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Background. We evaluated the associations between baseline influenza virus–specific hemagglutination inhibition (HAI) and 
microneutralization (MN) titers and subsequent symptomatic influenza virus infection in a controlled human infection study.

Methods. We inoculated unvaccinated healthy adults aged 18–49 years with an influenza A/California/04/2009/H1N1pdm-like 
virus (NCT04044352). We collected serial safety labs, serum for HAI and MN, and nasopharyngeal swabs for reverse-transcription 
polymerase chain reaction (RT-PCR) testing. Analyses used the putative seroprotective titer of ≥40 for HAI and MN. The primary 
clinical outcome was mild-to-moderate influenza disease (MMID), defined as ≥1 postchallenge positive qualitative RT-PCR test 
with a qualifying symptom/clinical finding.

Results. Of 76 participants given influenza virus challenge, 54 (71.1%) experienced MMID. Clinical illness was generally very 
mild. MMID attack rates among participants with baseline titers ≥40 by HAI and MN were 64.9% and 67.9%, respectively, while 
MMID attack rates among participants with baseline titers <40 by HAI and MN were 76.9% and 78.3%, respectively. The estimated 
odds of developing MMID decreased by 19% (odds ratio, 0.81 [95% confidence interval, .62–1.06]; P = .126) for every 2-fold increase 
in baseline HAI. There were no significant adverse events.

Conclusions. We achieved a 71.1% attack rate of MMID. High baseline HAI and MN were associated with protection from illness.
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Controlled human infection models (CHIMs) of influenza vi
rus have been used since the 1930s to advance understanding 
of infection natural history, clinical characteristics, and im
mune responses [1–16]. Such studies were critical for advanc
ing the development of influenza antivirals and have helped 
establish a relative correlate of protection, hemagglutination in
hibition (HAI) antibody titer ≥40, used as the regulatory stan
dard for influenza vaccines [17–19]. CHIMs can efficiently 

evaluate vaccine efficacy, avoiding the high costs of field trials 
and the uncertainty of community strain circulation and attack 
rates [20]. While there is a precedent for vaccines to achieve li
censure based on a CHIM study [21], it is more likely that they 
would be used in midstage clinical development of influenza 
vaccines by informing the best vaccine candidates to advance 
into pivotal trials conducted to obtain regulatory approval [22].

In 2018, the National Institute of Allergy and Infectious 
Diseases (NIAID) launched its Strategic Plan for a Universal 
Influenza Vaccine [22]. This unprecedented public investment 
in influenza vaccine research and development created a con
sortium of scientists working in a coordinated effort to develop 
a universal influenza vaccine. Acknowledging that vaccine field 
trials are a major bottleneck in the clinical development path
way for new vaccines, NIAID made CHIMs central to its stra
tegic plan for the development of universal influenza vaccines 
and committed to expanding capacity for conducting them in 
the United States. In 2019, NIAID selected 6 vaccine and treat
ment evaluation unit (VTEU) sites to design and execute an 
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influenza virus CHIM trial. The goal of this report is to present 
all trial primary and secondary outcomes as defined by the 
study protocol.

METHODS

We conducted a CHIM study with influenza A/Bethesda/ 
MM2/H1N1, an A/California/04/2009/H1N1pdm-like virus, 
at 4 sites among healthy adults aged 18–49 years. The study 
was designed to assess clinical response, immunological re
sponse, and safety of the (H1N1)pdm09 viral challenge. A sche
matic of the study design is in Figure 1. Expanded study 
procedures are provided in the Supplementary Material. 
Participants were screened for good health beginning 1 month 
prior to viral challenge. Influenza vaccination within the 6 
months prior to screening was exclusionary. Two days prior 
to viral challenge, we admitted participants into an inpatient re
search unit and collected baseline specimens. We assessed in
fluenza and other respiratory viruses from nasopharyngeal 
(NP) swabs collected upon admission to the inpatient facility 
and then daily postchallenge.

The challenge virus was antigenically similar to the 2009 in
fluenza A pandemic virus that emerged in 2009 [23], circulated 
at the time of the study [24], and continues to circulate globally 
[24]. The challenge virus was produced under Good 
Manufacturing Practices (GMP) conditions from a virus seed 
stock derived by reverse genetics [25]. The 2-mL inoculum of 
virus contained a 1 × 107 median tissue culture infective dose 
(TCID50). On study day 1, we delivered 1 mL of virus product 
in each nostril to semi-recumbent participants using an intra
nasal mucosal atomization device. Participants were subse
quently monitored in the inpatient facility for at least 7 days 
with regular self-reported symptom assessments, clinical eval
uations, safety assessments, and specimen collections. 
Beginning on study day 8, participants could leave the inpatient 
unit if they met standardized discharge criteria, which included 
negative influenza tests. All participants with positive influenza 
tests on study day 8 were offered 1 dose of baloxavir marboxil. 
Additional follow-up for clinical evaluation, safety assessment, 
and clinical specimen collections continued for 3 months 
postchallenge.

Participants had standardized clinical evaluations daily while 
in the inpatient unit and during follow-up appointments. Safety 
laboratory tests were conducted on screening and on study days 
2, 4, and 8. Participants reported their symptoms twice daily 
during their inpatient stay using FLU-PRO, a standardized 
and validated symptom diary [26–28]. The FLU-PRO total 
score is computed as a mean score across 32 items and ranges 
from 0 (symptom free) to 4 (very severe symptoms).

The primary objective was to evaluate the association of 
baseline HAI antibody titers with the development of 
mild-to-moderate influenza disease (MMID) postchallenge 

(Supplementary Table 1). Secondary and exploratory objectives 
included evaluating the association of baseline microneutrali
zation (MN) or neuraminidase inhibition (NAI) antibody titers 
with the development of MMID postchallenge, determining the 
frequency of serious adverse events (SAEs), assessing potential 
alternative clinical case definitions, and evaluating associations 
between asymptomatic influenza virus infection or sympto
matic influenza-negative status and baseline HAI, MN, and 
NAI antibody titers (Supplementary Table 1).

MMID required 2 components: (1) evidence of influenza vi
rus by qualitative reverse-transcription polymerase chain reac
tion (RT-PCR) assay from an NP swab; and (2) any 1 or more of 
arthralgia, chest tightness, chills, conjunctivitis, coryza, de
creased appetite, diarrhea, dry cough, dyspnea/shortness of 
breath, fatigue/tiredness, fever (>38.0°C), headache, lympho
penia (<1000 cells/mL), myalgia, nasal congestion, nausea, ox
ygen saturation decrease by ≥3% from baseline, productive 
cough, rhinorrhea, sinus congestion, sore throat, and sweats 
[25]. For a secondary analysis, a more stringent outcome mea
sure, MMID-2, required 2 or more positive qualitative RT-PCR 
tests of NP swabs.

Participant sera were tested by HAI and MN assays against 
the challenge virus strain and by NAI assay against a reassor
tant H6N1 virus [29, 30]. Seroprotection for HAI and MN 
were defined as a titer ≥40, reflecting a putative cut point com
monly used to define susceptible versus seroprotective titers 
[31]. Seroconversion for each assay was defined by a minimum 
4-fold rise in titer postchallenge. NP swabs were tested by quan
titative RT-PCR to measure peak and total viral load.

Study procedures were in accordance with the ethical stan
dards of the Helsinki Declaration. The protocol and informed 
consent forms were approved by the institutional review boards 
at the participating VTEUs. Study participants provided in
formed consent. The study is registered at ClinicalTrials.gov 
(NCT04044352).

RESULTS

Participant Demographics and Baseline Immunologic Results

From 8 October 2019 through 8 December 2019, we screened 
188 people; 76 received influenza virus challenge (Figure 2). 
Demographics and baseline influenza antibody titers varied 
across the 4 study sites (Table 1 and Supplementary Table 2). 
The mean age was 33.4 years (range, 18–49 years), 46 (61%) 
were male, 5 (7%) were Hispanic, and 35 (46%) were Black 
or African American. Sixty-seven (88%) participants reported 
not receiving the seasonal influenza vaccine during the previ
ous year (2018–2019). Among participants receiving the influ
enza virus challenge, 75 (99%) completed the inpatient phase 
and 65 (86%) completed all study visits. The geometric mean 
titers (GMTs) prior to challenge for HAI, MN, and NAI were 
42.8 (95% confidence interval [CI], 5.0–718.4), 79.7 (95% CI, 
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5.0–1280.0), and 651.8 (95% CI, 51.0–3412.0), respectively 
(Table 2). Thirty-nine (51.3%) participants had baseline HAI 
titers <40 and 23 (30.3%) had baseline MN titers <40.

Influenza Virus Detection

Among participants receiving the influenza virus challenge, 62 
(81.6%) had at least 1 influenza A virus detection and 43 
(56.6%) had at least 2 influenza A detections through study 
day 8 (Table 2). The frequency of influenza A detections peaked 
on study day 2 and decreased rapidly (Supplementary Figure 1). 
Sixty (78.9%) participants had an initial influenza A detection 

on study day 2, and 2 (2.6%) had an initial influenza A detection 
on study day 3. By study day 8, 6 (7.9%) participants still had an 
influenza A detection and were treated with baloxavir. One par
ticipant (1.3%) had influenza A detections through study day 
13, and 1 (1.3%) left the challenge unit prior to study day 8 after 
several negative influenza A tests.

Baseline HAI and MN were negatively associated with in
fluenza A detection postchallenge (Table 2). Participants 
without any influenza A detection (n = 14) had baseline HAI 
GMT of 117.9 (95% CI, 61.3–227.0), MN GMT of 276.7 
(95% CI, 124.8–613.1), and NAI GMT of 844.2 (95% CI, 

Figure 1. Schematic of study design. Abbreviation: TCID50, median tissue culture infective dose.
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508.1–1402.7). Participants with an influenza A detection (n = 
62) had baseline HAI GMT of 34.0 (95% CI, 24.7–47.0), MN 
GMT of 60.1 (95% CI, 42.3–85.4), and NAI GMT of 614.8 
(95% CI, 458.4–824.4). The proportions of participants with 
baseline titers ≥40 by HAI and MN among those with any influ
enza A detection were 41.9% (95% CI, 29.5%–55.2%) and 64.5% 
(95% CI, 51.3%–76.3%), respectively, while the proportions of 
participants with baseline titers ≥40 by HAI and MN among 
those without influenza A detections was 78.6% (95% CI, 
49.2%–95.3%) and 92.9% (95% CI, 66.1%–99.8%). Using the 

more stringent definition for viral shedding of ≥2 days showed 
an even greater difference between these groups (Table 2).

The mean duration of viral shedding by qualitative RT-PCR 
for the 61 participants with at least 1 influenza A detection who 
were followed for the entire challenge period was 3.1 days (95% 
CI, 2.5–3.8 days). The duration tended to be higher in partici
pants with baseline HAI titer <40 (n = 35), with a mean of 3.8 
days (95% CI, 2.9–4.7 days), compared to participants with 
baseline HAI titer ≥40 (n = 26), with a mean of 2.3 days 
(95% CI, 1.6–3.0 days), with overlapping 95% CIs. 

Figure 2. Consort flow diagram. Abbreviation: mITT, modified intent-to-treat.
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Participants with baseline MN titer <40 (n = 23) shed virus lon
ger on average (mean, of 3.9 days [95% CI, 2.6–5.2 days]) than 
participants with baseline MN titer ≥40 (n = 39) (mean, 2.7 
days [95% CI, 2.1–3.3 days]), also with overlapping 95% CIs. 
The frequency of influenza A detection by study day was consis
tently higher among those with baseline titer <40 for both HAI 
and MN.

Peak and total viral load by quantitative RT-PCR were 
both significantly lower in participants with baseline HAI ti
ter ≥40 versus <40 (difference in mean peak viral load of 2.6 
log10 copies/mL [95% CI, .8–4.4]; difference in mean area 
under the curve, 2.8 log10 copies/mL per day observed 
[95% CI, 1.0–4.6]). The differences between MN seroprotec
tion groups were slightly smaller and did not meet statistical 
significance.

Influenza Illness

Fifty-four (71.1%) participants met the MMID case definition, 
while 38 (50.0%) met the MMID-2 case definition (Table 1). 

For the primary analysis of the association of baseline HAI titer 
and the subsequent development of MMID, univariable logistic 
regression estimated 19% decrease in the odds of MMID for 
every 2-fold increase in baseline HAI titer (ie, 1-unit increase 
in log2 titer) (OR, 0.81 [95% CI, .62–1.06]; P = .126) 
(Table 3). In a secondary analysis, there was a stronger associ
ation between baseline HAI titer and development of MMID-2 
—an estimated 32% decrease in the odds of MMID-2 for every 
2-fold increase in baseline HAI titer (OR, 0.68 [95% CI, 
.52–.89]; P = .006). Univariable logistic regression estimated a 
23% decrease in the odds of MMID for every fold increase in 
baseline MN titer (OR, 0.77 [95% CI, .60–.98]; P = .035) and 
an estimated 33% decrease in the odds of MMID-2 for every 
fold increase in baseline MN titer (OR, 0.67 [95% CI, 
.52–.86]; P = .002) (Table 3). There was a nonsignificant associ
ation between baseline NAI titer and development of MMID 
(OR, 0.80 [95% CI, .57–1.11]; P = .183), but there was evidence 
of an association between baseline NAI titer and development 
of MMID-2 (OR, 0.74 [95% CI, .55–1.00]; P = .050) (Table 3).

Table 1. Participant Demographics, Baseline Antibody Status, and Postchallenge Outcomes

Characteristic
Baltimore, 

Maryland (n = 20)
Cincinnati, 

Ohio (n = 24)
Durham, North 
Carolina (n = 15)

St Louis, Missouri 
(n = 17)

All Participants 
(N = 76)

Age, y, mean (SD) 35.0 (7.9) 32.3 (8.9) 34.9 (11.8) 31.7 (17) 33.4 (9.2)

Sex

Male 14 (70.0) 17 (70.8) 6 (40.0) 9 (52.9) 46 (60.5)

Female 6 (30.0) 7 (29.2) 9 (60.0) 8 (47.1) 30 (39.5)

Ethnicity

Not Hispanic/Latino 17 (85.0) 24 (100) 14 (93.3) 16 (94.1) 71 (93.4)

Hispanic/Latino 3 (15.0) 0 (0.0%) 1 (6.7) 1 (5.9) 5 (6.6)

Race

Black/African American 14 (70.0) 11 (45.8) 8 (53.3) 2 (11.8) 35 (46.1)

White 3 (15.0) 13 (54.2) 5 (33.3) 13 (76.5) 34 (44.7)

Other 3 (15.0) 0 (0.0) 2 (13.3) 2 (11.8) 7 (9.2)

BMI, mean (SD) 29.3 (4.1) 27.2 (4.1) 28.8 (3.8) 25.3 (4.1) 27.6 (4.3)

Prior seasonal influenza vaccination (2018–2019)

No 19 (95.0) 23 (95.8) 13 (86.7) 12 (70.6) 67 (88.2)

Yes 1 (5.0) 1 (4.2) 2 (13.3) 5 (29.4) 9 (11.8)

Baseline hemagglutination inhibition titer ≥40a

No 10 (50.0) 13 (54.2) 11 (73.3) 5 (29.4) 39 (51.3)

Yes 10 (50.0) 11 (44.8) 4 (26.7) 12 (70.6) 37 (48.7)

Baseline microneutralization titer ≥40a

No 8 (40.0) 9 (37.5) 2 (13.3) 4 (23.5) 23 (30.3)

Yes 12 (60.0) 15 (62.5) 13 (86.7) 13 (76.5) 53 (69.7)

Clinical outcomes

MMIDb 14 (70.0) 20 (83.3) 10 (66.7) 10 (58.8) 54 (71.1)

MMID-2c 9 (45.0) 13 (54.2) 8 (53.3) 8 (47.1) 38 (50.0)

Asymptomatic with at least 1 influenza detection 3 (15.0) 1 (4.2) 4 (26.7) 0 (0.0) 8 (10.5)

No influenza detections 3 (15.0) 3 (12.5) 1 (6.7) 7 (41.2) 14 (18.4)

Data are presented as No. (%) unless otherwise indicated.  

Abbreviations: BMI, body mass index; MMID, mild-to-moderate influenza disease; SD, standard deviation.  
aWe defined seroprotection for hemagglutination inhibition and microneutralization titers by a titer ≥40, reflecting a putative cut point commonly used to define susceptible versus 
seroprotective titers. We did not define a seroprotective titer for neuraminidase inhibition.  
bIncluding at least 1 influenza A detection (primary clinical endpoint).  
cIncluding at least 2 influenza A detections (secondary clinical endpoint).
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Based on a univariable logistic regression, each 2-fold in
crease in baseline MN titer was associated with a 42% (OR, 
0.58 [95% CI, .41–.82]) decrease in the odds of becoming 
RT-PCR positive and symptomatic (ie, meeting MMID crite
ria) compared to remaining RT-PCR negative, and a 49% 
(OR, 0.51 [95% CI, .31–.83]) decrease in odds of being 
RT-PCR positive and asymptomatic compared to remaining 
RT-PCR negative.

Predicted probabilities of MMID according to baseline HAI, 
MN, or NAI from univariable models are in Supplementary 
Figures 2–4. Kaplan-Meier curves with cumulative infection 

probabilities by HAI and MN baseline titers ≥40 are in 
Supplementary Figures 5 and 6.

Symptom scores were low overall, with study day 3 mean 
scores of 0.25 (95% CI, .16–.36) among participants with at 
least 1 influenza A virus detection and 0.10 (95% CI, .06–.15) 
among participants without influenza A virus detection. The 
most common symptoms were nasal congestion/rhinorrhea, 
sore throat, and sinus congestion. Only 3 (4.8%) had a postchal
lenge fever (>38.0°C). Symptom scores by body system/ 
domain peaked on study day 3, with generally higher scores 
observed among persons with any influenza A detection 

Table 2. Baseline Hemagglutination Inhibition, Microneutralization, and Neuraminidase Inhibition Antibodies and Postchallenge Outcomes

Antibody

RT-PCR Negative 
(None Positive)

RT-PCR Positive 
(1 or More)

RT-PCR Positive 
(2 or More) MMIDa MMID-2b

RT-PCR Positive 
Asymptomatic

(n = 14) (n = 62) (n = 43) (n = 54) (n = 38) (n = 8)

Hemagglutination inhibition

GMT (95% CI) 117.9 (61.3–227.0) 34.0 (24.7–47.0) 26.3 (18.0–38.6) 36.8 (26.1–52.0) 27.6 (18.4–41.4) 20.0 (6.9–58.0)

% with titer ≥40 
(95% CI)c

78.6 (49.2–95.3) 41.9 (29.5–55.2) 32.6 (19.1–48.5) 44.4 (30.9–58.6) 34.2 (19.6–51.4) 25 (3.2–65.1)

Microneutralization

GMT (95% CI) 276.7 (124.8–613.1) 60.1 (42.3–85.4) 45.2 (30.0–68.2) 62.9 (43.1–91.9) 45.1 (29.3–69.5) 44.3 (13.8–142.6)

% with titer ≥40 
(95% CI)c

92.9 (66.1–99.8) 64.5 (51.3–76.3) 60.5 (44.4–75.0) 66.7 (52.5–78.9) 60.5 (43.4–76.0) 50 (15.7–84.3)

Neuraminidase inhibition

GMT (95% CI) 844.2 (508.1–1402.7) 614.8 (458.4–824.4) 565.4 (396.0–807.2) 584.6 (424.7–804.7) 506.1 (345.4–741.6) 863.3 (358.3–2080.3)

Numbers of participants in the modified intent-to-treat population with available results are shown in the column heading.  

Abbreviations: CI, confidence interval; GMT, geometric mean titer; MMID, mild-to-moderate influenza disease; RT-PCR, qualitative reverse-transcription polymerase chain reaction.  
aIncluding at least 1 influenza A detection (primary clinical endpoint).  
bIncluding at least 2 influenza A detections (secondary clinical endpoint).  
cWe defined seroprotection for hemagglutination inhibition and microneutralization titers by a titer ≥40, reflecting a putative cut point commonly used to define susceptible versus 
seroprotective titers. We did not define a seroprotective titer for neuraminidase inhibition.

Table 3. Univariable Logistic Regression Modelsa Evaluating the Relationship of Baseline Antibodies With Mild-to-Moderate Influenza Disease 
Including Influenza A Detection

Antibody Model Parameterb Parameter Estimate Standard Error P Value Odds Ratio (95% CI)

MMIDc

Hemagglutination inhibitiond Intercept 2.06 0.82 .012 … …

Baseline log2 titer −0.21 0.14 .126 0.81 (.62–1.06)

Microneutralization Intercept 2.65 0.90 .003 … …

Baseline log2 titer −0.27 0.13 .035 0.77 (.60–.98)

Neuraminidase inhibition Intercept 3.02 1.64 .065 … …

Baseline log2 titer −0.22 0.17 .183 0.80 (.57–1.11)

MMID-2e

Hemagglutination inhibition Intercept 2.05 0.78 .008 … …

Baseline log2 titer −0.38 0.14 .006 0.68 (.52–.89)

Microneutralization Intercept 2.56 0.85 .003 … …

Baseline log2 titer −0.41 0.13 .002 0.67 (.52–.86)

Neuraminidase inhibition Intercept 2.80 1.45 .054 … …

Baseline log2 titer −0.30 0.15 .050 0.74 (.55–1.00)

Abbreviations: CI, confidence interval; MMID, mild-to-moderate influenza disease.  
aSeventy-six subjects in the modified intent-to-treat population are included in the models.  
bBaseline log2 titer calculated based on subject-specific geometric mean titer values for each assay, then log2 transformed.  
cIncluding at least 1 influenza A detection (primary clinical endpoint).  
dPrimary study analysis.  
eIncluding at least 2 influenza A detections (secondary clinical endpoint).
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compared to those without influenza A detection (Figure 3), 
with statistically significant differences on study days 3, 5, 
and 6.

Participants with higher baseline antibody titers had qualita
tively fewer MMID cases when infected than participants 
with lower titers (Table 2). MMID cases (n = 54) had baseline 
HAI GMT of 36.8 (95% CI, 26.1–52.0), MN GMT of 62.9 
(95% CI, 43.1–91.9), and NAI GMT of 584.6 (95% CI, 424.7– 
804.7). Asymptomatic participants with influenza A detections 
(n = 8) had baseline HAI GMT of 20.0 (95% CI, 6.9–58.0), MN 
GMT of 44.3 (95% CI, 13.8–142.6), and NAI GMT of 863.3 
(95% CI, 358.3–2080.3). Baseline seroprotection by HAI and 
MN among MMID cases was 44.4% (95% CI, 30.9%–58.6%) 
and 66.7% (95% CI, 52.5%–78.9%). Baseline seroprotection 
by HAI and MN among asymptomatic participants with influ
enza A detection was 25.0% (95% CI, 3.2%–65.1%) and 44.3% 
(95% CI, 13.8%–142.6%).

Immune Response to Challenge

GMFR from baseline and seroconversion proportions over 
time (baseline and days 8, 29, and 61 postchallenge) by post
challenge infection status are in Figure 4, Supplementary 
Tables 3–5, and Supplementary Figure 7. HAI and MN titers 
tended to peak at day 29 and level off through day 61 for par
ticipants with any influenza A detection, while participants 
without influenza A detection maintained similar levels to 
baseline. NAI titers also peaked at day 61 among participants 
with any influenza A detection. No participants without influ
enza A detection (n = 14) seroconverted for HAI, MN, or NAI. 
Among MMID cases (n = 54) and asymptomatic participants 
with at least 1 influenza A RT-PCR detection (n = 8), the esti
mated probability of seroconversion by HAI was similar at 
day 8 (3.8% [95% CI, .5%–13.0%] vs 0.0% [.0%–36.9%], respec
tively) and at day 29 (28.6% [3.7%–71.0%] vs 28.3% [16.0%– 
43.5%], respectively), but it was qualitatively higher in the small 
group of asymptomatic participants than MMID cases at day 61 
(33.3% [95% CI, 4.3%–77.7%] vs 18.6% [95% CI, 8.4%–33.4%], 
respectively; not significant). The same pattern was observed in 
seroconversion for MN and NAI over time. For NAI, partici
pants without influenza A detection and asymptomatic partic
ipants with at least 1 influenza A detection tended to have 
higher titers than MMID cases at each study timepoint, al
though this pattern was less distinct than for the other assays.

Safety

Of the 76 participants in the safety population, 46 (60.5%) ex
perienced an unsolicited adverse event (AE) of any attribution, 
including 26 participants (34.2%) who experienced at least 1 
challenge-related unsolicited AE (Supplementary Table 6). 
Twenty-four (31.6%) participants had challenge-related unso
licited AEs of mild severity, 2 (2.6%) participants had 
challenge-related unsolicited AEs of moderate severity (ear 

pain and pyrexia), and no participants had severe unsolicited 
AEs.

The most common unsolicited AE was lymphadenopathy, 
occurring in 10 (13.2%) participants; all were mild in severity. 
No noninfluenza respiratory viruses were detected postchal
lenge. There were no postchallenge electrocardiographic 
changes or cardiac abnormalities. There were no deaths or oth
er SAEs, and no participants discontinued due to AEs. 
Laboratory abnormalities graded as AEs were all mild in se
verity (hematology: 13/76 [17.1%]; chemistry: 7/76 [9.2%]).

DISCUSSION

In this multicenter study, intranasal administration of 1 × 107 

TCID50 influenza A (H1N1)pdm09 virus resulted in overall at
tack rates of 71%, 50%, and 10%, respectively of MMID, 
MMID-2, and asymptomatic influenza virus infection. 
Clinical illness postchallenge was mild. Participants were di
verse, unvaccinated, and almost evenly divided by baseline 
HAI titers <40 and ≥40. We chose ≥40 as a cutoff, recognizing 
that this HAI titer has been associated with a 50%–70% reduc
tion in influenza illness in prior studies. The HAI GMT at base
line was higher in those individuals who did not subsequently 
develop MMID than in those who did, although not all these 
differences were statistically significant. Likewise, higher base
line HAI was generally associated with a reduction in overall 
viral detection and mean duration of viral detection. 
Corresponding results for analysis of baseline MN titers may 
have been more discerning.

Previously, NIAID researchers validated the influenza 
A(H1N1)pdm09 CHIM on which this study was modeled 
[25]. That study achieved a 68% attack rate of MMID using 1 
× 107 TCID50 dose [25]. Similarly, we found that baseline 
HAI titer was associated with influenza outcomes, though the 
statistical significance of these associations was variable. The 
NIAID CHIM study reported that baseline NAI titer was 
more strongly correlated with clinical protection postchallenge 
than HAI [25], while we observed a weaker association between 
baseline NAI titer and influenza outcomes. A key difference be
tween the NIAID study and ours was that the former excluded 
persons with challenge virus–specific HAI titers >40 assessed at 
approximately 8 weeks prior to challenge. Some participants 
likely had subsequent, prechallenge influenza exposures, as 
HAI titers were higher by the time of inpatient admission 
[25]. Nevertheless, excluding participants with baseline HAI ti
ters ≥40 likely limited the ability of a study to evaluate associ
ations of baseline HAI titers and infection or clinical influenza 
outcomes. Other immune responses that correlate with HAI 
may also be similarly affected.

Symptom severity in our study was consistent with previous 
influenza CHIMs [26], including the NIAID study with the 
same virus [25]. On study day 3, we measured peak average 
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symptom score of 0.25 among participants with influenza A de
tections and 0.10 among participants without influenza A de
tection. This is equivalent to participants with influenza A 
detection reporting 8 mild symptoms on the 32-item 
FLU-PRO instrument and participants without influenza A de
tection reporting 3 mild symptoms on the instrument.

Symptom scores in our study are lower than naturally ac
quired, medically attended influenza illness [3, 26, 32]. 
Among 221 patients with laboratory-confirmed influenza ill
ness seeking care in ambulatory clinics, peak total symptom 
scores were 1.6 (equivalent to 51 points on the 32-item 
FLU-PRO scale), with more predominant chest/respiratory 
symptoms than we identified in the CHIM study [33]. The in
fluenza virus infections that we observed in the CHIM study 
may be more consistent with asymptomatic or pauci- 
symptomatic influenza virus infections that are common in 
community settings [34, 35]. For example, in a South African 
community study with routine, prospective testing for influen
za virus infection, approximately 60% of adults aged 19–44 
years with influenza detections were asymptomatic [34].

There are several strengths to this study. In closely moni
tored environments using standardized procedures and a 
GMP challenge virus, our multicenter influenza virus CHIM 

study was conducted safely and yielded consistent, high attack 
rates of MMID. Our participant population was diverse and 
had nearly equal numbers with and without baseline HAI titers 
≥40. We corroborated previous observations about the role of 
HAI in protection from MMID and in modifying viral shed
ding [25]. We also assessed an alternative clinical outcome def
inition of MMID-2, which was more stringent and more 
strongly associated baseline with HAI and MN.

There were also limitations to our approach. We included 
only healthy adult participants, as is standard for CHIM stud
ies, limiting the generalizability of our findings to children, old
er adults, and persons with chronic medical conditions. Further 
limiting the generalizability of influenza viral CHIM studies is 
the nature of inoculation, which may not recapitulate how per
sons become infected in the community and may contribute to 
the mild illnesses observed. As noted previously, HAI is a rela
tive, and not absolute, correlate of protection. While about 50% 
of our participants did not have baseline HAI titers ≥40, it is 
possible that most had been exposed previously to (H1N1) 
pdm09 and developed some protective immunity via cellular 
or mucosal mechanisms. Our use of highly sensitive RT-PCR 
laboratory diagnostics did not allow us to determine whether 
the assay was detecting viable virus or nonviable, residual 

Figure 3. Mean symptom score by body system, study day, and viral shedding status. Abbreviation: RT-PCR, qualitative reverse-transcription polymerase chain reaction.
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RNA from the challenge inoculum. The more stringent 
MMID-2 outcome definition, in which we required 2 or 
more positive RT-PCR tests, may be more likely to identify 

participants with true infection. The inclusion of double-blind 
placebo inoculations could have decreased bias regarding 
symptom self-reports and clinical assessments. Finally, future 

Figure 4. Hemagglutination inhibition, microneutralization, and neuraminidase inhibition antibody geometric mean titers (with 95% confidence intervals), by infection 
status and study day. Mild-to-moderate influenza disease (MMID) was defined as 1 or more positive polymerase chain reaction (PCR) tests and meeting the symptom thresh
old at any point during the challenge period. The gray dotted line displays the trajectory of the combined qualitative reverse-transcription PCR (RT-PCR)–positive asymptom
atic and RT-PCR–negative groups (ie, participants who did not meet the definition of MMID).
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influenza vaccine efficacy CHIM trials may seek to assess pre
vention of influenza illness of greater public health and clinical 
importance. For influenza vaccines that lessen the severity of 
illness or have greater efficacy against more severe rather 
than mild illness, the use of this current challenge model might 
underestimate the product efficacy.

This trial has advanced NIAID goals to expand the capacity 
for conducting influenza virus CHIMs. In addition to the re
sults in this report, we collected substantial data and specimens 
for future exploratory analyses that may help to refine study 
procedures and better understand the immunology of influenza 
virus CHIMs. We will explore exploratory objectives related to 
cellular and mucosal immune response, transcriptomics, and 
alternative clinical case definitions in subsequent analyses. 
Future influenza CHIMs should include more up-to-date influ
enza viruses, include placebo inoculations to minimize bias in 
outcome assessment, explore alternative methods to deliver the 
challenge virus to more closely mimic natural acquisition, and 
evaluate alternative clinical outcome definitions. There is a ro
bust pipeline of next-generation influenza vaccines and thera
peutics in preclinical development [36, 37], and we anticipate 
that influenza virus CHIMs will help to move them forward 
to licensure.

Supplementary Data

Supplementary materials are available at The Journal of 
Infectious Diseases online. Consisting of data provided by the 
authors to benefit the reader, the posted materials are not copy
edited and are the sole responsibility of the authors, so ques
tions or comments should be addressed to the corresponding 
author.
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