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Abstract: The progressive deterioration of function and structure of brain cells in neurodegenerative
diseases is accompanied by mitochondrial dysfunction, affecting cellular metabolism, intracellular
signaling, cell differentiation, morphogenesis, and the activation of programmed cell death. However,
most of the efforts to develop therapies for Alzheimer’s and Parkinson’s disease have focused on
restoring or maintaining the neurotransmitters in affected neurons, removing abnormal protein
aggregates through immunotherapies, or simply treating symptomatology. However, none of these
approaches to treating neurodegeneration can stop or reverse the disease other than by helping to
maintain mental function and manage behavioral symptoms. Here, we discuss alternative molecular
targets for neurodegeneration treatments that focus on mitochondrial functions, including regulation
of calcium ion (Ca2+) transport, protein modification, regulation of glucose metabolism, antioxidants,
metal chelators, vitamin supplementation, and mitochondrial transference to compromised neurons.
After pre-clinical evaluation and studies in animal models, some of these therapeutic compounds have
advanced to clinical trials and are expected to have positive outcomes in subjects with neurodegenera-
tion. These mitochondria-targeted therapeutic agents are an alternative to established or conventional
molecular targets that have shown limited effectiveness in treating neurodegenerative diseases.

Keywords: Alzheimer’s disease; Parkinson’s disease; neurodegeneration; mitochondria; mitochondrial
dysfunction; oxidative stress; neurons

1. Introduction

Neurodegenerative diseases are a heterogeneous group of neurological disorders
caused by the progressive deterioration of function or structure of the nervous system
cells in the brain or peripheral nervous system. Neurodegeneration affects a considerable
number of subjects, mostly older individuals (>65 years old), showing a progressive
deterioration in cognition, memory, and/or motor functions. Neurodegenerative diseases
share histopathological hallmarks, including abnormal protein aggregation, synaptic and
neuronal network dysfunction, altered proteostasis, cytoskeletal abnormalities, altered
energy metabolism, DNA/RNA defects, neuroinflammation, and progressive neuronal
death [1].

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the most common neurode-
generative diseases. More than 6.2 million people in the USA may have AD, and around
1 million people are affected by PD. AD is characterized by a progressive accumulation of
amyloid-β (Aβ) forming plaques extracellularly and neurofibrillary tangles of tau located
inside neurons [2]. Further neuropathological changes in the brain regions affected by AD
include neuroinflammation, synaptic failure, oxidative stress, mitochondrial dysfunction,
and progressive neuronal death [3]. Mitochondrial dysfunction in AD is linked to impaired
energy metabolism, increased oxidative stress, alterations in mtDNA, abnormal dynamics
in mitochondrial fusion-fission, deficiencies in axonal trafficking, and impaired mitochon-
drial biogenesis, impacting endoplasmic reticulum functions, alterations in proteostasis,
and impaired mitophagy [4]. Figure 1.
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tives to conventional treatments for neurodegenerative diseases. 
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AD, as are two immunotherapies that target amyloid-β deposits [8]. These small drugs 
have two different mechanisms of action, such as cholinesterase (AChE) inhibitors or N-
methyl D-aspartate (NMDA) antagonists. Donepezil, rivastigmine, and galantamine are 
AChE inhibitors administered to treat mild to moderate AD, whereas memantine is an 
NMDA antagonist directed at treating moderate to severe AD. Overall, these small-drug 
compounds aim to increase the amount of neurotransmiĴers in cholinergic synapses to 
treat the progression of cognitive decline, preserving thinking ability and memory loss in 
AD patients. In contrast, aducanumab (commercial name: Aduhelm) is an immunother-
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The progressive neuronal loss in the substantia nigra (midbrain dopaminergic nu-
cleus) causes dopamine deficiency in PD, and the aggregation of α-synuclein in Lewy
bodies stands as its main neuropathological hallmark [5]. As a consequence, PD subjects
commonly present alterations in motor movement and reward functions. The underlying
mechanisms behind PD pathology include α-synuclein, oxidative stress, alterations in
calcium homeostasis, axonal transport, neuroinflammation, and mitochondrial dysfunction
(Figure 1). The roles of mitochondrial dysfunction as an initiator, propagator, or bystander
in PD still remain poorly understood [6], but evidence points to mutations in the genes of
putative kinase 1 (PINK1) and parkin (PRKN) in mediating mitochondrial damage and mi-
tophagy and disruption of the subunits of mitochondrial complex I (MCI) [7]. Furthermore,
the genes SNCS, LRRK2, and CHCHD2 are also associated with mitochondrial dysfunction
in PD.

Decades of basic, translational, and clinical research have identified eight main hall-
marks present in neurodegenerative diseases: pathological protein aggregation, synaptic
and neuronal network dysfunction, aberrant proteostasis, cytoskeletal abnormalities, al-
tered energy homeostasis (mitochondrial dysfunction), DNA/RNA defects, inflammation,
and neuronal cell death [1]. The high activity and energy consumption make neurons
susceptible to defects in mitochondrial functions and energy metabolism. Here, we present
relevant therapeutic approaches that target mitochondrial functions as promising alterna-
tives to conventional treatments for neurodegenerative diseases.

2. Conventional Targets for Therapies in Neurodegeneration

Only four small-drug compounds are approved by the US FDA to treat symptoms of
AD, as are two immunotherapies that target amyloid-β deposits [8]. These small drugs
have two different mechanisms of action, such as cholinesterase (AChE) inhibitors or N-
methyl D-aspartate (NMDA) antagonists. Donepezil, rivastigmine, and galantamine are
AChE inhibitors administered to treat mild to moderate AD, whereas memantine is an
NMDA antagonist directed at treating moderate to severe AD. Overall, these small-drug
compounds aim to increase the amount of neurotransmitters in cholinergic synapses to
treat the progression of cognitive decline, preserving thinking ability and memory loss in
AD patients. In contrast, aducanumab (commercial name: Aduhelm) is an immunotherapy
designed to target Aβ aggregates to promote their immune clearance from affected areas
of the brain. The second therapeutic antibody, lecanemab (commercial name: Leqembi),
received FDA approval via the Accelerated Approval process in January 2023. This human-
ized IgG1 monoclonal antibody recognizes the Aβ soluble protofibrils with high affinity to
reduce amyloid deposits in early AD [9].
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However, the clinical benefits of these immunotherapies have been questioned, as
have some concerns regarding side effects such as amyloid-related imaging abnormalities,
infusion-related reactions, edema, life-threatening micro-hemorrhages or effusions, and
the extremely overpriced treatment course suggested for AD subjects [10,11]. Overall,
the amyloid-targeted therapies have failed to show clinical benefit in clinical trials in
patients with mild-to-moderate AD; these clinical observations indicate the possibility that
Aβ deposition represents an epiphenomenon or response rather than a primer cause of
AD [12].

The therapeutic drugs in current development for the treatment of AD include
143 agents evaluated in 172 clinical trials [13]. The AD drug pipeline includes 31 compounds
in phase 3 clinical trials, 82 compounds in phase 2, and 30 more compounds in phase 1.
By organizing these compounds by the mechanism of action, 119 of these compounds are
disease-modifying (40 biologics and 79 small drug molecules), 14 are cognitive enhancers,
and 10 drugs are intended for symptoms (Figure 2). The primary molecular targets of
these treatments are amyloid-β, tau, inflammation, and synaptic plasticity/neuroprotection.
Mitochondrial dysfunction is considered or mentioned as the mechanism of action of only
three drugs (blarcamesine, tricaprilin, and metabolic cofactor supplements).
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Figure 2. Neurodegeneration drug pipeline. Therapeutic compounds for the treatment of neu-
rodegeneration (AD or PD) are classified into four main categories: (1) Disease-modifying biolog-
ics (i.e., therapeutic antibodies), (2) Disease-modifying small drugs, (3) Cognitive enhancers, and
(4) Symptomatic drugs.

In the case of Parkinson’s disease, levodopa (L-dopa) and carbidopa are two of the
most commonly prescribed medications to control symptoms. These small-drug com-
pounds are precursors of the neurotransmitter dopamine. Additionally, other compounds
with different mechanisms of action are also approved for the treatment of PD. This in-
cludes catechol-O-methyltransferase inhibitors (entacapone, tolcapone, and opicapone),
dopamine agonists (pramipexole, ropinirole, apomorphine, and rotigotine), monoamine
oxidase inhibitors (selegiline, rasagiline, and safinamide), NMDA antagonists (amanta-
dine), adenosine 2A antagonist (istradefylline), and anticholinergic (trihexyphenidyl and
benztropine). As described, all these small drugs aim to restore the brain’s dopamine
levels and reduce motion symptoms in PD patients, but unfortunately, all these compounds
present some side effects, such as nausea, dizziness, anxiety, somnolence, and digestive
problems, among others.

The efforts for the development of novel PD therapies include 147 compounds in
clinical trials [14]. Among these are 91 symptomatic treatments and 56 disease-modifying
treatments (Figure 2). Only 22 compounds have advanced to phase III; 74 drugs are cur-
rently in phase II, and the remaining 51 are in phase I. Overall, the majority of the PD
therapeutic compounds are intended or designed for dopaminergic activity or symptom
relief, and only three of the 147 therapeutic drugs target mitochondrial activity as a mecha-
nism of action (UDCA, nicotinamide riboside, and terazosin). However, some PD therapies
are classified as antioxidants or inhibitors that indirectly impact the mitochondrial activity
of neurons; some of these will be discussed below.



Int. J. Mol. Sci. 2023, 24, 12486 4 of 20

3. Alternative Molecular Targets for Neurodegeneration: Mitochondrial Therapies

Neurodegeneration is characterized by a direct or indirect impairment of mitochon-
drial functions, leading to low ATP availability, neuronal alterations, synaptic dysfunction,
alterations in calcium homeostasis, cytoskeletal dynamics, and proteostasis [1]. Addition-
ally, mitochondrial dysfunction is linked to oxidative damage, molecular dysfunction, and
progressive neuronal death. Despite their central role in human health and disease, there
are no approved therapeutic drugs that directly target mitochondria [15]. Alternative molec-
ular targets in mitochondria include regulation of calcium ion (Ca2+) transport, protein
modification, regulation of glucose metabolism, antioxidants, metal chelators, and vitamin
supplementation (Figure 3). These therapeutic compounds aim to re-establish or preserve
mitochondrial activity and restore the balance of the antioxidant systems in the neurons.
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There are three therapeutic agents for AD in phase III clinical trials with a mechanism
of action related to metabolism/bioenergetics: metformin, semaglutide, and tricaprilin.
Moreover, the agents focusing on oxidative stress are hydralazine, icosapent ethyl (IPE),
and omega-3 (DHA/EPA) [13].

Metformin. Metformin is the most common drug prescribed for type 2 diabetes
and was originally derived from galegine (a guanidine derivative found in the plant
Galega officinalis). This compound reduces glucose production and increases insulin sen-
sitivity. The mechanism of action is linked to the activation of the energy sensor AMPK,
but other signaling pathways such as mTOR, eEF2K, TGF-β, NFAT, MAPK, and mitochon-
drial pathways of ROS production, NOX, and MnSOD are involved, with direct effects on
metabolic homeostasis, glucose use, and cellular stress responses [16]. Metformin shows
neuroprotective effects by reducing oxidative stress, inhibiting the permeability transition
pore, and restoring mitochondrial membrane potential [17]. A pilot randomized clinical
trial of metformin (1000 mg twice a day for 12 months) in elderly subjects with MCI indi-
cated that the treatment was tolerated but had no significant effects on cognitive measures
(ADAS-cog score), CSF biomarkers, or cerebral glucose metabolism (PET scans) [18]. A
phase II/III trial is active to assess long-actin metformin in nondiabetic, overweight, or
obese subjects with MCI or early AD (clinicaltrials.gov: NCT04098666). The treatment
course includes 500–2000 mg/d of metformin for up to 24 months and evaluation of cog-
nitive performance tests, MRI scans, and plasma biomarkers (Aβ, tau, NfL). A posthoc
analysis identified changes in genome-wide DNA methylation in patients treated with
metformin. Several pathways related to mental abilities (delirium) showed methylation
changes, including genes involved in longevity, glutamatergic synapse activity, AMPK
signaling, circadian entrainment, cholinergic synapse activity, mTOR signaling, and glucose
metabolism/transport [19].

Semaglutide. It is a glucagon-like peptide-1 (GLP-1) agonist prescribed for type 2
diabetes in subcutaneous and oral dosage forms. In the brain, GLP-1 is neuroprotective
and involved in insulin signaling, cognition, learning, synaptic transmission, and neuronal
death [20]. The activity of semaglutide occurs by promoting insulin secretion, inhibiting
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glucagon release, and suppressing gluconeogenesis. The therapeutic potential of semaglu-
tide has been established with clinical trials for obesity, diabetes, nonalcoholic steatohepati-
tis, and neurodegenerative disorders such as Parkinson’s and Alzheimer’s disease [21]. The
neuroprotective effect of semaglutide occurs through enhancement of autophagy, inhibition
of apoptosis, and blocking Aβ cytotoxicity, as observed in cell and animal AD models [22].
Furthermore, in PD mice models, semaglutide treatment showed neuroprotective effects,
including rescue of compromised motor neurons, reduction of inflammatory responses,
reduced lipid peroxidation, increased autophagy, protection of dopaminergic neurons, and
reduction of α-syn accumulation [23,24]. The pharmaceutical company Novo Nordisk is
performing phase III trials to test its oral drug semaglutide (commercial name: Rybelsus)
for treating AD [25]. These studies are recruiting more than 3700 patients with early AD;
the trials (clinicaltrials.gov: NCT04777409 and NCT04777396) will be with oral semaglutide
(14 mg/d for up to 173 weeks) in elderly AD patients (55–85 years) with primary outcome
measures of the cognitive test (CDR-SB score) and secondary outcome measures of daily
living scales (ADCS-ADLMCI), cognition (ADAS-Cog, MoCA, MMSE), and CSF biomark-
ers. Semaglutide is also studied in a phase II trial for PD, and the participants receive
1.0 mg/week of semaglutide (subcutaneous) for a period of 48 months (clinicaltrials.gov:
NCT03659682). The study will measure the effects of the treatment on motor symptoms,
nigrostriatal degeneration, cognitive function, quality of life, and non-motor symptoms of
PD. Additionally, plasma and CSF biomarkers will be quantified after 12, 24, 36, and 48
months of the study.

Liraglutide. Liraglutide is a GLP-1 analog also used to treat diabetes and has a similar
mechanism of action to semaglutide. In APP/PS1 mice, the treatment with liraglutide
(25 nmol/kg daily for 8-weeks) prevented memory impairment, synapse loss, and deterio-
ration of synaptic plasticity in the hippocampus. Remarkably, the deposition of Aβ was sig-
nificantly reduced (40–50%) with lower neuroinflammation signs [26,27]. In the MPTP mice
model of PD, the administration of liraglutide showed neuroprotective effects, preventing
neuronal impairment and reducing apoptosis and inflammatory cytokines [28,29]. A pilot
trial with AD patients treated with liraglutide (1.8 mg daily for 6-months) showed no signif-
icant effect in Aβ deposition or in cognitive measures (clinicaltrials.gov: NCT01469351) [30].
Additionally, liraglutide prevented the decline of brain glucose metabolism in AD patients
(measured by PET scans) [31]. In nondiabetic subjects, liraglutide administration (12 weeks)
showed improvement in neuronal connectivity in the hippocampus and anterior medial
frontal structures [32]. A phase II clinical trial of liraglutide (1.8 mg daily, subcutaneous
injections for 12 months) evaluated changes in cerebral glucose metabolic rate (MRI volume
scans) and cognitive measures (clinicaltrials.gov: NCT01843075) [33]. The study did not
reach the primary outcome with no significant differences in glucose metabolic rate, but
the liraglutide group showed improvements in cognitive tests and lower brain volume
loss in comparison with the placebo group. The phase II trial with PD patients indicated
that liraglutide (1.2–1.8 mg daily for up to 14 months) improved non-motor function and
daily life activities (clinicaltrials.gov: NCT02953665). These results indicate the potential of
liraglutide to improve some critical signs and symptoms of PD.

Insulin. Impaired mitochondrial metabolism is present in AD, particularly due to
abnormal insulin signaling and insulin resistance. Insulin is a peptide secreted by the
pancreas and plays a critical role in the regulation of glucose metabolism [34] and critical
roles in mitochondrial dynamics, mitochondrial biogenesis, and mitophagy [35]. However,
the neuronal responses to insulin are defective in AD; this is correlated with alterations in
the cerebral insulin receptor, particularly the long isoform INSRα-B that is concentrated
in microvessels rather than in the parenchyma neurons, and also with significantly lower
concentrations of insulin receptors in the parietal cortex in AD subjects [36]. Furthermore,
the transport rate of insulin across the BBB is very low (<0.03 µL/g·s), which in conjunction
leads to insulin resistance in AD and worse cognitive measures. A reduced activity of
insulin/insulin-like growth factor signaling (mediated by the insulin receptor substrate
1 gene, Irs1) in the brain is linked with increased energy expenditure, locomotion, and
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insulin sensitivity [37]. This is critical for brain function because the loss of Irs1 causes
age-dependent mitochondrial dysfunction, metabolic stress, and reflected systemic effects
in peripheral tissues. Modulation and improvement of bioavailable insulin in the brain or
restoring insulin sensitivity could prevent, delay, or treat neurodegeneration. To overcome
this metabolic bottleneck, several clinical trials of insulin and insulin-related drugs have
been performed in subjects with MCI/AD to understand the impact of insulin signaling
in the brain and assess the efficacy of diabetes drugs for the treatment of neurodegenera-
tive disorders.

Intranasal insulin is administered instead of peripheral insulin to promote direct entry
to the brain through the bulk flow, olfactory nerve channels, and trigeminal perivascular
channels, avoiding the BBB limitations and potential hypoglycemia [34]. Intranasal insulin
(4 × 40 IU/d for 8-weeks) improved memory, attention, and mood in healthy subjects
without perceivable side effects [38,39]. Pilot studies with MCI or early AD patients indicate
that intranasal insulin improved cognition and Aβ40/42 ratio in plasma; the improvement
was only observed in APOE-e4 carriers [40,41]. The insulin treatment also correlated with
preserved brain volume (MRI) and a reduction of the tau-P181/Aβ42 ratio in subjects
with MCI or mild-to-moderate AD [42]. A randomized controlled trial (clinicaltrials.gov:
NCT0043868) showed that nasal insulin (20–40 UI for 4 months) preserved cognitive
measures (ADAS-Cog) and cerebral glucose metabolism (PET imaging) in subjects with
MCI or mild-to-moderate AD [43]. Phase II/III trials continued to examine the feasibility,
safety, and efficacy of intranasal insulin (40 UI daily for 12 months) for the treatment of
MCI or early AD (clinicaltrials.gov: NCT01767909). However, no differences were observed
between insulin treatment and controls, as measured by cognitive tests (ADAS-Cog), CSF
biomarkers, or MRI scans [44]. Additional clinical trials of intranasal insulin (clinicaltrials.
gov: NCT05006599) or combination intranasal insulin/empagliflozin (clinicaltrials.gov:
NCT05081219) are currently ongoing to confirm the efficacy of the treatment to decrease
glucose resistance, improve neuronal bioenergetics, and increase insulin signaling in the
brain [13].

Instead of administering insulin directly, some drugs with the activity of insulin sensi-
tizers are used as interventions to re-establish insulin resistance and improve mitochondrial
glucose metabolism in the brain. These compounds are widely used for diabetes and tested
for their potential efficacy in treating neurogenerative disorders [45].

Dapagliflozin. This antidiabetic drug is an inhibitor of the sodium-glucose cotrans-
porter 1 (SGLT2), blocking glucose reabsorption in the kidney [45]. Dapagliflozin exerted
mitochondrial protection, preventing swelling and normalized mitochondria size in dia-
betic mice (C57BL/6NCrl), also significantly reducing lipid peroxidation and normalization
of respiratory ratio [46]. In diabetic mice, dapagliflozin showed metabolic and neuroprotec-
tive effects [47], by reducing mitochondrial dysfunction, inflammation, and apoptosis [48].
A prospective study of antidiabetic medications indicated that the use of metformin, GLP-1
analogs, and SGLT2 was associated with a lower risk for dementia [49]. A phase I/II
trial in subjects with probable AD tested the effects of 10 mg dapaglifozin (daily for
12 weeks) (clinicaltrials.gov: NCT03801642). The primary outcome is cerebral N-acetyl
aspartate (NAA) levels using MRI; this compound is produced by mitochondria and is re-
duced in neurodegeneration. Furthermore, the participants are examined for brain glucose
metabolism (PET) and plasma biomarkers. The trial was concluded in April 2022, but the
findings have not been published. A pilot study of dapagliflozin on mitochondrial dys-
function and impaired insulin signaling/action (10 mg/day for 2 weeks) (clinicaltrials.gov:
NCT01439854). Overall, dapagliflozin treatment reduced plasma glucose and increased
insulin-stimulated disposal by 36%, a reduction of basal glucose oxidation, increased lipid
oxidation, reduced ATP synthesis, and increased plasma ketones were correlated with
dapagliflozin administration [50].

Pioglitazone. This is an oral antidiabetic drug from the thiazolidinedione class, that
is FDA-approved for treating type 2 diabetes mellitus in adults. At the molecular level,
pioglitazone activates the peroxisome proliferator-activated receptor (PPAR-γ), promoting

clinicaltrials.gov
clinicaltrials.gov
clinicaltrials.gov
clinicaltrials.gov
clinicaltrials.gov
clinicaltrials.gov
clinicaltrials.gov


Int. J. Mol. Sci. 2023, 24, 12486 7 of 20

energy production, glucose metabolism, and lipid metabolism. Furthermore, this drug
inhibits mitochondrial oxidative stress and inflammation and improves mitochondrial
biogenesis, dynamics, and function by activating the PPAR-γ/PGC-1α signaling path-
way [51]. The treatment with pioglitazone (12.5, 25, and 50 µg/mL) may exert some side
effects, such as the generation of ROS, reduction of mitochondrial membrane potential,
mitochondrial swelling, and release of cytochrome C, as observed in mitochondria iso-
lated from the brain and heart of Wistar rats [52]. An analysis of health insurance records
discovered that diabetic patients who received pioglitazone had a lower risk of dementia
(decreased by 23%) during the 5-year follow-up period. This clinical study concluded
that pioglitazone showed a protective effect against dementia in diabetic patients, with
a time- and dose-dependent trend in comparison to controls [53]. Another prospective
study with subjects ≥ 60 years of age also observed that long-term use of pioglitazone was
associated with a lower risk of dementia (47% reduction) relative to nondiabetic subjects
and that diabetic patients without pioglitazone had a 23% decrease in dementia risk [54].
The effect of pioglitazone use on dementia in consideration of stroke or ischemic heart
disease occurrence was examined in a 15-year follow-up cohort study. Overall, pioglitazone
showed a 43–54% reduction in dementia risk in comparison with non-treated patients [55].
These findings indicate the utility of personalized treatments for diabetic patients to reduce
the incidence of neurodegenerative diseases [56]. The phase II clinical trial of pioglitazone
(15 mg daily at 1-week intervals for 18 months) shows that it is safe and well tolerated in
AD patients (clinicaltrails.gov: NCT00982202) [57]. The phase II trials of pioglitazone in
MCI/AD (clinicaltrails.gov: NCT01931566 and NCT02284906) were terminated in 2019 due
to the lack of efficacy of the drug or significant effects on cognition.

Tricaprilin. It is an oral formulation of caprylic triglyceride, administered as a supple-
ment or medical food. Formulations of tricaprilin may improve mitochondrial activity and
increase ketone bodies, regulating the abnormally low rates of cerebral glucose metabolism
in AD patients, as observed in APOE4 carriers [58,59]. After administration, tricaprilin
is hydrolyzed to octanoic acid and then metabolized to ketones to be used as an alter-
native energy substrate in the brain [60]. The formulation of caprylic triglyceride, also
known as AC-12-010, was administered daily (40 g powder mixed with 4–8 oz of water) for
26 weeks in APOE4 non-carrier subjects with a diagnosis of mild-to-moderate AD. The
phase II/III trial (clinicaltrials.gov: NCT01741194) showed that the compound was safe
and well-tolerated, but it failed to improve cognition or functional abilities (measured
with the ADAS-Cog11 and AD-CGIG tests) [61]. Another phase III trial of tricaprilin
is active to evaluate its safety and efficacy among subjects with mild-to-moderate AD
(clinicaltrials.gov: NCT04187547).

Hydralazine. This FDA-approved drug (hypertension medication) has been shown
to increase mitochondrial activity and respiration, antioxidant properties through the
Nrf2 pathway, and activation of autophagy [62]. Furthermore, hydralazine reduced Aβ

misfolding and oxidative lipid damage in PC12 cells [63] and inhibited Aβ aggregation,
glycation, and reduction of neurotoxic effects (Neuro2a cells) [64]. The phase III clinical
trial is currently assessing the efficacy of hydralazine in early-stage AD patients who
take one of the acetylcholinesterase inhibitors (AChEI), donepezil, rivastigmine, or galan-
tamine (clinicaltrials.gov: NCT04842552). The participants will receive hydralazine tablets
(25 mg) every eight hours for one year to determine the effects on cognitive and functional
measures. This trial is recruiting participants, and the outcomes will be available in the
upcoming years.

Icosapent ethyl (IPE). IPE, also known as ethyl eicosapentaenoic acid (E-EPA) or
vascepa, is a purified omega-3 fat from fish oil. Oral administration of EPA changes
mitochondrial lipid composition, preserving mitochondrial fusion protein OPA-1 and the
activity of oxidative phosphorylation, overall reducing mitochondrial damage [65]. A pilot
study of ethyl-EPA in AD patients showed only a minimal difference between treated and
control groups after 12-weeks of treatment (500 mg twice daily), with no perceivable effects
in cognition [66]. A phase II/III clinical trial of IPE is evaluating the efficacy of this purified
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form of omega-3 fatty acid eicosapentaenoic acid (clinicaltrials.gov: NCT02719327). The
study is active but not recruiting participants; it is expected to analyze the effects on brain
blood flow, AD biomarkers, and cognitive performance of AD patients 950–75 years), with
a dose of 4 g daily for up to 18 months.

Omega 3 (DHA/EPA). Fatty acids from fish oil and seaweed are enriched in docosa-
hexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Several properties have been
attributed to DHA/EPA, including antioxidant, antiinflammation and neuroprotective.
Supplementation with omega-3 causes alteration in mitochondrial membrane composition,
respiration kinetics, redox status, and mitochondrial biogenesis [67,68]. Administration of
omega-3 supplements to patients with AD (1.7 g DHA + 0.6 g EPA) showed no significant
differences in oxidative stress biomarkers [69]. Phase III trial of DHA supplementation in in-
dividuals with mild-to-moderate AD indicated that the 2 g/d doses had no beneficial effects
on cognitive decline after 18 months of treatment (clinicaltrials.gov: NCT00440050) [70].
Long-term supplementation of omega-3 (800 mg DHA + 225 mg EPA) showed similar out-
comes, with no effects on prevention or delay of cognitive decline in AD (clinicaltrials.gov:
NCT00672685) [71]. Finally, there is another phase III trial of EPA/DHA currently recruiting
400 participants with AD (clinicaltrials.gov: NCT03691519). The study will test the effects
of a 3 g DHA/EPA supplement for a period of 18 months, and the participants will be
evaluated in cognitive performance and mental-verbal fluency.

Urolithin A (UA). This metabolite is produced by gut microflora from foods rich in
ellagitannis (a class of polyphenols found in pomegranate, walnuts, and berries), but UA
can be directly supplemented by patients to overcome bioavailability limitations [72]. UA
promotes mitophagy and improves mitochondrial function in pre-clinical models of aging
and in elderly humans [73]. In APP/PS1 mice, supplementation with UA ameliorated
cognitive impairment, reduced neuronal death, neuroinflammation, and Aβ deposition [74].
Furthermore, the bioactive compound enhanced neurogenesis and reduced microgliosis
and astrocytosis in the cortex and hippocampus of mice. The molecular mechanism of UA
is not completely clear, but it is related to the activation of AMPK, decreasing proinflamma-
tory cytokine levels (P65NF-κB and P38MAPK), BACE1 inhibition, and promoting AβPP
degradation, overall promoting neuronal protection and showing potential to treat neu-
rodegeneration. UA may activate and promote mitophagy, with neuroprotective properties
through the reduction of inflammation responses [75]. In different in vitro and in vivo
models of AD, the supplementation of pomegranate extract or purified urolithin A/B
showed significant antioxidant properties, anti-inflammatory properties, and inhibition
of Aβ learning and memory deficiency in transgenic mice. Moreover, this nutraceutical
compound is proposed as an alternative or complementary treatment of AD because of
its ability to reduce BACE1 activity, Aβ deposition, ROS production, inflammation, and
restore or induce mitophagy.

Therapeutics targeting mitochondrial dysfunction in PD aim to promote the clear-
ance of damaged mitochondria or restore mitochondrial homeostasis in dopaminergic
neurons [6]. Of the active trials registered for PD, none of phase III is focused on en-
ergy, mitochondria, or antioxidants; the vast majority of the compounds are designed for
dopaminergic symptom relief. In phase II, there are two compounds with mechanisms of
action in energy and mitochondria: nicotinamide riboside and terazosin, and three more as
antioxidants: deferiprone, sulforaphane, and tocovid suprabio [14].

Nicotinamide riboside. This compound is a different form of vitamin B3, which
in the brain promotes the formation of NAD+, which usually declines with aging and
neurodegeneration. A phase I clinical trial studied the effects of nicotinamide riboside (NR)
oral intake (1000 mg for 30 days) in individuals with PD (clinicaltrials.gov: NCT03816020).
Overall, NR treatment was well tolerated, promoting increased NAD levels in the brain
(MRI scan and CSF) and increased brain glucose metabolism [76]. The clinical benefits were
associated with increased NAD levels and increased mitochondrial activity. This study
advanced to phase II where the PD patients will take NR for up to 1 year; the results of this
study are expected in 2024.
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Terazosin. This is an alpha-blocker used as an antihypertensive drug and for urinary
retention. The mechanism of action of terazosin involves binding to phosphoglycerate
kinase 1, increasing its activity, enhancing glycolysis, and increasing ATP levels in the brain
to overcome impaired energy metabolism. The phase I clinical trial assessed terazosin
(5 mg for 12-weeks) in PD patients. The participants showed a significant increase in
ATP levels (brain and blood), but with some mild side effects such as dizziness and
lightheadedness [77]. The study is advancing to phase II (clinicaltrials.gov: NCT03905811).

Deferiprone. Alterations in iron transport and storage are characteristic of PD and
other neurological disorders. This condition leads to increased oxidative stress, protein
aggregation, lipid peroxidation, and mitochondrial dysfunction [78]. As a result, the use
of the iron chelator deferiprone was proposed to reduce nigrostriatal iron content in PD.
The phase II clinical trial of deferiprone was conducted to assess the effectiveness of a
dose of oral medication (15 mg/kg) for 36 weeks. Unfortunately, the administration of
deferiprone was associated with worse scores in PD symptomatology in comparison with
placebo, even though the nigrostriatal iron content decreased more in the deferiprone group
(clinicaltrials.gov: NCT02655315) [79]. These results make it unlikely that additional trials
will be conducted for deferiprone due to the lack of effectiveness in the treatment of PD.

Sulforaphane. Sulforaphane is a phytocompound found in seeds and cruciferous
vegetables (broccoli, brussels sprouts, and cabbage). Different properties are attributed
to sulforaphane, including cytoprotective, antioxidant, anti-inflammatory, and modulator
of mitochondrial functions and dynamics [80,81]. Sulforaphane supplementation will be
studied in addition to existing PD treatment (24 weeks) to determine its effects on cognitive
function, motor symptoms, and PD biomarkers (clinicaltrials.gov: NCT05084365).

Tocovid suprabio. This is a formulation of vitamin E tocotrienols with potential ther-
apeutic use in PD for delaying motor dysfunctions. Tocotrienols have neuroprotective
effects in in vitro and in vivo models of PD [82]. The phase II trial will evaluate the effects
of a tocotrienol formulation (HOV-12020 palm oil-derived vitamin E) with a dosage of
400 mg/day for 12 months. The expected outcomes include the progression of cogni-
tive impairment, motor and non-motor outcomes, and progression of PD biomarkers
(clinicaltrials.gov: NCT04491383). Currently, the trial is in the recruitment phase to select
100 participants; results are expected in a couple of years.

PINK1 activators. Mutations in the protein ubiquitin kinase PINK1 may lead to
defective mitophagy in early-onset PD. PINK1 and the ubiquitin E3 ligase Parkin work
together in mitophagy processes; defective versions of these proteins are unable to clear
dysfunctional mitochondria, leading to a progressive loss of dopaminergic neurons and the
progression of motor symptoms in PD [83]. Furthermore, the deposition of α-syn induces
mitochondrial dysfunction and alterations in mitophagy, causing PINK1 accumulation in
neurons [84]. Several small-molecule PINK1 activators have been discovered and tested as
potential treatments for PD [85].

MTK458 is a molecule that targets PINK1, which promotes mitophagy. In cell and
animal PD models, the treatment with MTK458 helped to clear α-syn and reduce pS65-
Ubiquitin, the substrate of PINK1 [84]. Confirming that activation of PINK1 is a viable
therapeutic alternative for disease modification in PD.

4. Mitochondrial Transference

In neurons, mitochondria exhibit more functions than energy (ATP) production; these
organelles also regulate axonal and dendritic development, axonal regeneration, lipid
metabolism, the production of antioxidants, ROS regulation, calcium homeostasis, and
synaptic functions [86]. Furthermore, glial mitochondria provide bioactive metabolites to
neurons. As a consequence, mitochondrial dysfunction and altered dynamics may have
a direct impact on neurodevelopment, neural circuit development, pathophysiological
conditions, aging, and neurodegeneration. Mitochondria are known to be highly dynamic,
changing morphology, cellular location, and distribution. When mitochondria are damaged,
they are removed and delivered to lysosomes for degradation through the process of
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mitophagy. Normally, this process of mitophagy occurs within the same cell, indicating
an internally regulated process to recycle its own compromised mitochondria. However,
neurons can release damaged mitochondria to be degraded by glial (astrocytes) cells,
indicating a complex and dynamic transcellular system for the degradation of axonal
mitochondria [87]. On the contrary, the idea of transferring or transplanting healthy
mitochondria into compromised cells may serve to regain or rescue normal respiration
functions and promote the survival of the recipient cells. The phenomenon of mitochondrial
transfer has been observed under different physiological and pathological conditions.
Intercellular mitochondrial transfer occurs through tunneling nanotubes, extracellular
vesicles, and gap junction channels [88] (Figure 4).
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chondrial transfer modes. (a) Mitochondria are transported between cells via the TNT structure, and
this transport is bidirectional. (b) The mitochondria-containing EVs bud off/are secreted from the
donor cells and then uptake by recipient cells. (c) The mode of GJC-mediated mitochondrial transfer
is ambiguous. Nonclassic form AGJs are plausible: mitochondria exist in the protrusions of donor
cells, and the recipient cells connect to the donor cells through invaginating GJCs. Then the recipient
cell internalizes GJCs and absorbs mitochondria. (d) Cell fusion can be spontaneous or artificial.
Reproduced with permission from Liu Z, et. al., Cell Biol 2022, (66): 13578 [88].

In a mice model of intracerebral hemorrhage (ICH), the intravenous transplantation of
functional mitochondria from astrocytes into neurons promoted the recovery of superoxide
dismutase activity, reduced neurological deficits, and reduced oxidative stress (ROS) and
neuronal death [89]. Furthermore, this strategy promoted neurite extension, overexpression
of the synaptogenesis pathway, and neuroplasticity, confirming the utility of mitochondrial
transfer as a treatment to recover brain functions after ICH. Likewise, astrocyte-derived
mitochondria are incorporated by microglia, producing bioactive humanin peptide and
inducing expression of superoxide dismutase [90]. The treated microglia showed enhanced
phagocytic activity and reduced proinflammatory responses from ICH.

In a mice model of ischemia, the transference of healthy mitochondria from astrocytes
to adjacent neurons after stroke promoted cell survival [91]. The mechanism of mitochon-
drial release is mediated by calcium, CD38, and cyclic ADP ribose, and blocking these
signaling pathways causes worsening of neurological symptoms. The transference occurred
through extracellular vesicles (300–1000 nm in size) containing functional mitochondria
derived from cortical astrocytes. These observations indicate a dynamic cell-to-cell signal-
ing mechanism among different cell types in the brain and the potential of mitochondrial
transference as a neuroprotective treatment. The treatment with mitochondria isolated from
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rat primary astrocytes enhanced cell viability and restored hydrogen-peroxide-damaged
neurons (ischemic stroke), confirming that mitochondria transfer therapy can treat neu-
rological disorders [92]. Interestingly, mild hypothermia (33 ◦C) seems to facilitate the
mitochondrial transfer or maintain mitochondria in a functional state into the extracellular
medium, in comparison to physiological temperature (37 ◦C). As observed in the experi-
ments of mitochondria transfer from astrocytes in hypothermia to injured neurons during
oxygen-glucose deprivation/reoxygenation [93].

In a mice model of AD, the intravenous transfer of fresh human-isolated mitochondria
showed reduced cognitive deficits, neuronal loss, and gliosis in the hippocampus [94].
The beneficial effects are related to increased citrate-synthase and cytochrome-c oxidase
activities (mainly in the liver) in treated mice in comparison with the untreated group.
The direct injection of mitochondria into the medial forebrain bundle of PD rats showed
enhanced mitochondrial function in the substantia nigra neurons, resistance to oxidative
stress and neuronal death, and even signs of neurite outgrowth [95]. Three months after
the mitochondrial transference treatment (allogenic and xenogeneic), the treated PD rats
showed improved locomotive activity, a decrease in dopaminergic neuronal loss, and
restored mitochondrial dynamics [95]. Mitochondria isolated from human hepatoma cells
enter human neuroblastoma cells (SYSY5Y) and PD mice (intravenously) without any
apparent side effects [96]. Remarkably, the transferred mitochondria were distributed into
the brain, liver, kidney, muscle, and heart, promoting increased mitochondrial activity
(respiration), endurance, decreased ROS levels, and preventing cell death (apoptosis and
necrosis). Intranasal infusion of allogeneic mitochondria in PD rats indicated the feasibility
of delivering mitochondria intranasally and bypassing the blood-brain barrier [97]. The
treated rats showed a significant improvement in rotational and locomotor behavior, neu-
ronal survival, recovery from lesions of the substantia nigra, and restored mitochondrial
function. The experiments indicated that the mitochondria entered through the accessory
olfactory bulb and doublecortin-positive neurons of the rostral migratory system and were
then located in both cerebral hemispheres. Human iPSC-derived astrocytes rescued injured
dopaminergic neurons by transferring functional mitochondria [98]. The spontaneous
release of functional mitochondria from astrocytes into the media allowed their internal-
ization by injured neurons via a phospo-p38-dependent pathway. The specific signaling
cross-talk between the donor and the receptor cells is not known but could be related to the
initial release of injured mitochondria by neurons as a stress signal, which then mediates a
cellular response of glia cells to promote intercellular mitochondrial transfer to heal the
injury or lesion in the brain [99]. Overall, mitochondrial transference offers an opportunity
to develop novel therapeutic strategies for neurological disorders.

5. Perspectives on Mitochondrial Therapies for Neurodegeneration

Drug pipeline in clinical trials. There are 82 agents in phase II clinical trials for AD,
but only four are related to metabolism and bioenergetics (dapagliflozin, intranasal insulin,
intranasal insulin + empagliflozin, T3D-959 a PPARδ/γ agonist, and a supplement of
N-acetylcysteine/L-carnitine tartrate/nicotinamide riboside/serine), and one agent for
oxidative stress (omega 3, DHA). Whereas there are 30 agents in phase I clinical trials for
AD, and only one is focused on metabolism and bioenergetics (caprylic triglyceride) [13].
In the case of PD agents currently under clinical trials, there are 74 in phase II and 22 more
in phase I [14]. In these phase II clinical trials, only two agents are focused on energy and
mitochondria (nicotinamide riboside and terazosin), and three more are antioxidants (de-
feriprone, sulforaphane, and tocovid suprabio). In early phase I, no therapeutic compounds
target mitochondria, energy, or antioxidants. The findings of these phase II/I clinical trials
will be available in the upcoming years; if successful, they will advance to phase III to
confirm effectiveness in the treatment of neurological disorders.

Optogenetic control of mitochondria. Optogenetics allows the direct manipulation
of some cellular functions with light stimulation. A blue-light induction via optogenetic
control was able to induce mitochondrial fission and control mitochondria-lysosome con-
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tacts. Remarkably, this optogenetic strategy partially restored the mitochondrial func-
tions of SLC25A46−/− cells, such as defects in mitochondrial fission and hyperfused
mitochondria [100] (Figure 5). Optogenetics allowed the targeting of the heterologous
channelrhodopsin-2 fusion protein to the inner mitochondrial membrane [101]. This caused
a light-induced selective change in mitochondrial membrane potential, depolarization, and
mitochondrial autophagy. Furthermore, optogenetic-mediated mitochondrial depolariza-
tion can control the cell fate decision toward apoptosis (under sustained moderate light
illumination) or cytoprotective effects (mild light illumination). A light-dependent control
of the mitochondrial membrane potential allows modulation of ATP production, Ca2+

uptake/release, substrate accumulation, and respiratory metabolism [102]. This molecular
strategy efficiently modulates mitochondrial functions in specific tissue regions and even
with single-cell resolution. The mitochondrial inner membrane protonmotive force (PMF)
was precisely controlled through an engineered mitochondrial-targeted light-activated
proton pump [103]. The photoactivation increased PMF in a dose-dependent manner,
allowing ATP synthesis and mitochondrial resistance. Additionally, the transient activation
allowed the cells to adapt to hypoxic events and modulate metabolism.

Light stimulation has been proven to rescue memory impairment in AD and has some
neuroprotective effects in animal models [104]. Whereas deep brain stimulation-guided
optogenetics rescues PD symptoms [105]. It is expected that optogenetic light stimulation
strategies will advance to clinical applications as alternative therapeutic approaches for
neurological conditions. The optogenetic tools have been expanded to control the cellular
metabolism and dynamic changes in mitochondria to overcome metabolic alterations in
cardiovascular disease, cancer, obesity, and neurological disorders [106]. Photobiomodula-
tion with laser stimulation showed positive age-related effects in aged mice, promoting
recovery of cytochrome c oxidase levels; this enzyme is important and responsible for
oxygen consumption in the mitochondrial electron transport chain [107]. Furthermore, pho-
tobiomodulation showed anti-inflammatory properties, resulting in a promising strategy
to treat brain pathological disorders [108].

Coupling with the novel optogenetic molecular tools for induction of mitochondria,
the light stimulation could be targeted to specific brain regions or cell populations to target
mitochondrial dysfunction.

Mitochondrial gene editing. Mutations in mitochondrial DNA (mtDNA) are re-
lated to several diseases, but not all mitochondria carry mutations, leading to a hetero-
plasmy state where normal and altered mtDNA coexist in the same cell population [109].
Novel methods of gene editing focus on the modification of mtDNA, including the use of
mitochondria-targeted nucleases (mitoNucleases) and single-point mutations, to reverse
abnormal mutations and alleviate clinical phenotypes. The delivery of mitochondrial
gene editing tools occurs through adenovirus, lentivirus, retrovirus, or adeno-associated
virus, allowing specific targeting of disease-relevant tissues. Dopaminergic neurons in
a mouse model of PD showed striatal dysfunctions associated with mitochondrial DNA
defects [110], but the accumulation of mitochondrial mutations in neurons is mainly related
to aging [111]. The technology is still in its early stages, but results are promising for the
design of selective or specific molecular tools to overcome mitochondrial damage in aging
and neurological disorders.

Editing the mitochondrial genome can be performed with mitochondria-targeted zins-
finger nucleases/deaminases (mitoZFNs) or mitochondria-targeted transcription activator-
like effector nucleases (mitoTALENs). Use of mitoZFN is useful for C-to-T base conversions
without inducing additional insertions or deletions in human cells, with an efficiency of
60% in nuclear DNA and 30% in mtDNA [112]. mitoTALENs cleave specific sequences of
the mtDNA to remove pathogenic mutations. Designed mitoTALENs were able to correct
mtDNA point mutations related to myoclonic epilepsy and Leigh syndrome; these changes
improved respiratory capacity and oxidative phosphorylation activity [113]. Additional
molecular tools based on mitoZFNs and mitoTALENs are currently being tested for preci-
sion mitochondrial DNA editing with high fidelity. For example, the use of bacterial toxin
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DddA-derived cytosine base editors (DdCBEs) composed of split DddAtox cytosine deami-
nase, custom-designed TALE DNA-binding proteins, and a uracyl glycosylase inhibitor to
enable editing of mtDNA in human cells for therapeutic purposes [114]. Furthermore, the
development of compact zinc finger DdCBEs with improved performance and their deliv-
ery through engineered AAV9 vectors to efficiently correct disease-associated mitochondrial
mutations [115].
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Figure 5. Optogenetics can be used to induce mitochondria-lysosome contacts. (a) Schematic
representation of optogenetic induction of MLCs. Light-sensitive proteins CRY2 and CIB are anchored
to lysosomes and mitochondria via the specific organelle-targeting transmembrane domains LAMP
and TOM20, respectively. Blue light illumination induces CRY2-CIB association and facilitates the
formation of MLCs. GFP and mCherry are used as expression markers. (b) Representative structured
illumination microscopic images of mitochondria (green) and lysosomes (red) with or without blue
light exposure for 20 min at 300 µW/cm2. (c) Partially enlarged images of Figure 5b. (d) Intensities of
GFP and mCherry on the white arrows in Figure 5c. (e) Quantification of percentages of lysosomes
contacting and not contacting mitochondria without or with blue light exposure. (f) Quantification of
percentages of lysosomes contacting and not contacting mitochondria with blue light exposure or
with blue light exposure followed by dark for 24 h. For (e,f), n = 12 cells examined over 3 independent
experiments. Data are presented as M ± SEM. The statistical differences between the experimental
groups were analyzed by double-tailed Student’s t test. When p < 0.05, it was considered to have
statistical significance. Reproduced with permission from Qiu K, et al., Nat Commun 2022, 13:
4303 [100].
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CRISPR/Cas system. The modification of the mitochondrial genome using the CRISPR-
Cas9 system is still challenging, mainly due to the low efficiency of delivering the molec-
ular components into the mitochondria. However, recent efforts have used the NADH-
ubiquinone oxidoreductase chain 4 (ND4) and the RNA transport-derived stem-loop el-
ement (RP-loop) to improve the efficiency of mtDNA modification, demonstrating the
potential use of this system to target mitochondrial diseases [116]. Furthermore, the
CRISPR/Cas12a system has been adapted to target mitochondrial material (mitoCRISPR/
Cas12a), allowing mtDNA manipulation in mammalian cells [117]. A site-specific modifica-
tion of the mtDNA of human cells was possible using the cytosine base editor Cas9-BE3
instead of regular Cas9, but still with low efficiency to deliver the gRNA into mitochon-
dria [118]. In the same direction, the incorporation of transcription activator-like effector-
linked deaminases (TALED) with the CRISPR/Cas system allowed a single point base
conversion (A-to-G) in human mtDNA; the TALED can be custom-designed to improve
efficiency (>49%) and specificity to target various mitochondrial genes [119]. Using an
engineered CRISPR system allowed the induction of several insertion/deletion (InDel)
events in mtDNA microhomologous regions, improving sgRNA multiplexing, and with
the use of iniparib, a double-strand break repair inhibitor [120].

This platform is expanding, and recent efforts include genome-wide CRISPR to target
mitochondria and genes related to mitochondrial stress responses (mTORC1 pathway) [121].
Screening with CRISPR/Cas identified mitochondrial genes and transcription factors re-
lated to metabolic resistance in cancer cells, allowing the identification of genes related to
metabolic susceptibility and resistance that are relevant for different types of mitochondria-
targeted therapies [122]. The CRISPR screening platform has been employed to identify
mitochondrial components related to astrocyte-to-neuron conversion [123]. This compre-
hensive screening identified 150 significantly enriched mitochondrial proteins (including
transporters, metabolic enzymes, and cell-type-specific antioxidants) that influence the
reprogramming of brain cells. These recent advances in gene editing with CRISPR/Cas are
now expanding to clinical and therapeutic applications, including mitochondrial genome
editing as an innovative alternative to target mitochondria-related diseases [124].

6. Conclusions

For decades, the drug development pipeline for neurodegenerative diseases has been
focused on two main mechanisms of action: neurotransmitters and protein aggregation.
In fact, the handful of approved therapeutic compounds for Alzheimer’s and Parkinson’s
disease are compounds intended to restore or maintain the brain levels of neurotransmitters
or to remove abnormal protein aggregates. Remarkably, the observation of mitochondrial
alterations and dysfunction in neurological disorders has been known for decades, but little
effort has been established to develop specific therapies targeting these vital organelles or
their molecular components. Here, we discussed the current findings of mitochondrial-
related therapeutic compounds that aim to restore or maintain bioenergetics and functional
antioxidant mechanisms in brain cells. Furthermore, we discussed alternative or innovative
ideas that could be explored in mitochondrial therapies for neurodegenerative disorders,
including optogenetics, gene editing, CRISPR/Cas engineering, and mitochondrial trans-
ference, which have demonstrated promising results in in vitro and in vivo models.
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