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Abstract: This paper is devoted to the determination of the coefficient of friction (COF) in the
drawbead region in metal forming processes. As the test material, AW-5251 aluminium alloys
sheets fabricated under various hardening conditions (AW-5251-O, AW-5251-H14, AW-5251-H16
and AW-5251H22) were used. The sheets were tested using a drawbead simulator with different
countersample roughness and different orientations of the specimens in relation to the sheet rolling
direction. A drawbead simulator was designed to model the friction conditions when the sheet metal
passed through the drawbead in sheet metal forming. The experimental tests were carried out under
conditions of dry friction and lubrication of the sheet metal surfaces with three lubricants: machine
oil, hydraulic oil, and engine oil. Based on the results of the experimental tests, the value of the COF
was determined. The Random Forest (RF) machine learning algorithm and artificial neural networks
(ANNs) were used to identify the parameters affecting the COF. The R statistical package software
version 4.1.0 was used for running the RF model and neural network. The relative importance of the
inputs was analysed using 12 different activation functions in ANNs and nine different loss functions
in the RF. Based on the experimental tests, it was concluded that the COF for samples cut along the
sheet rolling direction was greater than for samples cut in the transverse direction. However, the
COF’s most relevant input was oil viscosity (0.59), followed by the average counter sample roughness
Ra (0.30) and the yield stress Rp0.2 and strength coefficient K (0.05 and 0.06, respectively). The hard
sigmoid activation function had the poorest R2 (0.25) and nRMSE (0.30). The ideal run was found
after training and testing the RF model (R2 = 0.90± 0.028). Ra values greater than 1.1 and Rp0.2 values
between 105 and 190 resulted in a decreased COF. The COF values dropped to 9–35 for viscosity and
105–190 for Rp0.2, with a gap between 110 and 130 when the oil viscosity was added. The COF was
low when the oil viscosity was 9–35, and the Ra was 0.95–1.25. The interaction between K and the
other inputs, which produces a relatively limited range of reduced COF values, was the least relevant.
The COF was reduced by setting the Rp0.2 between 105 and 190, the Ra between 0.95 and 1.25, and
the oil viscosity between 9 and 35.

Keywords: aluminium alloys; coefficient of friction; friction; sheet metal forming; tribology

1. Introduction

There is a growing interest in the automotive industry in sheets made of non-ferrous
metal alloys, which, with strength equal to steel, are characterised by lower weight [1,2]. The
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production of sheet metal drawpieces characterised by low drawability is associated with
the need to overcome the many problems related to elastic deformations of products and
the limited formability [3,4]. Moreover, some lightweight alloys, for example, aluminium
alloys, are prone to galling. During sheet metal forming, there are many phenomena
and factors that determine the final shape and properties of the product. In obtaining
products of appropriate quality, one of the key phenomena is that of friction occurring at
the interface between the surfaces of the tool and the deformed material [5,6]. Currently,
the primary method of reducing friction is to use lubrication [7]. Due to the occurrence of
various friction conditions in the deep-drawing process, many tests have been developed
to model friction, for example, the strip drawing test [8], the bending under tension test [9]
and the drawbead test [10]. When forming drawpieces with a complex shape, it may be
necessary to use drawbeads which direct the flow of the material by introducing tensile
stresses in the sheet material. The drawbeads are protrusions on the die surface (Figure 1)
through which the flange of the shaped drawpiece flows [11]. The shape of the drawbead
is adapted to the thickness and plastic properties of the sheet material and controls the flow
of the sheet metal into the die, but at the same time not prematurely stopping the flow of
the material and breaking the drawpiece. Knowledge of the coefficient of friction (COF)
occurring at the drawbead is necessary for designing the stamping tool and determining
the appropriate boundary conditions in finite element-based numerical simulations of the
sheet metal forming process.

Materials 2023, 16, x FOR PEER REVIEW 2 of 21 
 

 

1. Introduction 
There is a growing interest in the automotive industry in sheets made of non-ferrous 

metal alloys, which, with strength equal to steel, are characterised by lower weight [1,2]. 
The production of sheet metal drawpieces characterised by low drawability is associated 
with the need to overcome the many problems related to elastic deformations of products 
and the limited formability [3,4]. Moreover, some lightweight alloys, for example, alu-
minium alloys, are prone to galling. During sheet metal forming, there are many phe-
nomena and factors that determine the final shape and properties of the product. In ob-
taining products of appropriate quality, one of the key phenomena is that of friction oc-
curring at the interface between the surfaces of the tool and the deformed material [5,6]. 
Currently, the primary method of reducing friction is to use lubrication [7]. Due to the 
occurrence of various friction conditions in the deep-drawing process, many tests have 
been developed to model friction, for example, the strip drawing test [8], the bending 
under tension test [9] and the drawbead test [10]. When forming drawpieces with a 
complex shape, it may be necessary to use drawbeads which direct the flow of the mate-
rial by introducing tensile stresses in the sheet material. The drawbeads are protrusions 
on the die surface (Figure 1) through which the flange of the shaped drawpiece flows 
[11]. The shape of the drawbead is adapted to the thickness and plastic properties of the 
sheet material and controls the flow of the sheet metal into the die, but at the same time 
not prematurely stopping the flow of the material and breaking the drawpiece. 
Knowledge of the coefficient of friction (COF) occurring at the drawbead is necessary for 
designing the stamping tool and determining the appropriate boundary conditions in fi-
nite element-based numerical simulations of the sheet metal forming process. 

 
Figure 1. Deformation of the sheet metal in the drawbead region. 

Over the years, experimental methods have been developed to determine the value 
of the COF on the drawbead and the effect of material properties, sheet thickness, and the 
geometry of the drawbead on the resistance to friction and the restraining force. Firstly, 
Nine [12] developed a roller drawbead fixture to determine the COF. In this test, while 
pulling the sheet metal strip over the fixed and freely rotatable rollers, the pulling force 
and the clamping force are measured, so that it is possible to separate the sheet metal 
deformation resistance from the resistance to friction. Green [13] experimentally deter-
mined in situ bending radii in a strip while it was being pulled through a drawbead. The 
bead penetration had an effect on the amount of bead wrap. As the penetration increased, 
the wrap angle increased. Nanayakkara and Hodgson [14] modified the method pro-
posed by Green [13] and determined the drawbead contacts with variable bead penetra-

Figure 1. Deformation of the sheet metal in the drawbead region.

Over the years, experimental methods have been developed to determine the value of
the COF on the drawbead and the effect of material properties, sheet thickness, and the
geometry of the drawbead on the resistance to friction and the restraining force. Firstly,
Nine [12] developed a roller drawbead fixture to determine the COF. In this test, while
pulling the sheet metal strip over the fixed and freely rotatable rollers, the pulling force
and the clamping force are measured, so that it is possible to separate the sheet metal
deformation resistance from the resistance to friction. Green [13] experimentally determined
in situ bending radii in a strip while it was being pulled through a drawbead. The bead
penetration had an effect on the amount of bead wrap. As the penetration increased, the
wrap angle increased. Nanayakkara and Hodgson [14] modified the method proposed by
Green [13] and determined the drawbead contacts with variable bead penetration. They
concluded that the actual COF is a function of the angle of contact of the sheet metal
with the drawbead. They also conducted finite element-based computations to study
the deformation mechanics during the flow of the sheet metal through the drawbead.
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Samuel [15] established the finite element method (FEM) model for the investigation of
blank-holding conditions and the COF on the deformation of the material which will be
passed through the drawbead. Livatyali et al. [16] proposed a tribometer for testing the
friction performance when the sheet metal passes through the drawbead. This tribometer is
mounted in the holders of a universal testing machine, enabling the determination of only
the value of the pulling force of the sheet metal. The depth of the drawbead is regulated by
means of a double-acting pneumatic actuator. It was found that the main factor determining
the value of the restraining force is the height of the drawbead. Smith et al. [17] developed
a device for determining the pulling force of the sheet metal in a stamping die with a
drawbead. When the sheet metal is pulled through the height-adjustable drawbead, the
pulling force, the restraining force, and the displacement of the sheet are measured. The
results of drawing strips of deep-drawing quality steel sheets confirmed quantitatively that
the parameter that determines the value of the restraining force to the greatest extent is the
geometry of the drawbead. Murali et al. [18] analysed the effect of drawbead geometry in
the sheet metal drawing process using finite element analysis and experimental validation.
The work-hardening phenomenon plays an important role in the restraining forces. A
rectangular drawbead bends and unbends the sheet four times and strengthens the material
more than a circular drawbead. Firat et al. derived an analytical model for predicting
the restraining force [19] and proposed a numerical model to improve the contact and
wrap angle in the drawbead region [20]. Thipprakmas [21,22] numerically analysed the
forming process of SUS304 stainless steel with and without using drawbeads. The results
showed that it is difficult to achieve a straight wall on both the ‘length’ and ‘width’ sides
without the use of a drawbead. Smith et al. [17] developed a device for obtaining the
pulling forces for drawbead tooling on inclined binder surfaces in the Oakland University
Angle Draw Bead Simulation (OU-ADBS) test. For the deep-drawing steel sheets, bead
penetrations, and bead geometries studied, the pulling force at a 20◦ binder angle ranged
from 55% to 96% of that corresponding to a 0◦ binder angle. Bassoli et al. [23] developed a
versatile drawbead simulator to measure the restraining force when deep drawing 6014-
T4 aluminium alloy sheets. The authors investigated the effects of the geometry of the
drawbead on the restraining forces. It was found that the restraining force normalised by
the drawbead width increased with increasing values in the bead height-to-radius ratio.
De Carvalho and Lukács [24] used friction shear stress values to detect those places on the
workpiece that were exposed to tangential stress caused by contact with the tools and to
verify the drawbeads. For the analysed region, the coulomb model was found to be more
relevant than the pressure-dependent model for describing friction phenomena. Lo [25]
investigated the restraining force generated by the draw bead under different settings
for the draw bead radius. It was concluded that when a higher force was applied to the
draw bead, a higher restraining force was generated. Gil et al. [26] proposed a model to
identify the main variables affecting the uplift force in the drawbead region. They found
that minor geometrical deviations in the drawbead geometry significantly affect the uplift
force. Venema et al. [27] observed that the coating flakes transported by the sliding sheet
tend to accumulate in the area of high contact pressure (the drawbead region). Zabala
et al. [28] found a direct relationship between the COF, thinning and forming limit diagram.
The lower the COF, the higher the draw-in of the material. In the draw bead region, the
clamping force is about 85% of the restraining force. When the restraining force is created by
friction only, the binder force needs to be five to seven times larger depending on COF [29].

The phenomenon of friction in sheet metal forming is the result of the simultaneous
interaction of many parameters and phenomena such as normal pressure, the surface
roughness of the sheet metal and dies, the temperature, the combination of workpiece-tool
materials, and the sliding speed. In practice, it is very difficult to determine the influence
of one parameter on the COF while omitting other parameters. Therefore, analytical mod-
elling, analysis of variance, artificial neural networks (ANNs), machine learning, genetic
algorithms, and advanced deep learning techniques are used. Among the mentioned meth-
ods, ANNs are the most widespread and their operation is understood well. In recent years,
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there has been an interest in artificial intelligence (AI) techniques for solving problems
related to the phenomenon of friction, of which ANNs predominate. The performance
of ANNs depends on many parameters, that is, the number of hidden layers [30], the
training algorithm [31], the number of neurons in the hidden layers [32] and the quality
of the input data [33], the neuron activation function [34], and the size of the dataset (a
larger training database provides greater accuracy for ANNs). Najm et al. [35] used neural
networks to identify the parameters influencing the COF of the deep-drawing sheets tested
in the strip drawing test. Different methods of partitioning weight were employed for
the expected COF to assess the individual feature’s relevance. Lemu et al. [36] developed
mathematical models that describe the friction behaviour of brass sheets using multiple
regression analysis and ANNs. They concluded that one advantage of ANNs is that they
can be used to extrapolate the model’s function outside the range of the training set but this
only has limited scope. Trzepieciński et al. [37] used backward elimination regression and
multilayer ANNs to predict the COF of Ti-6Al-4V titanium alloy sheets based on the results
of the strip drawing test. Different training methods, that is, the quasi-Newton, Levenberg–
Marquardt, back propagation, and network architectures were considered. The highest
value of the correlation coefficient and the minimum value of the round mean square error
were found for a multilayer perceptron (MLP) trained using the quasi-Newton algorithm.
Yang et al. [38] used generalised regression neural networks for predicting the COF of
Cr1−xAlxC films deposited on high-speed steel substrates. It was found that compared
to the conventional back propagation ANNs, generalised regression neural networks are
more suitable for predicting the COF of Cr1−xAlxC films. Nasir et al. [39] applied ANNs for
predicting the COF of multilayer chopped strand mat glass fibre-reinforced thermosetting
polyester composites in three different orientations. Various training functions were used
and it was found that single-layer ANNs showed a prediction accuracy of up to 90% when
trained with the Levenberg–Marquardt function. The ANN prediction method has been
used in several applications, such as friction [40], surface roughness [41], and wear [42].
The potential applications of ANNs in the field of tribology were provided in review papers
by Frangu and Ripa [43] and Argatov [44]. Perspectives about the use of AI in tribology
were also provided by Rosenkranz et al. [45].

There are many approaches in the literature investigating the friction performance of
materials. However, to the best of the authors’ knowledge, the problem of determining the
COF in the drawbead region using the Random Forest (RF) machine learning algorithm
combined with ANNs has not been analysed so far. In this paper, a machine learning
algorithm and ANNs were used to identify the parameters affecting the COF of AW-5251
aluminium alloy sheets in different temper designations, that is, O, H14, H16, and H22.
The sheets were tested using a drawbead simulator under different friction conditions (dry
friction, oil lubrication), the different surface roughness of the countersamples and different
orientations of the samples in relation to the direction of the sheet rolling. Machine learning
is a collection of algorithms focusing and on making precise predictions from data [46].
One of these algorithms is RF [47] which is considered a non-parametric supervised ma-
chine learning algorithm. It consists of decision trees where each tree is split by selecting
random inputs to fit a random bootstrap sample of those inputs. Another algorithm of
machine learning is ANNs which are considered a robust mathematical model and consist
of interconnected simple processing units called neurons just like the biological neurons
in humans. The neurons in ANNs are arranged in sets called layers. Each neuron in a
given layer is connected to other neurons in the adjacent layers but not to neurons in the
same layer. The connections among neurons are defined by what is known as connection
strength or connection weight which are used in estimating the relative importance of the
inputs. In the present study, RF and ANNs were used to explore the relationship between
the yield stress Rp0.2, the average roughness of the countersamples Ra, oil viscosity, and the
strength coefficient K with the COF as well as estimating their relative importance.
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2. Material and Methods
2.1. Test Material

AW-5251 aluminium alloy sheets in different temper states (Table 1) were used as the
test materials. The chemical composition of the AW-5251 aluminium alloy according to
the EN 573-3 [48] standard is listed in Table 2. The mechanical properties of the sheets in
Table 3 were determined in a uniaxial tensile test for samples cut along and transversely
to the direction of the sheet rolling. The uniaxial tensile tests were carried out at room
temperature according to the EN ISO 6892-1 [49] standard. The basic mechanical properties
were determined, that is, yield stress Rp0.2, ultimate tensile stress Rm, and elongation A50.
The parameters of work hardening were determined based on the approximation of the true-
stress/true-strain curves using the power law hardening (or Ludwik/Holloman) equation
σp = K·εn, where σp = stress, K—strength coefficient, n—strain hardening exponent, ε—
plastic strain. The basic surface roughness parameters of the tested sheets (Table 4) were
determined using an Alicona Infinite-Focus instrument.

Table 1. Temper designations of the test materials.

Temper Type Description

O soft

H14 work hardened to half hard, nor annealed after rolling

H16 work hardened to three-quarter hard, nor annealed after rolling

H22 strain-hardened and partially annealed—three-quarter hard

Table 2. Chemical composition (wt.%) of the AW-5251 aluminium alloy according to the EN 573-3
standard.

Mn Cu
(Max.) Mg Si

(Max.)
Zn

(Max.)
Cr

(Max.)
Ti

(Max.)
Others
(Total)

Fe
(Max.) Al

0.10–0.50 0.15 1.70–2.40 0.40 0.15 0.15 0.15 0.15 0.50 balance

Table 3. Basic mechanical properties of AW-5251 aluminium alloy sheets.

Temper Type Specimen
Orientation, ◦ Elongation A50

Ultimate Tensile
Stress Rm, MPa

Yield Stress
Rp0.2, MPa

Strength
Coefficient K,

MPa

Strain
Hardening
Exponent n

O
0 0.18 203 68 252 0.607

90 0.25 205 72 245 0.870

H14
0 0.04 234 212 254 0.478

90 0.04 241 210 327 0.786

H16
0 0.05 232 184 253 0.528

90 0.06 236 189 242 0.751

H22
0 0.19 201 111 370 0.535

90 0.21 207 122 370 0.793

Table 4. Basic surface roughness parameters of AW-5251 aluminium alloy sheets.

Temper Type Sa, µm Sv, µm Sp, µm Sku Ssk

O 0.302 1.39 0.37 3.48 0.267

H14 0.340 1.62 2.48 3.34 0.298

H16 0.362 2.08 2.98 3.67 0.338

H22 0.325 1.53 2.04 3.58 0.321
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2.2. Experimental Setup

Tests to determine the COF in the drawbead region require the separation of the
deformation resistance from the resistance to friction as the sheet metal passes through the
drawbead. For this purpose, a four-roller tester simulating the sheet passing through the
drawbead in sheet metal forming was developed (Figure 2). The tribotester’s equipment
includes three sets of cylindrical countersamples made of cold-worked tool steel X165CrV12
with a diameter of 20 mm and an average roughness Ra of 0.32, 0.63 and 1.25 µm. Due to
the rotating shape of the countersamples and the manufacturing technology, the average
roughness was measured on the surface of the rollers, parallel to their axes. The device was
mounted in the lower holder of a universal uniaxial tensile testing machine.
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Figure 2. Drawbead simulator [10].

A sample in the form of a 20 mm wide and 200 mm long strip of sheet metal was
placed between the lower and upper working countersamples and the middle working
countersample. The upper end of the strip sample was then clamped into the tension
member, which was then clamped into the upper fixture of the testing machine. The height
of the drawbead was set by the appropriate horizontal displacement of the middle working
countersample. The tests were carried out with a drawbead height of 20 mm. In this
way, the axes of all three working rollers lay in one geometrical plane. The supporting
roller was used to prevent the sample from bending due to elastic deformations of the
sheet during the friction test. The value of the pulling and clamping forces was recorded
using extensometers bonded to the tension members (Figure 2). The signals from the
extensometers were transmitted to an 8-channel HBM amplifier, and then to a computer
with software.

The determination of the coefficient of friction requires two tests: with freely rotatable
rollers and with fixed rollers. During tests with freely rotatable rollers, the clamping force Fc
and the pulling force Fp were registered. Similarly, during tests with fixed countersamples,
the clamping force Fcf and the pulling force Fpf were registered. Then the value of the COF
was calculated according to the relationship [14]:

µ =
sinα
2α
·
Fpf − Fp

Fcf
(1)

where α is half of the centre roll wrap angle, α = 90◦.
The friction tests were carried out using sheet strips cut along the rolling direction and

at a transverse direction to that of the sheet rolling. The samples were drawn at a speed of
1 mm/s under conditions of dry friction and lubrication with three oils: L-AN 46 machine
oil, SAE10W40 engine oil, and L-HL 32 hydraulic oil. The basic physicochemical properties
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of the test oils are shown in Table 5. Sheet metals in the as-received state were tested after
cleaning their surfaces using acetone.

Table 5. Physico-chemical properties of the test oils.

Oil Type Kinematic Viscosity, mm2/s Viscosity Index

L-AN 46 43.90 94.0

L-HL 32 32.00 95.0

SAE 10W40 14.50 157.0

2.3. ANN Modelling

In the present study, a four-layer feed-forward multilayer perceptron neural network
(Figure 3) was used to study the relationship between the inputs (Rp0.2, Ra, oil viscosity,
and K) and the output (COF). The structure of the network consisted of one input layer
with four neurons, two hidden layers with six neurons each, and one output layer with
one neuron. A back propagation learning algorithm was used and 12 activation functions
were compared based on the determination of the coefficient (R2) and the normalised root
mean square of error (nRMSE). The 12 activation functions were relu, gelu, softplus, swish,
sigmoid, hard_sigmoid, elu, selu, leaky_relu, softsign, tanh, and linear. To train the network, 80%
of the data set was used and the other 20% was used for testing its performance. After
training and testing the network, the connection weights algorithm [50,51] was used to
calculate the relative importance of the inputs. It is worth mentioning that the output
layer’s activation function was linear. The connection weights were generated using a
Glorot uniform initializer to avoid gradient vanishing problems in the deep learning neural
networks; the learning rate was 0.01, the momentum was 0.9, and the epochs were 350.
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2.4. RF Model

The main reason for choosing the RF model in the present study is its good prediction
performance [52]. Other reasons are that RF can be used for both regression and classifica-
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tion problems, it can handle high-dimensional data where both non-linear effects of inputs
and the interactions among them exist, and it can be used to rank the inputs according to
their relative importance. The RF model was tuned by adjusting its three tuning parameters
to maximise its prediction capability. These three tuning parameters are the number of
trees (ntree), the minimum number of data points at a leaf (nodesize), which is used for
preventing overfitting, and the maximum number of randomly selected inputs (mtry) to
be considered at each split node [53,54]. The best performance was achieved by using low
values of the minimum node size and high values of the number of randomly selected
inputs. Partitioning the dataset into training and testing subsets significantly affects predic-
tion accuracy and training performance [55]. Inappropriate subsets have a negative effect
on performance metrics. On the other hand, Shahin [56] argued that there is no evident
relationship between the splitting ratio of the dataset and the dataset itself. In contrast,
Zhang et al. [55] asserted that the splitting ratio is one of the primary issues. However,
there is no general setting available as a solution. Based on their surveys, most researchers
divide the datasets into lines with varying proportions of subsets. The most commonly
used training and testing ratios are 90% to 10%, 80% to 20%, or 70% to 30%. As part of the
training for this paper, the optimal prediction of the tuning parameters was achieved by
dividing the actual data (96 samples) into 80% training and 20% test sets. To overcome
the overfitting in RF, 30% of the training subset was used for the validation. A factorial
combination of the tuning hyperparameters was selected to construct a grid and a search in
that grid was performed in combination with a five-to-ten-fold cross-validation to achieve
the best prediction performance based on the testing dataset [57]. After training and testing
RF, the relative importance of the input variables was estimated using the optimal run.

The R statistical package software version 4.1.0 [58] was used for running the RF model
and the multilayer perceptron neural network. R is a statistical programming language
uniquely equipped to deal with different data. R makes it simple to manipulate data and
generate publication-ready graphics and visualizations. The program can run all aspects
of data analysis, mining, and modelling tasks. The randomForest package was used to run
the RF model [59], the caret package was used for tuning the parameters [57], and the
iml package was used to produce the accumulated local effect (ALE) plots [60]. For the
multilayer perceptron neural network, keras and tensorflow packages were used in Python
via R.

3. Results and Discussion
3.1. Experimental Results

In both the friction conditions tested, it was observed that the COF for samples
cut along the sheet rolling direction was greater than for samples cut in the transverse
direction (Figure 4). For the AW-5251-O aluminium alloy sheet, with the increase in the
average roughness of the countersamples, the effect of the orientation of the samples on
the value of the COF increases (Figure 4a). However, for the AW-5251-H22 aluminium
alloy sheet, this relationship is reversed. In general, the greater the average roughness
of the countersamples, the smaller the effect of the sample orientation on the COF. The
relationships described above apply to both dry friction and oil lubrication. During the
passage of the sample through the drawbead, the sheet is bent and straightened several
times. As a result of the phenomenon of work hardening, the strength of the sheet material
increases and, at the same time, the formability of the material decreases. Samples bent
perpendicularly to the sheet rolling direction are less susceptible to plastic working than
samples bent parallel to the rolling direction. This is due to the band-like directional
arrangement of the material grains, which are elongated in the direction of rolling.

In general, increasing the average roughness of the countersamples causes a decrease
in the value of the COF. The character of the influence of the surface roughness of a harder
tool on the COF value compared to the sheet material depends on the friction conditions.
During dry friction, the high surface roughness of the tool can lead to intensification
of the ploughing phenomenon [61]. This is a particularly sensitive phenomenon in the
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case of aluminium alloy plates which are prone to galling. On the other hand, under
lubricated conditions, increased surface roughness allows more oil to accumulate in the
surface valleys [62]. The highest lubrication efficiency for both sample orientations was
observed for 10W40 engine oil which is characterised by the highest viscosity index value
among all the tested oils.

There is a clear tendency for the COF value to decrease with the increase in the average
roughness of the countersamples. The sheet metal undergoes severe work hardening when
passing through the drawbead and its hardness increases. In this way, the intensification of
the ploughing phenomenon is limited. Therefore, the increased surface roughness of the
strip sample ensures that more lubricant is stored in the surface valleys [63].

Determining the influence of sheet surface roughness and mechanical properties on
the value of the COF is extremely difficult due to the possible complex interactions of many
parameters. Therefore, in the next section, machine learning and ANNs are used to identify
the main interactions between the input parameters and the COF.
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3.2. Artificial Neural Networks

When R2 is close to 1, the performance is good; when nRMSE is close to 0, the error is
low. Knowing the difference between training and test errors is very important. Training
errors are calculated using the same data for training the model. Test errors, on the other
hand, are calculated using a complete dataset that was not used to train the model. It
can be said that the R2 value of the training dataset shows how different the learned
samples are, while the R2 value of the testing dataset shows how efficient the model is
at making predictions. The leaky_relu activation function (Table 6) was the most suitable
function for the tested data as its R2 value was the highest (0.86) and its nRMSE was the
lowest (0.11) (Figure 5), so the estimated relative importance of the inputs based on that
activation function was more reliable than the other activation functions. The importance
of an input was measured by calculating the increase in the prediction error of the model
after permuting the input. An input is considered important if shuffling its values caused
an increase in the model error because, in this situation, the model relied on that input
for its prediction. On the other hand, an input is considered unimportant if shuffling its
values caused no change in the model error because, in this state, the model disregarded
the input. Oil viscosity was the most important input to the COF (0.59) followed by the
average roughness of the countersamples Ra (0.30), while both the yield stress Rp0.2 and
the strength coefficient K were the least important inputs (0.05 and 0.06, respectively). The
hard sigmoid activation function was the worst function as its R2 value was the lowest
(0.25) and its nRMSE value was the highest (0.30) (Figure 6), so it should not be used.
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Table 6. Mathematical model of the 12 activation functions used.

Name of Activation Function Mathematical Equation

Rectified linear unit (ReLU) f (x) = max (x,0)

Gaussian Error Linear Unit (GELU) f (x) = x * P (X ≤ x)

Softplus f (x) = ln (1 + ex)

Sigmoid-Weighted Linear Unit (Swish) f (x) = x/(1 + exp(−x))

Sigmoid f (x) = 1/(1 + e−x)

Hard sigmoid f (x) = max (min (0:25x + 0:5;1);0)

Exponential linear unit (ELU) ifelse (x < 0,1.673263 * (exp(x) − 1.0507), x)

Scaled exponential linear unit (Selu) ifelse (x < = 0,1.0507 * 1.673263 * (exp(x) − 1.0507), x * 1.0507)

Leaky ReLU ifelse (x < = 0, α * x, x) where 0 < α < 1

Sofsign f (x) = x/(|x| + 1)

Tanh f (x) = 2/(1 + e−2x) − 1

Linear f (x) = x
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From Figure 6, it is clear that the results of the different activation functions varied
greatly. Predicting a COF with the same features using various activation functions might
be problematic. Activation functions may utilise these features well or inadequately. Not
all prediction models can leverage data links for predicting the COF. The issue is stochastic;
the data set is incomplete, the data are inadequate, the model is too simplistic, or any
combination of these. All the foregoing concerns would lead to discrepancies in unseen
data model predictions. To estimate the relative importance of the inputs, the Glorot
uniform initialiser [

√
6/( fan_in + fan_out)] where fan_in is the number of input units

and fan_out is the number of output units] was used to generate the connection weights
to avoid gradient vanishing problems in the deep learning and the connection weight

algorithm, (RIx =
m
∑

y=1
wxywyz) where Wxy is the connection weights from the input layer to

the hidden layer and, Wyz is the connection weights from the hidden layer to the output
layer. The relative importance of the inputs was calculated using 12 different activation
functions (Figure 6).

On the other hand, variable importance (Figure 7) was estimated using the optimal
run after training and testing the RF model (R2 = 0.90 ± 0.028) using nine different loss
functions (Table 7). The dots represent the median of the relative importance while the lines
represent the minimum and maximum values of the relative importance. The function of
variable importance in the RF model defines the insight of the additive predictive value of
a certain input variable and consequently ranks the studied input variables by using the
mean decrease in accuracy that happened when a particular input variable was permuted
randomly, where the mean decrease in accuracy is an indication of how much accuracy was
lost in the prediction process by removing each input variable. Input variables with a big
mean decrease in accuracy are considered the most important or strongest input variable to
the output.
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Table 7. Mathematical model of the nine loss functions used.

Name of Loss Function Abbreviation Equation

root relative squared error rrse

√[
n
∑

i=1
(xi − yi)

2
]

/
[

n
∑

i=1
(xi − x̃)2

]
symmetric mean absolute percent error smape 2

n

n
∑

i=1

|xi−yi |
|xi |+|yi |

mean absolute error mae 1
n

n
∑

i=1
|xi − yi |

mean squared error mse 1
n

n
∑

i=1
(xi − yi)

2

root mean squared error rmse

√
1
n

n
∑

i=1
(xi − yi)

2

mean squared log error msle 1
n

n
∑

i=1
(ln(1 + xi)− ln(1 + yi))

2

relative absolute error rae
[

n
∑

i=1
|xi − yi |

]
/
[

n
∑

i=1
|xi − x̃|

]
relative squared error rse

[
n
∑

i=1
(xi − yi)

2
]

/
[

n
∑

i=1
(xi − x̃)2

]

root mean squared log error rmsle

√
1
n

n
∑

i=1
(ln(1 + xi)− ln(1 + yi))

2

Before estimating the importance of the input variables, it is worth noting that when
collinearity among inputs is present, the estimated variable importance becomes less
reliable and less interpretable and, consequently, ALE plots should be used to explore the
nature of the relationship between the inputs and the output. However, when collinearity
is absent, variable importance becomes reliable and, consequently, partial dependence (PD)
plots could be used for providing information about the shape of the relation between each
input and the output [64].

Figure 8 depicts the influence of the analysed inputs on predicting the COF using
ALE plots.

ALE plots illustrate how the prediction average of the output changes by changing the
values of an input while all other inputs are kept at their original values. Figure 8 reveals
that oil viscosity and Ra were the most important inputs to the COF, while Rp0.2 and K were
the least important. These results are in agreement with those obtained by the results of the
ANNs. The most essential factor influencing friction conditions is viscosity. The surface
roughness does not determine the volume of oil retained and thereby affects the COF values.
Roughness is critical in increasing friction. Moreover, if roughness retains oil, then there is
a correlation between the oil viscosity and the roughness input parameters in determining
the output COF. As Rp0.2 and K were the minor relevant inputs, it may be deduced that
the mechanical characteristics of the sheets did not make a substantial contribution. There
was no noticeable increase in the intensity of the mechanical interactions occurring on the
surface asperities.

Figures 9 and 10 reveal that the Ra and Rp0.2 were the most active inputs in interactions
with the other inputs. Viscosity was the lowest in interactions with the other inputs because
it has a large direct effect. However, the Ra has both a large direct effect and higher
interactions with the other inputs. Figure 10 shows that when the Ra and Rp0.2 interacted
with each other this leads to a lower COF (coloured red) when the Ra values were more
than 1.1 and the Rp0.2 values between 105 and 190. When the oil viscosity is added with
the Rp, the values of the COF were lower at 9–35 for viscosity and 105–190 for Rp0.2 with a
gap between 110 and 130. The interaction between the oil viscosity and the Ra revealed
a low value of the COF when the oil viscosity values were between 9 and 35 and the Ra
values between 0.95 and 1.25. On the other hand, the interaction between K and the other
inputs was the least important one because it leads to a very small region of lower values
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of the COF (coloured red). It can be concluded that to achieve lower values of the COF,
the Rp0.2 values should be between 105 and 190, the Ra values should be between 0.95 and
1.25, and the oil viscosity values should be between 9 and 35. It is highly challenging to
explain the interplay of the many parameters physically. It can be observed that there is an
unsteadiness at K = 255 MPa for both Ra and viscosity; this is because it is not necessary
to be able to compute the accumulated local effects (ALE) since there was no connection
between the inputs, that is, the changes in predictions did not average out significantly
across the grid. The Y axis represents the deviation from the predicted value to the observed
value. Therefore, once the viscosity was over 10, the difference was negligible.
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4. Conclusions

In this paper, the results of the frictional performance of AW-5251 aluminium alloys
sheet in various tempers were tested using a drawbead simulator. The RF machine learning
algorithm and ANNs were used to identify the parameters affecting the COF. Based on the
experimental results and ANN modelling, the following conclusions can be drawn:

• It was observed that the COF for samples cut along the sheet rolling direction was
greater than for samples cut in the transverse direction. This applies to both dry friction
and lubricated conditions. For the AW-5251-O sheet, the greatest difference (0.019) in
the COF values for both sample orientations was observed for dry friction conditions
for a countersample with an average roughness of 1.25 µm. For the AW-5251-H14
sheet, the greatest difference (0.021) in COF values for both sample orientations was
observed for dry friction conditions for a countersample with an average roughness of
0.63 µm.

• In general, the greater the average roughness of the countersamples, the smaller the
effect of sample orientation on the COF.

• There is a clear tendency for the COF value to decrease with the increase in the
average roughness of the countersamples. Increasing the surface roughness of the
countersample material with much greater strength than the workpiece material causes
intensification of the mechanical interaction of the surface asperities, but at the same
time, greater roughness means a larger volume of the valleys constituting the lubricant
reservoir.

• The highest lubrication efficiency for both sample orientations was observed for
SAE10W40 engine oil which is characterised by the highest viscosity index value (157)
among all the tested oils.

• Oil viscosity was the most important input to the COF followed by the average
roughness of the countersamples Ra, while both Rp0.2 and K (strength coefficient) were
the least important inputs. As Rp0.2 and K were the minor relevant inputs, it may be
deduced that the mechanical characteristics of the sheets did not make a substantial
contribution to the COF when passing the sheet metal through the drawbead.

• The most appropriate activation function for our data was leaky_relu because it had
the highest R2 and the lowest nRMSE.

• The average roughness of the countersamples Ra and the yield stress Rp0.2 were the
most active inputs in interactions with the other inputs. Oil viscosity was the lowest
in interactions with the other inputs because it has a large direct effect. However, the
Ra has both a large direct effect and higher interactions with the other inputs.
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