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Abstract

Background

Adenosine inhibits the activation of most immune cells and platelets. Selective adenosine

A2A receptor (A2AR) agonists such as regadenoson (RA) reduce inflammation in most tis-

sues, including lungs injured by hypoxia, ischemia, transplantation, or sickle cell anemia,

principally by suppressing the activation of invariant natural killer T (iNKT) cells. The anti-

inflammatory effects of RA are magnified in injured tissues due to induction in immune cells

of A2ARs and ecto-enzymes CD39 and CD73 that convert ATP to adenosine in the extracel-

lular space. Here we describe the results of a five patient study designed to evaluate RA

safety and to seek evidence of reduced cytokine storm in hospitalized COVID-19 patients.

Methods and findings

Five COVID-19 patients requiring supplemental oxygen but not intubation (WHO stages

4–5) were infused IV with a loading RA dose of 5 μg/kg/h for 0.5 h followed by a mainte-

nance dose of 1.44 μg/kg/h for 6 hours, Vital signs and arterial oxygen saturation were

recorded, and blood samples were collected before, during and after RA infusion for analy-

sis of CRP, D-dimer, circulating iNKT cell activation state and plasma levels of 13 proinflam-

matory cytokines. RA was devoid of serious side effects, and within 24 hours from the start

of infusion was associated with increased oxygen saturation (93.8 ± 0.58 vs 96.6 ± 1.08%,

P<0.05), decreased D-dimer (754 ± 17 vs 518 ± 98 ng/ml, P<0.05), and a trend toward

decreased CRP (3.80 ± 1.40 vs 1.98 ± 0.74 mg/dL, P = 0.075). Circulating iNKT cells, but

not conventional T cells, were highly activated in COVID-19 patients (65% vs 5% CD69+).

RA infusion for 30 minutes reduced iNKT cell activation by 50% (P<0.01). RA infusion for 30

minutes did not influence plasma cytokines, but infusion for 4.5 or 24 hours reduced levels

of 11 of 13 proinflammatory cytokines. In separate mouse studies, subcutaneous RA infu-

sion from Alzet minipumps at 1.44 μg/kg/h increased 10-day survival of SARS-CoV-2-

infected K18-hACE2 mice from 10 to 40% (P<0.001).
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Conclusions

Infused RA is safe and produces rapid anti-inflammatory effects mediated by A2A adeno-

sine receptors on iNKT cells and possibly in part by A2ARs on other immune cells and plate-

lets. We speculate that iNKT cells are activated by release of injury-induced glycolipid

antigens and/or alarmins such as IL-33 derived from virally infected type II epithelial cells

which in turn activate iNKT cells and secondarily other immune cells. Adenosine released

from hypoxic tissues, or RA infused as an anti-inflammatory agent decrease proinflamma-

tory cytokines and may be useful for treating cytokine storm in patients with Covid-19 or

other inflammatory lung diseases or trauma.

Introduction

Infection with Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) caused

Coronavirus disease 2019 (COVID-19). Most infected people exhibited a rapid IFN-1 response

that controlled viral replication [1]. In some cases, persistence of the delta-variant that was

common in the US at that time of this study in 2021 was associated with lung inflammation

and injury [2]. Hospitalization was required in 1–3% of infected unvaccinated individuals.

Hospitalized patients usually exhibited hypoxia and other systemic responses including pro-

coagulant state, cytokine storm and epithelial barrier dysfunction [3]. About 20% of hospital-

ized patients progressed to acute respiratory distress syndrome (ARDS), which carried a 75%

mortality rate [4]. Anti-inflammatory treatment strategies have been targeted to COVID-19

patients who exhibit lung inflammation. These treatments include steroids [5] and agents that

selectively block IL-1 [6], IL-6 [7], or Janus-kinase (JAK) [8]. Adenosine, which binds to A1,

A2A, A2B and A3 adenosine receptors, principally activates A2A receptor to produce broad

anti-inflammatory effects. Adenosine reduced mortality when administered as an aerosol to

intubated Covid-19 patients [9]. However, adenosine is rapidly metabolized in blood (half-life

is< 1 second [10]) and it activates the A1 adenosine receptor to reduce heart rate and conduc-

tion velocity [11]. RA selectively activates the A2A adenosine receptor subtype, has a longer

half-life than adenosine and does not cause heart block. RA marketed as Lexiscan™ or Rapids-

can™ is a coronary vasodilator that is used for myocardial perfusion imaging. A2AR agonists

such as RA also suppress proinflammatory cytokine release from most immune cells and con-

sequently produce a broader array of anti-inflammatory effects than drugs that target a single

cytokine [12].

A key target of RA is the iNKT cell that, unlike conventional T effector cells, is rapidly acti-

vated by tissue hypoxia or ischemia to produce and release pro-inflammatory cytokines. iNKT

cells comprise a small CD1d-restricted subset of T cells that express semi-invariant TCRs that

can be activated by certain bacterial glycolipids and/or by endogenous glycolipids derived

from injured tissues. IL-33 released from SARS-CoV-2-infected epithelial cells facilitates iNKT

cell activation via Sp2 receptors [13]. Depending on how they are activated, iNKT cells may

secrete Th1, Th2 or Th17 cytokines such as IFN-γ, IL-14 and IL-17A, respectively [14, 15].

IFN-γ derived from iNKT cells perpetuates inflammation by stimulating production of IFN-γ-

inducible CXCR3 chemokines, CXCL9, CXCL10 and CXCL11 [14, 16]. Expression of the acti-

vation marker CD69 on iNKT cells of COVID-19 patients at the time of hospital admission is

predictive of clinical course and the severity of hypoxia [17].

Stressed cells release adenine nucleotides, primarily ATP, into the extracellular space [18,

19]. Extracellular ATP and ADP are metabolized to AMP and adenosine by ecto-enzymes

including ectonucleoside triphosphate dihphosphohydrolases (ENTPDs; including CD39),
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and ecto-5’-nucleotidease (e5NT; CD73) [20]. Induction of these enzymes in response to hyp-

oxia accelerates the conversion of pro-inflammatory ecto-ATP to anti-inflammatory ecto-

adenosine [21, 22]. By binding to A2ARs, adenosine produces anti-inflammatory effects in

iNKT cells as well as macrophages [23], dendritic cells [24], neutrophils [25] and platelets [26].

We hypothesized that A2AR activation would inhibit cytokine storm and reduce the pro-

coagulation state in COVID-19 patients. Here we show in a pilot clinical safety study that infu-

sion of RA into 5 hospitalized COVID-19 patients produced rapid subjective symptom

improvement, increased SpO2, reduced D dimer, produced a downward trend in CRP,

reduced iNKT cell activation (% CD69+), and a reduced 11 of 13 pro-inflammatory cytokines

measured in plasma. Additionally, RA administered in Alzet pumps for 7 days increased sur-

vival of K18-hACE2 mice infected with SARS-CoV-2. Further investigation of RA and other

A2AR agonists as treatments for COVID-19 and possibly other pulmonary insults that cause

SARS is warranted.

Methods

This phase 1b study evaluated the safety, tolerability, and efficacy of RA for the treatment of

hospitalized adults with moderate to severe COVID-19. The trial was conducted at the Univer-

sity of Maryland Medical Center, Baltimore, MD.

Eligibility

Inclusion criteria.

1. 18 years of age or older

2. Laboratory-confirmed SARS-CoV-2+ by RT-PCR

3. Moderate to Severe COVID-19/WHO stage 4 or 5: Moderate illness is defined as individu-

als who have evidence of lower respiratory disease by clinical assessment or imaging and a

saturation of oxygen (SpO2) >93% on room air at sea level. Severe Illness is defined as indi-

viduals who have respiratory frequency>30 breaths per minute, SpO2� 93% on room air

at sea level, ratio of arterial partial pressure of oxygen to fraction of inspired oxygen (PaO2/

FiO2)<300, or lung infiltrates >50%

4. Verbal or written informed consent from patient or legally authorized representative

Exclusion criteria.

1. Pregnant or breastfeeding

2. Signs or symptoms of acute myocardial ischemia or a cardiac intervention within the past

90 days.

3. Chronic cardiac conditions including non-vascularized coronary artery disease, heart fail-

ure, valvular disease, or cardiomyopathy.

4. Cardiac arrhythmia such as Sinoatrial (SA) or Atrioventricular (AV) Nodal Block/dysfunc-

tion, bradycardia, permanent pacemaker, internal defibrillator, or Atrial Fibrillation/Atrial

Flutter requiring treatment or observation.

5. History of hypotension (sustained systolic blood pressure < 80 mmHg)

6. History of severe hypertension not adequately controlled with anti-hypertensive medica-

tions (Systolic blood pressure� 200 mmHg and/or Diastolic blood pressure� 110 mmHg)
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7. Severe or moderate renal impairment or end stage renal disease (defined as GFR< 60 mL/

min/1.73 m2)

8. History of clinically overt stroke within 3 years

9. History of seizure disorder

10. Pre-existing respiratory conditions, most notably asthma, chronic obstructive pulmonary

disease or emphysema.

11. Respiratory failure for greater than 72 hours. Defined as the continuous use of mechanical

ventilation, HFNC >20L/min, CPAP, and/or ECMO. (CPAP use due to obstructive sleep

apnea is acceptable).

12. Treatment with chronic anti-coagulation or anti-platelet therapy (prophylactic aspirin is

acceptable)

13. Treatment within 30 days of investigational agents as part of a research study.

14. Treatment with theophylline or aminophylline within 12 hours of study dosing

15. Treatment with Persantine and/or Aggrenox within 5 days

16. Clinical conditions that in the opinion of the investigator would make the subject unsuit-

able for the study.

Recruitment

All COVID-19 clinical research studies at the UMB medical center are overseen by the institu-

tion’s COVID-19 task force committee that organized the screening of COVID-19 patients for

enrollment in clinical trials. This group functioned beginning in the Spring of 2020. A daily

research “huddle” facilitated this process and identified assigning study subjects to the most

appropriate trials. A representative from our study team attended this meeting each day and

did not encounter any barriers related to competing trials. Study staff screened the medical

records of COVID 19 positive patients and the COVID Huddle call to determine if they were

eligible for the RA study. Hospitalized COVID-19 patients were approached according to the

unit policy (video chat etc). Incentives were not offered to study participants. A legally autho-

rized representative (LAR) was identified in case patients became incapacitated.

Patient treatment

Infusion of RA at a rate of 1.44 μg/kg/h for 12–48 hours is safe in patients with sickle cell ane-

mia experiencing painful vaso-occlusive episodes [27] and in lung-transplant recipients [28].

In order to establish that RA is safe in Covid-19 patients, we were initially directed by our Data

and Safety Monitoring Board (DSMB) to treat 5 patients hospitalized Covid-19 patients with

drug. The current study reports the effects of RA in this cohort, as well as survival data in mice

with Covid-19. Having found that RA is safe, we have initiated a second double-blind random-

ized cohort, not included here to better assess drug efficacy. RA was administered intrave-

nously by a trained registered nurse using a pediatric infusion pump with a loading dose of

5 μg/kg/h for 30 min followed by 1.44 /kg/h for 6h. Compared to Lexiscan that is rapidly

injected at a rate of 400 μg/ 10 seconds, the slow infusions used in the current study were

found to eliminate unpleasant side effects including headache, dizziness, nausea, stomach dis-

comfort, mild chest discomfort, shortness of breath, and flushing. Oxygen saturation (SpO2),

blood pressure, heart rate, respiratory rate, CBC w/diff, CMP, sedimentation rate, creatine

kinase, ABG, chest imaging, and EKG were monitored periodically throughout infusion.
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Blood collection and processing

Blood samples were drawn as a source of plasma and peripheral blood mononuclear cells

(PBMCs). Blood samples were collected just prior to the start of RA infusion (0 hr), just prior

to the end of the loading dose (30 min), 4 hours into the maintenance dose (4.5 hr), and the

next day (� 24 hr after the start of infusion). After centrifugation at 366g for 10 minutes at

room temperature (RT) plasma (1.5 ml) was collected and stored at -80˚C for later analysis of

cytokines, CRP, and D-dimer. PBMCs were isolated by the common Ficoll-Paque method

with modifications. Plasma was replaced by 1.5 ml PBS and the blood was overlaid on 2.5ml

Ficoll Paque Plus (GE Healthcare) in a sterile 15 ml conical tube and centrifuged at 693g for 25

minutes at RT without breaking. Cells at the interface were collected and transferred to 15mL

conical tubes and washed twice with 12ml PBS and centrifuged at 366g for 7 minutes. Live

cells were frozen overnight in freezing media (90%FBS+10%DMSO) at a concentration of

1X10^7 cells/ml using a Mr. Frosty container at -80˚C and transferred to liquid nitrogen the

following morning.

Flow cytometry

Live cells were thawed in 15 mL conical tubes prefilled with 10 ml warm (37˚C) wash media

(20% FBS-RPMI-1640) mixed, centrifuged at 500g for 10 minutes at RT, washed in PBS and

centrifuged again. Cells were resuspended at 1X10^7 cells/ml and transferred in 100 μl to 96

well plates for cell viability staining with Zombie NIR. Cells were then treated with human Fc

block and stained with antibodies (Table 1) at 4˚C for 20 minutes. Samples (including single

positive controls, FMOs, and stained samples) were fixed with 2% paraformaldehyde and ana-

lyzed with a Cytek Aurora in the Flow Cytometry Core Laboratory (UMB, Baltimore, MD).

Data were analyzed using FCS Express 7 Research Edition (De Novo Software, Pasadena, CA).

Measurement of cytokines/chemokines

Plasma levels of cytokines/chemokines were measured as previously described [28] using a

Luminex assay kit (Millipore Sigma, Burlington, MA) in the Cytokine Core Laboratory UMB.

Treatment with RA in a murine COVID-19 model

Mouse studies were approved by the University of Virginia Animal Care and Use Committee

(Protocol Number 4309) and performed in the University’s certified animal Biosafety Level 3

laboratory. All surgery was performed under sodium pentobarbital anesthesia. Male 2-

3-month-old 25–30 g B6.Cg-Tg(K18-ACE2) 2Prlmn/J mice were obtained from Jackson Labo-

ratories [29]. These mice express the SARS-CoV-2 receptor, human angiotensin-converting

enzyme 2 (hACE2) in epithelia and develop a usually lethal infection after intranasal inocula-

tion with a human strain of virus [30, 31]. To treat COVID-19 in mice treated with RA, 7-day

Table 1. Antibodies used for flow cytometry experiments.

Specificity Clone Fluorochrome Target Vendor

CD3 UCHT1 BV 605 Lineage T Cells Biolegend

CD19 SJ25-C1 PE-Ax610 B Cells Fisherthermo

CD69 FN50 Ax 700 Activation Biolegend

TCR Vα24-Jα18 6B11 PerCP-eF710 INKT Cells Invitrogen

Zombie NA NIR Viability Biolegend

Ax, Alexa; NIR, NIR dye for dead cell stain; BV, brilliant violet; PE, R-phycoerythrin; PerCP, peridinin chlorophyll protein.

https://doi.org/10.1371/journal.pone.0288920.t001
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Alzet 1007D osmotic pumps with a pump rate of 0.5 μl/hr and containing saline or 80 μg/ml

RA (� 1.44 μg/kg/h) were implanted subcutaneously just prior to being challenged with 1250

Pfu of Hong Kong VM20001061/2020 (NR-52282, BEI Resources) via the intranasal route

under ketamine/xylazine anesthesia. Mice were evaluated twice daily for clinical symptoms,

including weight loss, activity level, fur appearance, posture, and eye closure and were eutha-

nized when weight loss was >20% of initial weight or a maximum score was observed in two

symptom categories.

Statistical analysis

We normalized human study data (NKT cell activation, cytokines, etc) to baseline levels sam-

pled before the start of drug treatment. Changes in patient circulating cytokine levels over time

were analyzed using a repeated measures model with a spatial power covariance structure.

Data were analyzed using a log scale to facilitate interpretation as fold changes relative to base-

line. Ninety-five % confidence intervals were used to estimate changes from baseline at 30

minutes, 4.5 hours and 24 hours. Blood pressures were analyzed using repeated measures

applied to changes from baseline. The repeated measures analyses were carried out in SAS 9.4

PROC MIXED. Clinical data (SpO2, CRP and D-dimer) were reported as mean ± SEM; paired

t-tests were used to compare the 24 hour levels to baseline. GraphPad Prism software version 9

was used for statistical analysis of flow cytometry data; paired t-tests were used to compare per-

centages of circulating CD69+CD3+6B11- conventional T cells and CD69+6B11+ iNKT cells

at baseline and 30 minutes into RA infusion. Results were considered statistically significant if

P<0.05. Differences between mouse survival curves are based on the Log rank Mantel Cox

test.

Ethics statement

Human subjects: This study was approved by the institutional review board of the University

of Maryland, Baltimore (IRB number: HP-00091372) and registered at Clinicaltrials.gov

(NCT04606069). RA treatment of moderate to severe COVID-19 patients was approved by

FDA (IND # 149635).

Results

Case Series: Subjects participating in this study were patients requiring hospital admission for

COVID-19 diagnosed by PCR and provided informed written consent to receive intravenous

RA. Based on prior studies, the steady-state plasma level of RA after infusion for 6 hours of

1.44 μg/kg/h is about 2 ng/ml and is devoid of side effects [31]. By comparison, RA adminis-

tered as Lexiscan, a 400 μg bolus over 10 seconds for myocardial perfusion imaging results in a

peak plasma level of about 15 ng/ml, and is associated with unpleasant side effects [32, 33].

The 5 subjects enrolled in this study were all unvaccinated and classified as WHO stages

4–5 [34]. Based on their clinical need they were given supplemental oxygen by nasal canula

(NC) including high flow NC, but none required intubation. All 5 patients recovered and were

discharged on room air 3–9 days after admission. Upon diagnosis of COVID-19, all patients

received 6 mg daily dexamethasone as standard of care. RA was administered within 3 hours

of consent. Side effects were minimal; there was 1 case of transient self-limiting nausea, but no

other toxicities or reportable side effects during infusion and 30 days of follow-up. None of the

subjects who consented to the study dropped out. Fig 1 summarizes subject enrollment, alloca-

tion, follow-up, and analysis. Table 2 summarizes patient demographics. Although RA at high

doses can produce vasodilation mediated by A2ARs on vascular smooth muscle, at the dose

used in this study blood pressure was minimally changed as illustrated in Fig 2.
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Fig 1. Subject flow diagram.

https://doi.org/10.1371/journal.pone.0288920.g001

Table 2. Demographics of the COVID-19 patients who received regadenoson treatment.

Subject ID Age Gender Race Ethnicity BMI Oxygen Supplementation on Admission

101–001 60 M AA Not Hispanic or Latino 43.7 2L NC

101–002 46 F NA Not Hispanic or Latino 36.3 2L NC

101–003 37 M AA Not Hispanic or Latino 40.2 2L NC

101–004 65 M W Not Hispanic or Latino 29.2 40L HFNC FiO2 60%

101–005 58 M W Not Hispanic or Latino 28.2 6L NC

M: Male; F: Female; AA: African American; NA: Native American; BMI: body mass index; L: Liters; NC: nasal cannula; HFNC: High flow nasal cannula

https://doi.org/10.1371/journal.pone.0288920.t002
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Case 1: A 60-year-old obese male [body mass index (BMI), 43.7] with a history of hypertension

and gastric reflux presented with 4-days of chest pain and shortness of breath. On admis-

sion, oxygen saturation (SpO2) was 90% and chest x-ray demonstrated patchy opacities/

consolidation at the bases. The patient received standard of care treatments including

Remdesivir and dexamethasone with 2 liters/min supplemental O2 (WHO stage 4). He was

treated with RA one day after admission and reported rapid subjective symptomatic

improvement. O2 support was reduced to 1 liter NC 2 days later and the patient was dis-

charged on day 6.

Case 2: A 46-year-old obese female (BMI 36.3) with a history of hiatal hernia and diverticulitis,

presented with a 10-day history of symptoms including shortness of breath with cough, and

later with nausea and vomiting. Prior to admission the patient received steroids and non-

Fig 2. Changes in blood pressure before, during and after regadenoson (RA) infusion. LD: Loading dose, 2.5 μg/kg

over 30 minutes. MD: Maintenance dose,1.44μg/kg/hour for 6 hours. Data shown are means ± SEM from 5 RA treated

COVID-19 patients. Repeated measures analysis applied to changes from baseline shows no significant changes during

or after RA infusion (SBP, p = 0.28, DBP, p = 0.28).

https://doi.org/10.1371/journal.pone.0288920.g002
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standard treatment with Albuterol, Azithromycin, and Ivermectin. On admission, the

patient was febrile (39.4˚C) and hypoxic (SpO2 85%). She received standard treatments

including dexamethasone and 2 liters/min of O2 by NC (WHO stage 4). The patient was

treated with RA one day after admission and reported rapid subjective symptomatic

improvement. O2 support was reduced to 1 liter within 2 days and the patient was dis-

charged on day 6.

Case 3: A 37-year-old obese male (BMI 40.2) with no other medical history presented after

7 days of shortness of breath on exertion that limited his physical activity. On admission

the patient was hypoxic with a SpO2 of 88% and his chest x-ray demonstrated right lower

lobe opacities. He received standard treatments including Remdesivir and dexamethasone

with 2 liters/min O2 by NC. The patient was treated with RA on the day of admission.

After the RA infusion, his SpO2 increased to 97%, and his oxygen supplementation was

weaned off with symptomatic improvement the following day. The patient was discharged

on day 3.

Case 4: A 65-year-old male (BMI 29.2) with a remote smoking history presented with persis-

tent symptoms of shortness of breath after outpatient treatment with monoclonal antibod-

ies. On admission the patient was hypoxic with a SpO2 of 87%. His chest x-ray showed

bilateral patchy opacities with mild to moderate pulmonary edema while a chest CT dem-

onstrated peripheral ground glass opacities with destructive changes of the dependent

parenchyma, consistent with COVID-19 pneumonia. He received treatment including a

JAK inhibitor and dexamethasone while also requiring 40L/minute high flow HFNC with a

FiO2 of 60% (WHO stage 5) and was admitted to the medical intensive care unit (MICU).

The patient was treated with RA after admission with rapidly improved SpO2 by comple-

tion of the RA infusion. The patient was transferred out of MICU on day 3, weaned down

to nasal cannula support by day 7 and discharged on day 9.

Case 5: A 58-year-old male (BMI 28.19) with a history of gastric reflux presented with persis-

tent cough, shortness of breath, and acute hypoxia. His SpO2 was 88% on admission and he

was placed on 6 liters/minute of O2 via nasal cannula (WHO stage 4). His chest x-ray was

positive for multifocal patchy opacities with low lung volumes, while a chest CT demon-

strated widespread peripheral ground glass opacities, consistent with COVID-19 pneumo-

nia. He was out of the window for remdesivir but received dexamethasone and continued

oxygen supplementation. The patient received RA infusion and his SpO2 improved during

treatment. He reported a self-limiting episode of nausea that resolved after treatment was

complete. The patient was discharged on day 9.

Evidence that RA reduces lung inflammation

Oxygen saturation (SpO2) by pulse oximetry was measured in all 5 subjects before admission

(without oxygen supplementation), after admission (after starting oxygen supplementation),

and periodically after RA infusion. Compared to SpO2 measured prior to the start of RA infu-

sion (baseline), SpO2 was significantly elevated at 24 hours post RA infusion (93.80 ± 0.58 vs

96.60 ± 1.08, P = 0.031) (Fig 3A). CRP levels were high (>3 mg/L) in 3 of 4 patients (measured

only in 4 of 5 patients) and were reduced by>50% 24 hours after RA infusion (3.80 ± 1.40 vs

1.98 ± 0.74 mg/dL, P = 0.075) (Fig 3B). D dimer levels were high (>500 ng/ml) in 3 of 5

patients and were decreased at 24 hours post RA infusion (754 ± 168 vs 518 ± 98.3, P = 0.043)

(Fig 3C). Our analysis did not account for the possibility that some of these changes may have

occurred spontaneously over 24 h.
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Invariant NKT cells are influenced by COVID-19 and RA

Cytokine storm syndrome is characterized by elevated levels of proinflammatory cytokines,

including IFN-γ, TNFα, and IL-17 [35, 36]. Alarmins such as IL-33 are tissue-derived nuclear

proteins constitutively expressed at high levels in epithelial and endothelial barrier tissues. IL-

33 released from damaged epithelial cells may be important for initiating the inflammatory

response that can lead to cytokine storm since it is elevated in COVID-19 patients and can

activate iNKT cells [37]. As shown in Fig 4A, we identify rare iNKT cells (comprising 1% of all

CD3+ T cells in blood) by flow cytometry and we identified an activated subset based on

expression of the early lymphocyte activation marker, CD69. We found that iNKT cells, but

not conventional T cells from COVID-19 patients are mostly CD69+ (Fig 4B). Moreover, the

data show for the first time that RA treatment rapidly reduces the fraction of circulating iNKT

cells that are CD69+ by 50% within 30 minutes (Fig 4C). These findings suggest that cytokine

storm in COVID-19 is initiated in part by IL-33, and possibly other alarmins released from

infected epithelial cells, and trigger iNKT cell activation due to IL-33 binding to its SP2

receptor.

Fig 3. Effects of regadenoson (RA) infusion on oxygen saturation and C-reactive protein (CRP) levels in plasma of

COVID-19 patients. (A) SpO2 was determined by pulse oximetry just prior to and 24 hours after the initiation of 6.5

hours of RA infusion. There was a statistically significant difference in in SpO2 based on paired T-test (p = 0.03,n = 5).

(B) CRP before and 24 h after RA infusion, P = 0.075 (n = 4). (C) D-dimer before and after RA infusion (p = 0.043,

n = 5).

https://doi.org/10.1371/journal.pone.0288920.g003

Fig 4. Decrease in circulating iNKT cell activation during regadenoson (RA) infusion into patients with COVID-19. (A) Flow cytometry gating strategy

used to identify CD3+6B11+iNKT cells and their activation-state based on CD69 expression. (B) Comparison of percentages of circulating CD69+CD3+6B11-

conventional T cells and CD69+6B11+ iNKT cells at baseline and 30 minutes into RA infusion. (C) Changes in the activation state of iNKT cells in blood of

COVID 19 patients before, during and after RA infusion. PBMCs prepared from blood samples of 5 subjects were thawed and analyzed by flow cytometry at

the same time. The color scheme used in Fig 4B & 4C denote the same individuals as shown in Fig 3A.

https://doi.org/10.1371/journal.pone.0288920.g004
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A reduction in the activation of iNKT cells in response to RA infusion is expected to reduce

the production of proinflammatory cytokines produced by iNKT cells and other cells. We

compared the ratio over baseline of plasma cytokines at 30 minutes, 4.5 hours, and 24 hours

after the start of RA infusion (Fig 5). RA had little effect on the levels of 13 pro-inflammatory

cytokines at 30 minutes (Fig 5A), but 11 of 13 were reduced at 4.5 hours (Fig 5B) and 24 hours,

(17 h hours after the end of RA infusion, Fig 5C). The data suggest that suppression of iNKT

activation by RA precedes changes in plasma cytokines.

Treatment with regadenoson increases survival of SARS-CoV-2-infected

mice

The current study was not designed to determine if RA reduces mortality or length of stay in

hospitalized COVID-19 patients. In order to investigate the effects of RA on survival we evalu-

ated K18-hACE2 mice [38]. Thirty mice infected with SARS-CoV-2 were treated by subcuta-

neous infusion with RA and 11 controls were infused with saline. As shown in Fig 6, over 90%

of control mice died by day 10, mostly on days 4–5 after infection. Only 50% of RA treated

mice died, mostly on day 7, at the time when RA ran out. These findings show that RA infu-

sion decreases mortality in COVID-19-infected mice and suggest that longer treatment may

produce better protection.

Discussion

For this case series we treated five COVID-19 patients with an intravenous infusion of RA.

These patients were enrolled in an NHLBI sponsored Clinical Trial (NCT0460606) to evaluate

safety and evidence of efficacy of RA for reducing cytokine storm. This is the first examination

of an A2AR selective agonist in COVID-19 patients. We restricted this initial study to moder-

ately ill patients as characterized by respiratory disease based on clinical assessment and radio-

graphic imaging in addition to oxygen supplementation with either low flow (WHO stage 4)

or high flow (WHO stage 5). No intubated or ECMO patients (WHO stages 6–7) were

enrolled.

Adenosine is produced by hypoxic or ischemic tissues and has been found to have vasodila-

tory, anti-platelet and broadly anti-inflammatory effects that are mostly mediated by the

A2AR. RA is a selective A2AR agonist that is clinically used as a coronary vasodilator for

Fig 5. Changes of plasma proinflammatory cytokines/chemokines during and after RA infusion. Cytokine levels

were normalized to baseline just prior to RA infusion. Cytokine levels below and above baseline values are depicted by

green and red, respectively. Blood was collected before RA infusion (baseline) and 3 times after the start of infusion:

(A) at the end of loading dose (5μg/kg/hour, 30 minutes), (B) 4 hours into the maintenance dose (1.44μg/kg/hour, 4.5

hours) and (C) 17 hours post RA infusion, n = 5. Green dots and lines indicate cytokine levels lower than baseline,

*P<0.1; **P�0.05 relative to baseline by Paired T-Tests.

https://doi.org/10.1371/journal.pone.0288920.g005
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myocardial perfusion imaging. During myocardial perfusion imaging RA frequently produces

unpleasant side effects. Adverse events begin soon after dosing and quickly resolve within an

hour in most patients. In the current study we avoided the side effects associated with 400μg

bolus injection by administering a slow loading dose of 5 μg/kg/h over 30 minutes followed by

a maintenance does of 1.44 μg/kg/h for 6 h. We have previously reported that RA is safe and

devoid of side effects during 12 and 48 hours of continuous infusions of 1.44 μg/kg/h in sickle

cell patients undergoing painful vaso-occlusive crises [39] and lung transplant recipients [28].

Of the 5 COVID-19 patients treated with RA in this study, only one experienced a mild side

effect, transient self-limiting nausea. We conclude that RA is safe to use in moderately ill

COVID-19 patients. We show that similar dosing of RA to K18-hACE2 transgenic mice that

are susceptible to COVID-19 causes a significant reduction in mortality.

This uncontrolled 5 patient case series was not powered to demonstrate that RA reduces

mortality or length of stay in the hospital. We did observe promising effects within 24 hours of

RA treatment including: subjective improvement in all subjects; increased SpO2; decreased D-

dimer selectively in patients with high D-dimer levels (>500 ng/ml); a trend toward lower

CRP selectively in patients with high CRP levels (> 3mg/L); rapidly reduced expression of

CD69 on circulating iNKT cells; and a gradual reduction in circulating levels of 11 of 13 pro-

inflammatory cytokines. A larger placebo-controlled clinical trial is needed to confirm benefi-

cial effects of RA. The current study does suggest that RA will be effective for rapidly reducing

iNKT cell activation and cytokine production in COVID-19 patients.

In previous animal studies the administration of A2AR agonists was found to reduce ische-

mia reperfusion-injury (IRI) in several tissues including liver [40] and lung [28, 41]. Although

A2AR activation produces anti-inflammatory responses in neutrophils, macrophages, T cells

and platelets, the cell that appears to be most important for adenosine to suppress

Fig 6. Regadenoson increases survival of SARS-CoV-2-infected K18-mice. Seven day 0.5 μl/h Alzet pumps loaded

with 80 μg/ml Regadenoson (N = 19), or saline (N = 11) were implanted subcutaneously into 2–3 month old B6.Cg-Tg

(K18-ACE2)2Prlmn/J mice just prior to infection with 1250 Pfu of Hong Kong VM20001061/2020. Mice were

euthanized based on criteria described in Methods. Data are combined from three independent experiments. Survival

curves are statistically different based on the Log rank Mantel Cox test, P<0.001. The time of RA infusion is indicated

by a horizontal bar.

https://doi.org/10.1371/journal.pone.0288920.g006

PLOS ONE Regadenoson for the treatment of COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0288920 August 11, 2023 12 / 19

https://doi.org/10.1371/journal.pone.0288920.g006
https://doi.org/10.1371/journal.pone.0288920


inflammatory cascades is the iNKT cell [42, 43]. The activation of iNKT cells is probably medi-

ated in part by epithelial cell damage from SARS-CoV-2 infection to produce host lipid media-

tors that activate the invariant TCR, and/or by the release of IL-33 that is elevated in COVID-

19 patients and activates iNKT cells via SP2 receptors [13]. Fig 7 illustrates some of the pro-

cesses that may be involved in activating iNKT cells in COVID-19 patients, and their inhibi-

tion by RA.

The activation of A2ARs on platelets inhibits their adhesion and aggregation [26, 44].

Blood levels of D-dimer have been shown to be highly correlated with unfavorable COVID-19

outcomes [45], development of pulmonary emboli [46, 47] and vascular thrombotic complica-

tions [48]. RA infusion is associated with reduced D-dimer levels. This finding suggests that

circulating RA may reduce the risk of pulmonary embolism and vascular thrombotic compli-

cations. Further study is necessary to prove this hypothesis.

Proinflammatory cytokine transcription is stimulated in iNKT cells in response to NF-κB

activation [42]. A2AR transcription is slowly enhanced in response to NF-κB activation and

RA evokes an anti-inflammatory response [42]. Over time after tissue injury, A2AR expression

and signaling become more effective at suppressing the activation of iNKT cells and other leu-

kocytes. The early activation marker CD69 is expressed at low levels in health individuals, but

is elevated on iNKT cells of COVID-19 patients. The fraction of CD69+ iNKT cells at the time

of admission correlates with patient hypoxia and poor outcome [17]. Other treatments that

might be expected to reduce the inflammatory response in COVID-19 patients are anti-iNKT

or anti-CD1d antibodies [49, 50] to deplete iNKT cells or block their activation, respectively.

As previously noted by Correale et al [9] aerosolized adenosine appears be effective for

treating COVID-19 subjects receiving supplemental oxygen. Iatrogenic hyperoxia therapy

reduces endogenous extracellular adenosine production. Moreover hyperoxia may reduce the

induction of A2ARs in iNKT cells [42], T cells [51], and macrophages [23]. Other factors that

may reduce adenosine production and signaling in the hyperoxic lung are reduced expression

of the ecto-enzymes CD39 and CD73 [21, 22] and inactivation of PANX1 channels that release

ATP [18, 52]. These observations suggest that hyperoxia will suppress adenosine production

and signaling due to several factors that may be counteracted by RA infusion.

In the current study RA was administered by IV infusion and gained access to blood and

peripheral tissues. In the study by Correale et al. [9] hospitalized COVID-19 patients inhaled

adenosine once or twice daily for 5 days. Despite its short half-life adenosine-treated patients

exhibited a significant increase in PaO2/FiO2 and death rate was reduced by adenosine inhala-

tion. Beneficial effects of inhaled adenosine were also reported in a subsequent two patient

case study [53]. Inhaled adenosine appears to be metabolized rapidly and does not accumulate

in peripheral blood since cardiovascular effects noted with IV adenosine are absent [54].

Unlike RA, adenosine activates A1 adenosine receptors in the cardiac SA and AV nodes,

which can produce bradycardia or heart block. Compared to inhaled adenosine, which has a

short half-life and does not accumulate in blood, RA has a terminal half-life of 2 hours, is dis-

tributed throughout the body and likely produces generalized anti-inflammatory and anti-

coagulant effects.

Limitations of the study

Since the effects of RA in COVID-19 patients were unknown, we applied strict exclusion crite-

ria to ensure patient safety. We assessed 253 hospitalized COVID-19 patients, 221 did not

meet inclusion criteria. We enrolled 5 COVID-19 patients to receive RA. This study did not

include untreated patient controls or have sufficient power to determine if RA reduced mortal-

ity or length of stay in the hospital, but we did observe promising effects in all five subjects
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Fig 7. Diagram showing some of the factors that mediate cytokin storm following infection with COVID-19. The

SARS-CoV-2 virus gains entry into lung type II epithelial cells by binding its spike protein to Angiotensis Converting

Enzyme 2. CD1d is expressed by epithelial cells. Viral entry causes stressed cells to release alarmins such as IL-33 which
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within 24 hours of RA treatment: subjective improvement; increased SpO2; a trend toward lower

CRP levels; rapidly reduced expression of CD69 on circulating iNKT cells; and a gradual reduc-

tion in circulating levels of 11 of 13 pro-inflammatory cytokines. The results are not adjusted for

multiple statistical tests and some of the observed reductions in cytokine levels might occur

spontaneously over time. A larger placebo-controlled clinical trial is needed to confirm these find-

ings, but they do suggest that RA will be effective for rapidly reducing iNKT cell activation and

cytokine production in inflamed COVID-19 patients. The ability of RA to improve the survival of

SARS-CoV-2-infected mice enhances out confidence in the results of the human studies.

Conclusion

Oxygen supplementation in COVID-19 patients with poor lung function may cause an iatro-

genic reduction in the release of adenine nucleotides into the extracellular space and a reduc-

tion in the rate of ATP conversion to adenosine by ecto-enzymes. These considerations

provide a rationale for administering RA or other A2AR agonists during oxygen supplementa-

tion that suppresses ATP release from cells and metabolism to adenosine. In the current study

we confirmed that iNKT cells are activated in COVID-19 patients and we show for the first

time that their activation is rapidly reduced in response to RA infusion. The RA-induced

reduction in iNKT cell activation precedes a decline in circulating levels of proinflammatory

cytokines. Mouse studies demonstrate improved survival in COVID-19 infected animals

treated with RA. These findings justify further evaluation of RA and other A2AR agonists for

treatment of COVID-19 patients and other causes of lung inflammation.
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