88) 0.79 (0.73 to 0.87) 0.77 (0.71 to 0.83) 0.74 (0.66 to 0.81) 0.80 (0.75 to 0.86)

Abbreviations: AUC, area under the curve; C-index, concordance index; CGMH, Chang Gung Memorial Hospital; MGH, Massachusetts General Hospital; NA, not available because of lack of follow-up
data; NLST, National Lung Screening Trial.
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TABLE 2. Subset of Studies Using Machine Learning for Lung Cancer Risk Prediction

Model Setting
Clinical Info
Needed? CT Chest Images Used? Output

Is Code Publicly
Available Reason Why Not Comparable With Sybil

Sybil Post-LDCT N Y 6-year LC risk Y —

PLCOm201211 Pre-LDCT Y N 6-year LC risk Y Pre v post LDCT

Bach et al15,16 Pre-LDCT Y N 10-year LC risk Y Pre v post LDCT

LLP15 Pre-LDCT Y N 5-year LC risk Y Pre v post LDCT

Lu et al13,18,20 Pre-LDCT,
post CXR

Y N (CXR images used) 6-year LC risk Y Pre v post LDCT

LCRAT/LCDRAT30 Pre-LDCT Y N 5-year LC risk and LC death risk Y Pre v post LDCT

PLCO201919 Post-LDCT Y N (Lung-RADS score from 3
prior LDCTs used)

3-year LC risk Y Requires three consecutive Lung-RADS scores; limited
future risk prediction

Huang et al31 Post-LDCT N N (features from CT report
used)

3-year LC risk N Trained on full NLSTa; limited future risk prediction;
code unavailable to reproduce

Ardila et al18,20 Post-LDCT N Y 2-year LC risk N Limited future risk prediction; code unavailable to
reproduce

LCRAT 1 CT20 Post-LDCT Y N (features from CT report
used)

Recommends shorter or longer
interval to next scan

Y Model gives screening frequency recommendations
(not cancer risk prediction)

Abbreviations: CT, computed tomography; CXR, chest radiograph; LC, lung cancer; LCRAT, Lung Cancer Risk Assessment Tool; LCDRAT, Lung Cancer Death Risk Assessment Tool; LDCT, low-dose
computed tomography; LLP, Liverpool Lung Project; Lung-RADS, Lung Imaging Reporting and Data Systems; N, no; NLST, National Lung Screening Trial; Y, yes.

aTrained on full NLST, which makes testing on an NLST subset a false comparison.
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exact location of subsequently proven cancers (Data Sup-
plement). In this exploratory analysis, Sybil’s performance
was hampered by removing visible nodules, obtaining a
2-year AUC of 0.81 (95%CI, 0.74 to 0.86) and a 6-year AUC
of 0.69 (95% CI, 0.63 to 0.74; Table A4, online only).

We next estimated if Sybil’s analysis considering the entire
volumetric LDCT could improve specificity of interpreting
scans with visible lung nodules compared with Lung-RADS,
the clinical standard of care. Our NLST test set included

4,201 LDCTs that were known to either be truly negative for
lung cancer after six complete years of follow-up or truly
positive, with visible nodules that were biopsy-proven to be
cancer (n 5 93; Data Supplement). Among this cohort,
Lung-RADS obtained a FPR of 0.10 (95% CI, 0.09 to 0.11),
while Sybil yielded a FPR of 0.08 (95% CI, 0.07 to 0.09)
at the same sensitivity level using the 1-year risk scores
(P , .001; Appendix Table A5, online only). When con-
sidering baseline LDCTs only, Lung-RADS yielded a FPR of

A B C D

E F G H

FIG 3. Examples of screening scans with negative clinical interpretations (Lung-RADS 1 or 2) and high Sybil risk
scores, who subsequently developed lung cancer. Paired sets of images from four separate subjects from the
National Lung Screening Trial and Massachusetts General Hospital cohorts illustrating Sybil’s potential in
predicting future lung cancer. Clinical (preoperative) or pathologic (postoperative) stages are provided using
American Joint Committee on Cancer version 8.32 (A) A 69-year-old man with a 99 pack-year smoking history and
LDCT without visible nodules in the right upper lobe (circle; Lung-RADS score 2, Sybil risk 75th percentile). (B)
Two years later (after unchanged interval scan at 1 year), a new spiculated solid nodule appeared (arrow), and
resection confirmed a 2.2-cm poorly differentiated squamous cancer (pT1cN0M0, stage IA3). (C) A 67-year-old
man with a 30 pack-year smoking history and LDCT with a 7-mm solid nodule in the lingula next to the heart
(arrow), which was missed because of human error (Lung-RADS score 2, Sybil risk 62nd percentile). (D) One
year later, a 1.5-cm solid spiculated nodule was appreciated (arrow), and mediastinal sampling confirmed
adenocarcinoma (cT1bN2M0, stage IIIA). (E) A 73-year-old manwith an 80 pack-year smoking history and LDCT
with a new solid nodule , 6 mm in the left upper lobe, that is, below the size threshold, which would have
triggered a 6-month interval scan (Lung-RADS score 2, Sybil risk 65th percentile). (F) Two years later, after
missing the recommended annual screen, a solid spiculated nodule was noted (arrow), and resection confirmed
a 1.8-cm moderately differentiated squamous cell cancer (pT1bN0M0, stage IA2). (G) A 74-year-old man with
30 pack-year smoking history and LDCT showing an ill-defined cystic airspace in the left apex (arrow; Lung-RADS
score 2, Sybil risk 69th percentile). Cyst-associated lung cancers are among the most difficult to recognize
early.32,33 (H) Two years later, the lesion (arrow) had increased in size and resection confirmed a 2.1-cm
moderately differentiated adenocarcinoma (invasive size 1.3 cm; pT1bN0M0, stage IA2). LDCT, low-dose
computed tomography; Lung-RADS, Lung Imaging Reporting and Data Systems.

Journal of Clinical Oncology 2197

An Imaging-Based Model for Predicting Future Lung Cancer Risk



0.14 (95% CI, 0.13 to 0.16) compared with Sybil’s FPR of
0.08 (95% CI, 0.07 to 0.09; P , .001).

Examples of Clinical Application

Visualizing how a computer algorithm could affect patient
care is not always straightforward. To illustrate the type of
information that Sybil could provide to potentially improve
clinical outcomes, we searched for case examples in which
the Lung-RADS clinical assessment was low risk (scores 1
or 2) but Sybil’s risk score was high (. 60% risk percentile;
Fig 3). To provide a more global estimate of Sybil’s ability to
predict missed interval cancers despite adherence to an-
nual LCS, we examined cases from the NLST test set with
Lung-RADS scores 1 or 2 (n 5 5,611). Among these, Sybil
obtained a 1-year AUC of 0.86 (95% CI, 0.76 to 1.0) and a
2-year AUC of 0.79 (95% CI, 0.73 to 0.85).

DISCUSSION

We developed Sybil, a deep learning algorithm that predicts
future lung cancer risk out to 6 years from a single LDCT
scan. Sybil can run in the background at a radiology
reading station as soon as LDCT images are available,
without inputting demographic or other clinical data and
without requiring radiologists to annotate areas of interest.
Trained on data from the NLST, Sybil was able to predict
cancer within 1 year with AUCs of 0.92 (95% CI, 0.88 to
0.95) on a heldout NLST test set, and 0.86 (95% CI, 0.82 to
0.90) and 0.94 (95% CI, 0.91 to 1.00) on the MGH and
CGMH independent external validation sets, respectively.
The 6-year C-index was 0.75 (95% CI, 0.72 to 0.78), 0.81
(95% CI, 0.77 to 0.85), and 0.80 (95% CI, 0.75 to 0.86) for
Sybil on the NLST, MGH, and CGMH sets, respectively.

Sybil’s assessment may not correspond to how a human
radiologist would approach image analysis. We sought to
gain insight into the visual characteristics that Sybil might
consider in making predictions. We noted an association
between Sybil’s ability to correctly lateralize the location of
future cancers and the likelihood that an LDCT receives a
high-risk score (Appendix Table A6, online only), indicating
that when Sybil predicts high future lung cancer risk, the
signal it uses localizes to specific at-risk regions rather than
being equally spread over the entire thorax. We also found
that traditional clinical risk factors such as smoking du-
ration can be predicted directly from the LDCT images
(Appendix Fig A2, online only, Appendix Table A7, online
only), suggesting that Sybil may also infer biologically rel-
evant information from LDCT images. To distinguish be-
tween cancer detection and future cancer risk, we removed
visible lung nodules that were known to be cancerous from
the analysis set. We found that Sybil’s performance was
lower on this set but still possessed predictive power.

As is standard practice, we sought to compare Sybil with
other models used for lung cancer risk prediction. However,
although several models have been developed to improve
LCS and detection, none are valid comparisons to Sybil as

they differ in goal, scope, data input, and code availability
(Table 2). Many models require either clinical data, manual
identification and characterization of nodules, multiple
LDCTs, or the Lung-RADS assessment of a radiologist. In
general, the models can be divided into those that predict
risk before a scan has been performed and can be used to
steer high-risk patients toward screening, and those that
predict risk after a scan has been performed and use data
from the scan (either images or descriptions of images) as
model input. The two most similar models to Sybil are likely
the two that are post-LDCT and analyze the CT images
themselves to predict risk, namely, the models published by
Ardila and by Huang. However, they are limited in the
number of years to cancer incidence that they predict.
Additionally, we could not implement either of these models
to test head-to-head against Sybil for short-term cancer risk
prediction because their code bases were not made public.

On the basis of our initial results, one potential clinical
application is to use Sybil to decrease follow-up scans or
biopsies among patients with nodules that are low risk.
Indeed, increasing the specificity of LDCT screening was a
key advantage of the Lung-RADS system compared with
the nodule assessment algorithm used in the NLST study,
and underlies its adoption as the gold standard in the
United States. In our assessment of the NLST test set,
Sybil further reduced the FPR to 8% for baseline scans,
compared with 14% for Lung-RADS 1.0, while main-
taining equivalent sensitivity. In addition to false positives,
false negatives or missed interval cancers among patients
engaged in LCS programs are a major concern for both
medical and legal reasons. NLST investigators examined
the 44 missed interval lung cancers in the NLST and
found, upon retrospective review, most missed cases
could have potentially been avoided but for human error.34

Although anecdotal, the cases discussed in Figure 3
similarly spark contemplation about whether Sybil could
be harnessed to decrease follow-up intervals or increase
prioritization by the patient navigator and other tools to
ensure those at highest risk are followed most closely. The
benefit of such interventions will require confirmation in
prospective clinical trials.

Before Sybil can be studied prospectively, the first step is
to gain confidence that it is generalizable. Sybil was de-
veloped using scans from theNLST, which were obtained in
2002-2004 from US patients who were overwhelmingly
White (92%). Changes in CT technology over time might
adversely affect Sybil’s translation, hence we chose more
modern cohorts for independent validation. Differences in
image slice thickness over time were noted, although we
had already excluded scans with images thicker than
2.5 mm from the initial Sybil build. Despite technological
changes, Sybil generalized well across these modern and
diverse validation cohorts. Notably in CGMH, Sybil main-
tained its performance in a population that likely consists of
a plurality of nonsmokers. However, none of the cohorts
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presented here include sufficient Black or Hispanic pa-
tients to have confidence in broad applicability yet.

There are several limitations to this study. In addition to the
aforementioned lack of a true comparator model and
suboptimal population diversity to date, the work presented
here is solely retrospective. As the cohorts we studied
consisted of subjects engaged in LCS, we cannot assess
Sybil’s ability to detect cancers presenting independently
from a screening program. Importantly, we do not have
access to detailed smoking data from CGMH subjects, so
conclusions about Sybil’s ability to predict lung cancer from
images in nonsmokers remain speculative. Although the
CGMH cohort likely consists mostly of nonsmokers, the
lung cancer incidence in Taiwan among nonsmokers is

also significantly higher than most countries.24 Top prior-
ities for next steps are understanding whether Sybil might
facilitate LCS research into populations outside the current
US Preventive Services Task Force criteria and which
strategies are optimal to incorporate Sybil’s risk predictions
into real-world LCS patient management and decision
making.35 Like all artificial intelligence tools being devel-
oped for health care application, careful and transparent
development of Sybil including critical assessment of
shortcomings will be necessary.

To facilitate Sybil’s use and promote further research into
clinical applications of this model, the algorithm is publicly
available along with the image annotations generated on
the NLST dataset.
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11. Tammemägi MC, Katki HA, Hocking WG, et al: Selection criteria for lung-cancer screening. N Engl J Med 368:728-736, 2013

12. ten Haaf K, Jeon J, Tammemagi MC, et al: Risk prediction models for selection of lung cancer screening candidates: A retrospective validation study. PLoSMed
14:e1002277, 2017

13. Lu MT, Raghu VK, Mayrhofer T, et al: Deep learning using chest radiographs to identify high-risk smokers for lung cancer screening computed tomography:
Development and validation of a prediction model. Ann Intern Med 173:704-713, 2020

14. Lim KP, Marshall H, Tammemagi M, et al: Protocol and rationale for the International Lung Screening Trial. Ann Am Thorac Soc 17:503-512, 2020

15. Cassidy A, Myles JP, van Tongeren M, et al: The LLP risk model: An individual risk prediction model for lung cancer. Br J Cancer 98:270-276, 2008

16. Bach PB, Kattan MW, Thornquist MD, et al: Variations in lung cancer risk among smokers. J Natl Cancer Inst 95:470-478, 2003

17. Chelala L, Hossain R, Kazerooni EA, et al: Lung-RADS version 1.1: Challenges and a look ahead, from the AJR special series on radiology reporting and data
systems. Am J Roentgenol 216:1411-1422, 2021

18. Ardila D, Kiraly AP, Bharadwaj S, et al: End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat
Med 25:954-961, 2019
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TABLE A1. Demographics of the 14,185 National Lung Screening Trial Participants Used for Sybil Training, Development, and Test Sets, by Low-Dose Computed Tomography Examination

Patient Groups

Training Set Development Set Test Set

Total, No. (%) Future Cancers Diagnosed, No. (%) Total, No. (%) Future Cancers Diagnosed, No. (%) Total, No. (%) Future Cancers Diagnosed, No. (%)

No. of examinations 28,162 (100.0) 1,444 (100.0) 6,839 (100.0) 337 (100.0) 6,282 (100.0) 299 (100.0)

Age cohort, years

50-60 9,955 (35.3) 332 (23.0) 2,422 (35.4) 80 (23.7) 2,318 (36.9) 77 (25.8)

60-70 14,983 (53.2) 840 (58.2) 3,635 (53.2) 191 (56.7) 3,212 (51.1) 169 (56.5)

70-80 3,224 (11.4) 272 (18.8) 782 (11.4) 66 (19.6) 752 (12.0) 53 (17.7)

Sex

Female 11,590 (41.2) 604 (41.8) 2,822 (41.3) 124 (36.8) 2,513 (40.0) 109 (36.5)

Male 16,572 (58.8) 840 (58.2) 4,017 (58.7) 213 (63.2) 3,769 (60.0) 190 (63.5)

Race

White 25,921 (92.0) 1,333 (92.3) 6,202 (90.7) 295 (87.5) 5,783 (92.1) 277 (92.6)

Black or African American 1,036 (3.7) 68 (4.7) 290 (4.2) 22 (6.5) 187 (3.0) 5 (1.7)

Asian 575 (2.0) 23 (1.6) 175 (2.6) 4 (1.2) 142 (2.3) 10 (3.3)

American Indian or Alaskan Native 96 (0.3) 6 (0.4) 26 (0.4) 4 (1.2) 4 (0.1) 1 (0.3)

Native Hawaiian or other Pacific
Islander

70 (0.2) 1 (0.1) 27 (0.4) 3 (0.9) 37 (0.6) 1 (0.3)

Pack-year smoking history range

, 30 3 (0.0) NA NA NA 3 (0.0) NA

30-40 7,031 (25.0) 136 (9.4) 1,825 (26.7) 45 (13.4) 1,445 (23.0) 53 (17.7)

40-50 7,517 (26.7) 341 (23.6) 1,798 (26.3) 68 (20.2) 1734 (27.6) 65 (21.7)

50-60 4,072 (14.5) 268 (18.6) 888 (13.0) 37 (11.0) 845 (13.5) 47 (15.7)

60-70 3,196 (11.3) 186 (12.9) 735 (10.7) 55 (16.3) 760 (12.1) 13 (4.3)

70-80 2,167 (7.7) 144 (10.0) 487 (7.1) 30 (8.9) 495 (7.9) 20 (6.7)

80-90 1,579 (5.6) 136 (9.4) 445 (6.5) 32 (9.5) 398 (6.3) 28 (9.4)

90-100 927 (3.3) 91 (6.3) 214 (3.1) 25 (7.4) 232 (3.7) 31 (10.4)

. 100 1,670 (5.9) 142 (9.8) 447 (6.5) 45 (13.4) 370 (5.9) 42 (14.0)

Time to cancer diagnosis or last
negative follow-up, years

1 492 (1.7) 417 (28.9) 117 (1.7) 99 (29.4) 101 (1.6) 82 (27.4)

2 430 (1.5) 291 (20.2) 105 (1.5) 68 (20.2) 81 (1.3) 48 (16.1)

3 522 (1.9) 247 (17.1) 128 (1.9) 58 (17.2) 112 (1.8) 52 (17.4)

4 1,267 (4.5) 201 (13.9) 283 (4.1) 44 (13.1) 294 (4.7) 43 (14.4)

5 7,098 (25.2) 169 (11.7) 1,727 (25.3) 41 (12.2) 1,586 (25.2) 50 (16.7)

6 18,353 (65.2) 119 (8.2) 4,479 (65.5) 27 (8.0) 4,108 (65.4) 24 (8.0)

Abbreviation: NA, not available because of lack of data.
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TABLE A2. Sybil’s Future Lung Cancer Predictions Per Year in the National Lung Screening Trial Test Set, by Clinical Subgroups

Patient Groups
1-Year Risk, AUC

(95% CI)
2-Year Risk, AUC

(95% CI)
3-Year Risk, AUC

(95% CI)
4-Year Risk, AUC

(95% CI)
5-Year Risk, AUC

(95% CI)
6-Year Risk, AUC

(95% CI) C-Index (95% CI)

Age, years

50-60 0.92 (0.87 to 0.99) 0.88 (0.83 to 0.94) 0.79 (0.72 to 0.87) 0.74 (0.66 to 0.82) 0.70 (0.62 to 0.79) 0.70 (0.61 to 0.79) 0.70 (0.62 to 0.79)

60-70 0.92 (0.87 to 0.99) 0.86 (0.80 to 0.92) 0.82 (0.76 to 0.88) 0.80 (0.75 to 0.86) 0.80 (0.75 to 0.85) 0.78 (0.73 to 0.83) 0.78 (0.73 to 0.83)

Sex

Male 0.94 (0.91 to 0.97) 0.86 (0.81 to 0.91) 0.80 (0.75 to 0.86) 0.77 (0.72 to 0.82) 0.75 (0.70 to 0.80) 0.74 (0.69 to 0.80) 0.74 (0.69 to 0.79)

Female 0.88 (0.80 to 0.99) 0.86 (0.78 to 0.94) 0.79 (0.71 to 0.87) 0.77 (0.69 to 0.85) 0.76 (0.69 to 0.83) 0.75 (0.68 to 0.83) 0.75 (0.68 to 0.82)

Racea

White 0.91 (0.87 to 0.96) 0.86 (0.81 to 0.90) 0.80 (0.75 to 0.85) 0.77 (0.72 to 0.81) 0.75 (0.71 to 0.80) 0.74 (0.70 to 0.79) 0.74 (0.70 to 0.79)

Black or African
American

0.99 (0.98 to 1.0) 0.95 (0.89 to 1.0) 0.93 (0.85 to 1.0) 0.84 (0.67 to 1.0) 0.83 (0.64 to 1.0) 0.83 (0.65 to 1.0) 0.83 (0.66 to 1.0)

Asian 0.97 (0.94 to 1.0) 0.95 (0.91 to 1.0) 0.77 (0.55 to 1.0) 0.77 (0.55 to 1.0) 0.74 (0.54 to 1.0) 0.70 (0.49 to 0.97) 0.71 (0.51 to 0.95)

Current smoker

Yes 0.89 (0.82 to 0.99) 0.84 (0.78 to 0.92) 0.77 (0.70 to 0.85) 0.75 (0.68 to 0.81) 0.72 (0.66 to 0.79) 0.71 (0.65 to 0.77) 0.71 (0.65 to 0.77)

No 0.93 (0.90 to 0.97) 0.87 (0.83 to 0.92) 0.82 (0.77 to 0.88) 0.79 (0.73 to 0.85) 0.79 (0.73 to 0.85) 0.78 (0.72 to 0.85) 0.78 (0.72 to 0.84)

Smoking duration,
years

, 40 0.96 (0.94 to 0.99) 0.89 (0.84 to 0.94) 0.84 (0.79 to 0.90) 0.80 (0.73 to 0.87) 0.79 (0.72 to 0.86) 0.78 (0.71 to 0.86) 0.78 (0.72 to 0.85)

. 40 0.88 (0.82 to 0.96) 0.83 (0.77 to 0.90) 0.76 (0.70 to 0.83) 0.73 (0.67 to 0.79) 0.71 (0.66 to 0.77) 0.70 (0.65 to 0.76) 0.70 (0.65 to 0.76)

Abbreviations: AUC, area under the curve; C-index, concordance index.
aResults for the race categories American Indian or Alaskan Native and Native Hawaiian or other Pacific Islander are omitted as they did not contain enough cancers to provide CIs.
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TABLE A3. Demographics of Independent External Validation Data Sets From MGH (n 5 4,954 patients) and CGMH (n 5 10,567 patients)

Patient Group

MGH Test Set CGMH Test Set

Total, No. (%) Future Cancers Diagnosed, No. (%) Total, No. (%) Future Cancers Diagnosed, No. (%)

No. of examinations 8,821 (100.0) 255 (100.0) 12,280 (100.0) 126 (100.0)

Age cohort, years

, 50 9 (0.1) NA 4,296 (35.0) 24 (19.1)

50-60 2,044 (23.2) 63 (24.7) 4,258 (34.7) 42 (33.3)

60-70 4,563 (51.7) 139 (54.5) 2,878 (23.4) 33 (26.2)

70-80 2,155 (24.4) 52 (20.4) 722 (5.9) 19 (15.1)

. 80 49 (0.6) 1 (0.4) 126 (1.0) 8 (6.3)

Sex

Female 4,159 (47.1) 151 (59.2) 5,146 (41.9) 67 (53.2)

Male 4,662 (52.9) 104 (40.8) 7,134 (58.1) 59 (46.8)

Race

White 6,696 (75.9) 215 (84.3) 0 (0.0) 0 (0.0)

Black or African American 262 (3.0) 10 (3.9) 0 (0.0) 0 (0.0)

Asian 175 (2.0) 6 (2.4) 12,280 (100.0) 126 (100.0)

American Indian or Alaskan
Native

14 (0.2) 1 (0.4) 0 (0.0) 0 (0.0)

Native Hawaiian or other Pacific
Islander

3 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Pack-year smoking history range

, 30 152 (1.7) 3 (1.2) a a

30-40 3,325 (37.7) 90 (35.3) a a

40-50 2,707 (30.7) 70 (27.5) a a

50-60 1,261 (14.3) 45 (17.6) a a

60-70 502 (5.7) 18 (7.1) a a

70-80 133 (1.5) 6 (2.4) a a

80-90 169 (1.9) 2 (0.8) a a

90-100 77 (0.9) 5 (2.0) a a

. 100 464 (5.3) 15 (5.8) a a

Time to cancer diagnosis or last
negative follow-up, years

1 3,175 (36.0) 152 (59.6) 1,549 (12.6) 12 (9.5)

2 2,392 (27.1) 57 (22.4) 2,799 (22.8) 26 (20.6)

3 1,795 (20.3) 29 (11.4) 2,538 (20.7) 35 (27.8)

4 986 (11.2) 13 (5.1) 1,743 (14.2) 24 (19.0)

5 473 (5.4) 4 (1.6) 1,650 (13.4) 18 (14.3)

6 NA NA 2,001 (16.3) 11 (8.7)

Abbreviations: CGMH, Chang Gung Memorial Hospital; MGH, Massachusetts General Hospital; NA, not available.
aSmoking status including pack-year history is unavailable for the specific low-dose computed tomography that we obtained from CGMH (Data

Supplement).
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TABLE A5. Sybil’s False-Positive Rate Compared With Lung-RADS Version 1.0 at the Same Sensitivity Rate Among the Subset of the National
Lung Screening Trial Test Set With Visible Pulmonary Nodules
Examinations Lung-RADS FPR Sybil FPR P

All LDCTs (n 5 4,201) 0.10 (0.09 to 0.11) 0.08 (0.07 to 0.09) , .001

Baseline LDCTs (n 5 2,011) 0.14 (0.13 to 0.16) 0.08 (0.07 to 0.09) , .001

Follow-up LDCTs (n 5 2,190) 0.06 (0.05 to 0.08) 0.07 (0.06 to 0.08) . .050

Abbreviations: FPR, false positive rate; LDCT, low-dose computed tomography; Lung-RADS, Lung imaging Reporting and Data System.

TABLE A4. Sybil’s Future Lung Cancer Prediction in the National Lung Screening Trial Test Set When Excluding Scans With Visually Evident
Cancers

Model Exclusion
2-Year Risk, AUC

(95% CI)
3-Year Risk, AUC

(95% CI)
4-Year Risk, AUC

(95% CI)
5-Year Risk, AUC

(95% CI)
6-Year Risk, AUC

(95% CI)

Sybil Cancers noted to be
visible by radiologist

0.81 (0.74 to 0.86) 0.72 (0.66 to 0.79) 0.69 (0.63 to 0.75) 0.69 (0.64 to 0.75) 0.69 (0.63 to 0.74)

Abbreviation: AUC, area under the curve.
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TABLE A7. Characteristics of Screen-Detected Nodules in the National Lung Screening Trial Sets Used
Patient Groups Training Set, No. (%) Development Set, No. (%) Test Set, No. (%)

All examinations 28,162 (100.0) 6,839 (100.0) 6,282 (100.0)

No nodules 8,871 (31.5) 2,218 (32.4) 2,008 (32.0)

Nodules , 4 mm 4,435 (15.7) 948 (13.9) 901 (14.3)

At least one nodule $ 4 mm 11,987 (42.6) 2,902 (42.4) 2,777 (44.2)

Solid 9,600 (34.1) 2,372 (34.7) 2,262 (36.0)

Ground glass 2,237 (7.9) 495 (7.2) 475 (7.6)

Mixed 746 (2.6) 146 (2.1) 139 (2.2)

TABLE A6. Sybil’s Prediction of Laterality of Future Lung Cancers in the National Lung Screening Trial Test Set

Sybil Risk Prediction, Entire Cohort or
Tertiles

AUC of Predicting Cancer Laterality
(left v right lung) (95% CI)

AUC of Predicting the Exact Center of
the Tumor (annotated examinations

only) (95% CI)

All cancers (n 5 299)

All scores 0.73 (0.68 to 0.78) NA

Risk score: low 0.56 (0.47 to 0.66) NA

Risk score: medium 0.68 (0.59 to 0.77) NA

Risk score: high 0.94 (0.90 to 0.99) NA

Visible cancers only (n 5 93)

All scores 0.88 (0.82 to 0.95) 0.71 (0.62 to 0.80)

Risk score: low 0.71 (0.55 to 0.87) 0.44 (0.28 to 0.59)

Risk score: medium 0.97 (0.94 to 1.00) 0.78 (0.66 to 0.94)

Risk score: high 0.97 (0.94 to 1.00) 0.91 (0.82 to 1.00)

Nonvisible (future) cancers only (n
5 206)

All scores 0.66 (0.60 to 0.73) NA

Risk score: low 0.50 (0.39 to 0.61) NA

Risk score: medium 0.63 (0.51 to 0.74) NA

Risk score: high 0.86 (0.79 to 0.94) NA

Abbreviations: AUC, area under the curve; NA, not applicable.
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