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1  |  INTRODUCTION

Recurrent miscarriage (RM) is a critical disorder of pregnancy that 
affects approximately 1%–5% of couples worldwide (Dimitriadis 
et al., 2020). The Royal College of Obstetricians and Gynaecologists 
has defined RM as three or more spontaneous miscarriages, while 
the American Society of Reproductive Medicine and the European 
Society of Human Reproduction and Embryology both defined RM 
as two or more failures of pregnancy (ESHRE Guideline Group on 
RPL, 2018; Green & O'Donoghue, 2019; Practice Committee of the 

American Society for Reproductive Medicine,  2012). The poten-
tial etiologies of RM are quite complex and include male factors 
(such as male partner's sperm quantity, sperm quality, and genetic 
mutations), and genetic abnormality, anatomic issues, and im-
mune disorders (Deshmukh & Way, 2019; Quenby et al., 2021; Yu 
& Bao, 2022). Therefore, the treatment of RM also varies greatly 
and includes surgery, immunotherapies, anticoagulants, endo-
crine therapies, etc. (Deng et al., 2022; Uthman et al., 2019; Wong 
et al., 2014). However, current management is still insufficient to 
solve RM.
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Abstract
Recurrent miscarriage (RM) affects approximately 1%–5% of couples worldwide. 
Due to its complicated etiologies, the treatments for RM also vary greatly, includ-
ing surgery for anatomic factors such as septate uterus and uterine adhesions, 
thyroid modulation drugs for hyperthyroidism and hypothyroidism, and aspirin 
and low molecular weight heparin for antiphospholipid syndrome. However, these 
treatment modalities are still insufficient to solve RM. Omega-3 fatty acids are re-
ported to modulate the dysregulation of immune cells, oxidative stress, endocrine 
disorders, inflammation, etc., which are closely associated with the pathogenesis 
of RM. However, there is a lack of a systematic description of the involvement 
of omega-3 fatty acids in treating RM, and the underlying mechanisms are also 
not clear. In this review, we sought to determine the potential mechanisms that 
are highly associated with the pathogenesis of RM and the regulation of omega-3 
fatty acids on these mechanisms. In addition, we also highlighted the direct and 
indirect clinical evidence of omega-3 fatty acid supplements to treat RM, which 
might encourage the application of omega-3 fatty acids to treat RM, thus improving 
pregnancy outcomes.
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Omega-3 fatty acids are a group of polyunsaturated fatty 
acids that mainly refer to α-linolenic acid (ALA), eicosapentaenoic 
acid (EPA), and docosahexaenoic acid (DHA) in terms of human 
physiology (Bradberry & Hilleman, 2013; Brinton & Mason, 2017). 
ALA, merely obtained from the diet, can be metabolized into EPA 
and DHA in humans, but the metabolized EPA and DHA are in-
sufficient due to dietary habits (Bradberry & Hilleman,  2013). 
Therefore, it is important to directly take in EPA and DHA from di-
etary sources, such as fish oil and other sea foods (DiNicolantonio 
& O'Keefe, 2020). In terms of RM, there is some evidence suggest-
ing the potential involvement of omega-3 fatty acids in treating 
or preventing RM (Carta et al., 2005; Lazzarin et al., 2009; Rossi 
& Costa,  1993). In addition, omega-3 fatty acids possess anti-
inflammatory, immune-modulatory, and endocrine-modulatory 
effects, which could possibly affect RM (Di Bari et al.,  2017; 
Dimitriadis et al., 2020; Rees et al., 2022; Singh, 2020; Tajuddin 
et al., 2016). However, there is no general consensus on the ben-
efits of omega-3 fatty acid supplements in treating RM as well as 
the fundamental mechanism of omega-3 fatty acids in disputing 
RM. This study aimed to review the potential involvement of ome-
ga-3 fatty acids in RM.

2  |  CURRENT OPINIONS ON RM

2.1  |  Epidemiology, risk factors, and treatment

RM is known for hampering the productivity of humans, and it 
also places huge stress on patients. It has been reported that 
couples, especially women with RM, bear huge psychological 
stress (Banno et al.,  2020). The average prevalence of women 
with one previous miscarriage is 10.8%, that of women with two 
miscarriages is 1.9%, and that of women with three or more mis-
carriages is 0.7% in the West (Quenby et al.,  2021). Taking the 
definition of RM as two or more previous miscarriages, the preva-
lence of miscarriage is obtained to be 2.6% in the West. However, 
the incidence of RM varies among regions and is reported to 
be 1%–5% (Dimitriadis et al.,  2020; Quenby et al.,  2021). Even 
worse, studies conducted in developing countries are lacking; 
thus, the actual data might vary. In the past few decades, several 
risk factors for RM have been identified. For instance, previous 
times of miscarriage is a critical risk factor for RM; individuals 
who experience six or more miscarriages face a nearly 60% risk 
of further miscarriage (Coomarasamy et al.,  2020). Age is also 
a well-recognized risk factor; individuals with an age range of 
20–29 years have a lower risk of RM, while those with an age 
below 20 or above 30 have a higher risk of RM (Dimitriadis 
et al., 2020; Quenby et al., 2021). Other typical risk factors in-
clude obesity [body mass index (BMI) ≥ 30], stress, smoking, 
high caffeine or alcohol intake during the first trimester, thyroid 
dysfunction, polycystic ovary syndrome, antiphospholipid syn-
drome, etc. (Chakraborty et al., 2013; Dong et al., 2020; Sugiura-
Ogasawara, 2015; Uthman et al., 2019).

The treatments of RM rely on the etiologies of RM, which vary 
greatly and mainly include anatomic factors, endocrine factors, im-
mune factors, etc. Regarding the common anatomic factors of RM, 
such as septate uterus and uterine adhesions, they can be treated 
with surgery. For instance, a meta-analysis suggests that RM caused 
by a septate uterus can be managed by hysteroscopic metroplasty, 
although there exists a potential risk of postoperative complica-
tions (Valle & Ekpo, 2013). For patients with RM induced by uter-
ine adhesions, hysteroscopic adhesiolysis is the common surgical 
management, combined with antiadhesion barriers if needed (Vitale 
et al., 2022).

Hyperthyroidism, hypothyroidism, and polycystic ovary 
syndrome are common endocrine etiologies of RM (Amrane & 
McConnell,  2019). The treatment of RM due to hyperthyroidism 
and hypothyroidism mainly includes antithyroid drugs (such as prop-
ylthiouracil and methimazole) and levothyroxine (Negro & Stagnaro-
Green, 2014). However, the dose of these agents should be carefully 
adjusted. In terms of polycystic ovary syndrome, the currently rec-
ommended management includes improvement of dietary intake, 
more physical activities, and weight control (Akre et al.,  2022). In 
addition, metformin is also recommended to assist in weight man-
agement and insulin resistance (Zhao & He, 2022).

Antiphospholipid syndrome is a well-recognized immune etiol-
ogy of RM that affects approximately 15%–30% of patients with RM 
(Schreiber et al., 2018). Currently, aspirin (75–100 mg/day) or low mo-
lecular weight heparin (dosage not mentioned) is recommended to man-
age antiphospholipid syndrome in patients with RM (ESHRE Guideline 
Group on RPL et al., 2018). Recently, several meta-analyses revealed 
that the combination of aspirin and low molecular weight heparin may 
improve the live birth rate compared with patients that received aspirin 
only (Hamulyak et al., 2020; Li et al., 2020; Liu et al., 2020).

However, the etiologies of approximately 50% of RM are still un-
clear (Tur-Torres et al.,  2017). Generally, several factors, including 
trophoblast dysfunction and relevant signaling pathways, genetic 
polymorphism, and immune dysfunction, may contribute to the 
pathogenesis of RM. Unfortunately, the treatment of patients with 
RM of unknown etiology remains unsatisfactory.

2.2  | Underlying mechanisms

2.2.1  |  Trophoblast dysfunction and relevant 
signaling pathways

Previous studies have implied that trophoblast dysfunction is con-
sidered an underlying reason for miscarriage (Knofler et al., 2019). 
For instance, one study suggests that a low level of insulin-like 
growth factor-binding protein 7 (IGFBP7), a member of the IGFBP 
family that regulates cell growth, proliferation, and differentiation, is 
noted in specimens of patients with RM, and knockdown of IGFBP7 
inhibits matrix metalloproteinase 2 and Slug (a widely expressed 
transcriptional regulator belonging to the Snail family of zinc finger 
transcription factors) levels via the insulin growth factor-1 receptor 
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(IGF-1R)-mediated c-Jun signaling pathway to reduce trophoblast 
invasion, thus inducing miscarriage (Wu et al.,  2022). Another 
study proposed that wingless/integrated (WNT) family member 
16 (WNT16) promotes the survival and invasion of trophoblasts 
through the Akt/β-catenin signaling pathway (Li, Shi, et al., 2022). 
In addition, it has been reported that long noncoding RNA-HZ04 
(lncRNA-HZ04) binds with microRNA-HZ04 (miR-HZ04) to af-
fect the stability of type 1 inositol 1,4,5-trisphosphate receptor 
(IP3R1), subsequently activating the Ca2+-mediated IP3R1/phospho-
calmodulin-dependent protein kinase II (p-CMKII)/β-sarcoglycan 
(SGCB) signaling pathway, thus increasing trophoblast apoptosis. 
Moreover, psoralen, a phytochemical compound that is traditionally 
used for treating psoriasis combined with ultraviolet, promotes the 
viability and invasion ability of trophoblasts and elevates the ex-
pression and activity of MMP-2 and MMP-9, as well as the nuclear 
accumulation and translocation of p65, suggesting that psoralen 
protects miscarriage by activating the nuclear factor-κB pathway 
(Qi et al., 2022). Indeed, regulating trophoblast dysfunction and the 
underlying molecular mechanisms has become a research hotspot 
in recent years. It could be assumed that this research field may 
identify potential treatment targets and generate novel treatment 
options for RM in the near future; however, further validation is 
still needed (Figure 1).

2.2.2  |  Genetic polymorphism

In recent years, studies have focused on the genetic risk factors for 
RM. For instance, Kwon et al.  (2022) evaluated 388 patients with 
RM and 280 controls in Korea and revealed that the rs10515478 
C>G polymorphism of the SMAD5 gene and the rs1046875 
G>A polymorphism of the fructosamine 3 kinase-related protein 
(FN3KRP) gene are associated with a lower risk of RM. A study con-
ducted by Talwar et al.  (2022) suggests that the 844INS68 poly-
morphism of cystathionine beta-synthase (CBS) combined with the 
A2756G polymorphism of 5-methytetrahydrofolate-homocysteine 
methyltransferase (MTR) is associated with over 2-fold increased 
RM risk. Salimi et al. (2020) presented a meta-analysis including 31 
case–control studies and revealed that 174 G>C and 634 G>C poly-
morphisms of the interleukin-6 (IL-6) gene and 137 G>C polymor-
phisms of the IL-18 gene are associated with a higher risk of RM. 
Another meta-analysis including 18 case–control studies conducted 
by Su et al.  (2011) indicated that vascular endothelial growth fac-
tor (VEGF) 1154 G>A and endothelial nitric oxide synthase (eNOS) 
Glu298Asp polymorphisms are closely associated with the risk of 
RM. These studies have highlighted the potential genetic risk fac-
tors for RM. However, more studies are encouraged to achieve a 
deep understanding of RM.

F IGURE  1 The hypothesized mechanism of omega-3 fatty acids in treating RM.
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2.2.3  |  Immunity, oxidative stress, and inflammation 
in RM

The dysregulation of immunity, existence of oxidative stress, and 
high level of inflammation are thought to be key parameters in the 
pathogenesis of RM (Figure 1). Immune cells such as natural killer 
(NK) and T cells have a great impact on RM. A previous study dis-
closed a high cytotoxic activity of NK cells in RM patients in the 
luteal phase, which suggests that NK cell cytotoxic activity is respon-
sible for pregnancy loss in patients with RM (Sokolov et al., 2019). 
Another study revealed that tumor necrosis factor (TNF)-α+/CD56+ 
NK cells are associated with the risk of pregnancy loss in RM patients 
(Takeyama et al., 2021). A recent study identified a novel subset of 
NK cells, CXCR4+ CD56bright decidual NK cells, which are insuffi-
ciently expressed in RM patients and RM model mice; in addition, 
adoptive transfer of these cells to NK cell-deficient mice improves 
pregnancy outcomes (Tao et al., 2021). Notably, several studies con-
ducted with a mouse model of RM suggested that the modulation 
of NK cells in abortion-prone mice is able to promote pregnancy 
outcomes (Li et al.,  2017; Nagamatsu et al.,  2018; Rezaei Kahmini 
et al., 2020; Tanaka et al., 2016). T cells are also critical modulators of 
immunity. For instance, the adoption of CD4+CD25+Foxp3+ regula-
tory T (Treg) cells reduces abortion in RM mice (Wang et al., 2019). 
Meanwhile, it has also been reported that the polarization of T cells 
toward T-helper (Th)2 cells promotes pregnancy maintenance in 
abortion-prone mice (Li, Sun, et al., 2022). In patients with RM, it is 
reported that the Th1/Th2 ratio is increased (Kuroda et al., 2021). 
Another study suggests that the Treg/Th17 ratio is significantly de-
creased in patients with RM compared to individuals with normal 
pregnancies (Ji et al., 2019). In terms of macrophages, it is suggested 
that the promotion of autophagy and cell resistance in decidual 
macrophages improves pregnancy maintenance in RM model mice 
(Yang et al.,  2022). In addition, a higher level of M1 polarization 
of macrophages prevents pregnancy loss in RM model mice (Cui 
et al., 2021). Clinically, apoptosis and efferocytosis are higher in the 
macrophages of RM patients than in those of normal pregnancies 
(Sheng et al., 2022). In addition, M1 macrophages are abundant, but 
M2 macrophages are insufficient in the deciduae of patients with 
RM compared to those with normal pregnancies (Tsao et al., 2018).

Oxidative stress, caused by the imbalance of peroxidants and an-
tioxidants, participates in various pathological processes, including 
RM. A previous study suggests that the levels of heat shock pro-
tein 70, nitrotyrosine, and lipid peroxidation are all elevated in pla-
cental tissues from miscarriages compared with those from normal 
pregnancies (Hempstock et al.,  2003). The high level of oxidative 
stress hampers placental development, which induces pregnancy 
loss (Gupta et al., 2007). Clinically, numerous studies have implied 
that the level of oxidative stress is associated with RM. For in-
stance, total antioxidant capacity is significantly decreased in RM 
patients, while the level of a DNA damage marker related to oxida-
tive stress, 8-hydroxydeoxyguanosine, is increased in RM patients 
(Alrashed et al., 2021). Other markers of oxidative stress, including 
oxidized glutathione (Ghneim & Alshebly,  2016), malondialdehyde 

(Al-Sheikh et al., 2019), and nitric oxide (NO; Raffaelli et al., 2010), 
are all increased, but the levels of antioxidants, including super-
oxide dismutase (Ghneim et al.,  2016) and glutathione (Ghneim & 
Alshebly, 2016), are decreased in RM patients.

The high level of inflammation may induce apoptosis in tropho-
blast cells, which could result in pregnancy loss (Alfian et al., 2022; 
Yougbare et al.,  2017). Meanwhile, the levels of inflammatory cy-
tokines can be modulated by immune cells such as NK cells and Th 
cells. As mentioned earlier, these immune cells critically modulate 
RM; thus, inflammatory cytokines also participate in the patho-
genesis of RM. On the other hand, inflammation also regulates in-
sulin resistance, obesity, and polycystic ovary syndrome, which 
are known factors associated with RM (Chakraborty et al.,  2013; 
Sugiura-Ogasawara,  2015). Indeed, clinical studies have reported 
the dysregulation of inflammatory cytokines in patients with RM 
(Lob et al., 2021; Peng et al., 2021; Qian et al., 2018).

3  |  POTENTIAL INVOLVEMENT OF 
OMEGA-­3 FATTY ACIDS IN RM

Omega-3 fatty acids are a group of polyunsaturated fatty acids that 
exert multiple biological functions, such as regulating cell survival, 
inhibiting inflammation and oxidative stress, modulating immunity, 
and modifying the endocrine system.

3.1  | Omega-­3 fatty acids regulate trophoblast 
dysfunction

Trophoblast dysfunction is critically associated with RM. According 
to some previous studies, omega-3 fatty acids exert regulatory ef-
fects on trophoblast dysfunction. For instance, DHA (25 μM) attenu-
ated lipopolysaccharide-induced inflammation in trophoblast cell 
lines and decreased the preterm delivery of pregnant mice treated 
with LPS (Chen et al., 2018). A previous study suggested that DHA 
(12.5–100 μM) promoted the tube length and secretion of vascu-
lar endothelial growth factor in a trophoblast cell line in a dose-
dependent manner (Johnsen et al., 2011). Similar findings were also 
reported in another study (Basak & Duttaroy, 2013). It has also been 
reported that 100 mM DHA significantly induced oxidative stress 
in a trophoblast cell line, while 1 and 10 mM DHA markedly de-
creased oxidative stress; pretreatment with 1 and 10 mM DHA also 
promoted the survival rate of trophoblasts under oxidative stress 
induced by H2O2 treatment (Shoji et al., 2009). These studies sug-
gested the protective effect of DHA on trophoblast dysfunction, 
while the evidence of EPA on this is relatively lacking.

3.2  | Omega-­3 fatty acids modulate immunity

Accumulating evidence has shown that omega-3 fatty acids exert an 
immunoregulatory effect. One study showed that a fish oil-enriched 
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diet (4.0 g EPA and 2.9 g DHA per kg diet) increased CD11B+CD27− NK 
cells, CD107a+ NK cells, and CCR5+ NK cells after inflammation induc-
tion in mice (Jensen et al., 2022). In cancers, the activity of NK cells 
is inhibited (Seliger & Koehl, 2022). Exosomes from an omega-3 fatty 
acid (12.5 μM EPA or DHA)-treated multiple myeloma cell line (L363) 
were able to restore the activity of NK cells (NK-92; Moloudizargari 
et al., 2020). In addition, it has also been reported that a daily omega-
3 fatty acid-enriched diet (containing 1 g omega-3 fatty acid) for 
6 months reduced NK cell numbers and resulted in lower inflammation 
in healthy subjects (Mukaro et al., 2008). Although no studies have 
revealed the effect of omega-3 fatty acids under RM conditions, it is 
assumed that they might also restore NK cells to a normal level.

The regulatory effect of omega-3 fatty acids on T cells has been 
reported by a number of studies. It has been suggested that an ome-
ga-3 fatty acid-enriched diet (containing 5% omega-3 fatty acids) 
increased CD4+Foxp3+ and CD4+Foxp3+CD25+ Tregs that suppress 
inflammation in mice; mechanically, omega-3 fatty acid reduced Erk 
and Akt phosphorylation (Camacho-Munoz et al., 2022). Meanwhile, 
another study revealed that compared with a high-fat diet, ex vivo 
coculture of primary mouse CD4+ T cells with adipocytes from mice 
consuming high-fat plus omega-3 fatty acid (containing 5.3% kcal 
from menhaden fish oil) reduced Th1-related cytokines but increased 
Th2-related cytokines and lowered the level of the NOD-like recep-
tor family pyrin domain containing 3 (NLRP3) inflammasome (Liddle 
et al.,  2021). Moreover, supplementation with ALA, EPH, or DHA 
(100 μM) in a coculture system of human adipose-derived stem cells 
from obese and human mononuclear cells inhibited interleukin (IL)-
17, which is mainly secreted by Th17 cells (Chehimi et al., 2019).

In terms of the effect of omega-3 fatty acids on macrophages, 
one study reported that in healthy human-derived macrophages cul-
tured with a differentiation medium containing omega-3 fatty acids 
(20 μM), M1 macrophage differentiation was suppressed, but M2 
macrophage differentiation was promoted (Schwager et al., 2022). 
Another study revealed that omega-3 fatty acid (25 μM) reduced 
the production of NO and alleviated the level of inflammatory sta-
tus in macrophages from type 1 diabetes mellitus mice (Davanso 
et al.,  2021). Similar findings were observed in macrophages from 
patients with abdominal aortic aneurysm, in which ex vivo omega-3 
fatty acids (20 and 80 μM) reduced the production of proinflamma-
tory cytokines in these macrophages (Meital et al., 2019).

Although these studies have indicated the regulation of omega-3 
fatty acids in immunity, it should be considered that the immune 
condition between RM and the circumstances above (such as inflam-
mation, diabetes mellitus, and abdominal aortic aneurysm) may vary 
to some extent. Thus, the effect of omega-3 fatty acids on immunity 
in patients with RM still needs further verification.

3.3  | Omega-­3 fatty acids modulate oxidative ­
stress

Several studies have disclosed the effect of omega-3 fatty acids on 
oxidative stress. One study reported that consuming a diet enriched 

with omega-3 fatty acids (containing 2.68% EPA and 3.17% DHA) 
for3 months reduced the level of thiobarbituric acid–reactive sub-
stances, a lipid peroxidation marker, in police dogs; meanwhile, the 
activity of glutathione peroxidase (GPx) was elevated compared 
with dogs consuming a normal diet (Ravic et al.,  2022). Another 
study administered DHA-enriched fish oil (450 mg/kg body weight 
twice daily) to stress-induced brain oxidative stress model mice; the 
authors disclosed a lower level of serum lipid peroxidation and a 
higher level of serum total antioxidant capacity (Asari et al., 2022). 
Meanwhile, in rats fed a high-fat diet, the addition of omega-3 fatty 
acids (50.79 mol% DHA + EPA) reduced lipid peroxidation levels and 
increased GPx activity (Miralles-Perez et al.,  2021). One previous 
study explored the effect of omega-3 fatty acids on oxidative stress 
under the scenario of cigarette smoke (Wiest et al., 2017). The au-
thors fed the mice a control diet or omega-3 fatty acid diet (contain-
ing 1.8% ALA, 16.0% EPA, and 10.8% DHA) for 8 weeks and then 
exposed the mice to cigarette smoke for 5 days, 2 h per day. Cigarette 
smoke-induced oxidative stress markers were significantly reduced 
in mice fed an omega-3 fatty acid diet compared with mice fed a 
control diet (Wiest et al., 2017). A recent meta-analysis reviewed 39 
trials with 2875 subjects who either consumed omega-3 fatty acid 
supplements or placebo (Heshmati et al., 2019). The pooled analysis 
showed that total antioxidant capacity, GPx, and reduction of malon-
dialdehyde were significant in participants who received omega-3 
fatty acid supplements compared with those who received placebo; 
however, the changes in NO, glutathione, superoxide dismutase, and 
catalase activities were not significant between participants receiv-
ing different supplements (Heshmati et al., 2019). However, the mo-
lecular mechanisms by which omega-3 fatty acids regulate oxidative 
stress are still not clear and require further exploration.

3.4  | Omega-­3 fatty acids modulate the 
endocrine system

There is some evidence suggesting that omega-3 fatty acids are 
able to modulate endocrine function. For instance, a randomized, 
controlled trial revealed that in patients with polycystic ovary syn-
drome, omega-3 fatty acid (2000 mg/day omega-3 fatty acids) com-
bined with vitamin D (50,000 IU every 2 weeks) reduced the level 
of testosterone, ameliorated inflammation, improved total antioxi-
dant capacity, and promoted mental health compared with placebo 
(Jamilian, Samimi, Mirhosseini, Afshar Ebrahimi, Aghadavod, Talaee, 
et al., 2018). Similar findings have also been reported in other ran-
domized controlled trials (Amini et al., 2018; Rahmani et al., 2017; 
Sadeghi et al., 2020). Meanwhile, a recent meta-analysis included 10 
observational studies and revealed that omega-3 fatty dietary intake 
reduced the risk of endocrine-related cancers, such as ovarian can-
cer and endometrial cancer (Hoang et al., 2021). Moreover, one study 
reported that in rats with hyperthyroidism-induced hepatic dysfunc-
tion, supplementation with omega-3 fatty acids (3 g/kg/day contain-
ing 18% EPA and 12% DHA) plus L-thyroxine decreased the serum 
level of triiodo-l-thyronine compared with L-thyroxine alone; the 
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authors also illustrated that the total antioxidant capacity and inflam-
mation level were reduced by omega-3 fatty acids plus L-thyroxine 
compared with L-thyroxine alone (Gomaa & Abd El-Aziz,  2016). 
Considering that the pathogenesis of RM is closely associated with 
endocrine dysfunction, such as polycystic ovary syndrome, hyper-
thyroidism, and hypothyroidism. (Amrane & McConnell, 2019), it is 
likely that omega-3 fatty acids might modulate RM through endo-
crine regulation. However, there is no direct evidence illustrating 
the regulation of omega-3 fatty acids in the RM-related endocrine 
system, which should be explored in the future.

4  |  CLINICAL PERSPECTIVE OF OMEGA-­3 
FATTY ACID SUPPLEMENTS IN RM

Until now, some clinical studies have implied the effect of omega-
3 fatty acid supplements in RM. The direct evidence that omega-3 
fatty acids are used to treat RM is quite limited (Table 1). However, 
there are some studies indicating that omega-3 fatty acid supple-
ments could modulate inflammation, insulin resistance, thyroid 
antibodies, and oxidative stress in pregnant women, which, as men-
tioned above, is deeply associated with RM (Table 2).

4.1  | Direct evidence

The direct evidence of omega-3 fatty acids in treating RM is quite lim-
ited. In a randomized controlled trial, RM patients with impaired uter-
ine perfusion were assigned to receive daily 100 mg of aspirin, daily 4 g 
of omega-3 fatty acids, or daily 100 mg of aspirin plus 4 g of omega-3 
fatty acids. The results revealed that after 2 months of intervention, 

the uterine artery pulsatility index was increased in all three groups, 
which suggests that omega-3 fatty acids may serve as a therapeutic 
agent for RM due to impaired uterine perfusion (Lazzarin et al., 2009). 
However, the sample size of this study was not large enough (N = 20 in 
each group), and blinding was not mentioned. Additionally, this study 
does not investigate the effect of omega-3 fatty acids on live birth, a 
critical pregnancy outcome in patients with RM. Another prospective 
study enrolled 30 RM patients with antiphospholipid syndrome who 
either received low-dose aspirin or omega-3 fatty acids. The findings 
indicate that the live birth rate was 80% (12/15) in the aspirin group 
and 73.3% (11/15) in the omega-3 fatty acid group (p > .05). In addi-
tion, the gestation duration and fetal birth weight were both similar 
between groups (Carta et al., 2005). However, the small sample size 
of this study may result in low statistical power and affect the reli-
ability of the findings. Moreover, a prospective study enrolled 22 RM 
patients with antiphospholipid syndrome who were treated with fish 
oil, which was equivalent to 5.1 g of omega-3 fatty acids. After 3 years 
of intervention, only one fetal death occurred at the 27th week of 
gestation. The other 21 pregnancies end with babies of good health 
(Rossi & Costa, 1993). Again, the sample size of this study is small, and 
there lacks a control cohort. These studies indicate that omega-3 fatty 
acids possess treatment potential for RM. However, the sample sizes 
of these studies are generally small. Thus, more studies are required 
to further verify the therapeutic efficacy of omega-3 fatty acids in pa-
tients with RM.

4.2  |  Indirect evidence

There is also some indirect evidence indicating the potential of omega-
3 fatty acid supplements for the treatment of RM. For example, a 

TABLE  1 Direct evidence from clinical studies indicating the effect of omega-3 fatty acids on RM.

References Study design Participants Grouping Major findings

Lazzarin et al. (2009) Randomized, 
controlled trial

60 RM patients Aspirin (100 mg daily) 
(N = 20)

Omega-3 fatty acids (4 g 
daily) (N = 20)

Aspirin (100 mg daily) plus 
omega-3 fatty acids (4 g 
daily) (N = 20)

Aspirin plus omega-3 fatty acids 
group had the highest uterine 
blood flow index

Carta et al. (2005) Prospective study 30 RM patients with 
antiphospholipid 
syndrome

Aspirin (100 mg daily) 
(N = 15)

Fish oil derivate (4 g daily) 
(N = 15)

Live birth rate, gestational age at 
delivery, fetal birth weight, 
cesarean sections, and 
complications were comparable 
between groups

Rossi and Costa (1993) Prospective study 22 RM patients All received EPA and DHA 
(5.1 g daily, ratio: 1.5)

Of 23 pregnancies, 19 ended at the 
37th week producing a baby, 1 
was going on at 32nd week, 2 
pregnancies ended with cesarean 
section for preeclampsia at 
30th and 35th week, and 1 
intrauterine fetal death at the 
27th week

Abbreviations: CRP, C-reactive protein; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; RM, recurrent miscarriage.
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TABLE  2 Indirect evidence from clinical studies indicating the effect of omega-3 fatty acids on RM.

References Study design Participants Grouping Major findings

Sley et al. (2020) Prospective study 725 pregnant women Omega-3 fatty acid supplement (dose 
not clear) (N = 165)

No omega-3 fatty acid supplement 
(N = 560)

Omega-3 fatty acid supplement 
was associated with 10.2% 
lower levels of 8-iso-PGF2α 
and 10.3% lower levels of the 
metabolite

Jamilian, Samimi, 
Mirhosseini, 
Afshar 
Ebrahimi, 
Aghadavod, 
Taghizadeh, 
et al. (2018)

Randomized, 
controlled 
trial

40 women with 
gestational 
diabetes mellitus

Fish oil capsule containing DHA 
(180 mg) and EPA (120 mg) twice 
daily (N = 20)

Placebo (N = 20)

Fish oil supplement reduced 
mRNA levels of PPAR-γ, LDLR, 
IL-1, and TNF-α in PBMCs

Kajarabille 
et al. (2017)

Randomized, 
controlled 
trial

110 pregnant women Control dairy drink (N = 54)
Fish oil-enriched (containing 320 mg 

DHA and 72 mg EPA) dairy drink 
daily (N = 56)

Fish oil supplement increased 
superoxide dismutase and 
catalase at delivery and after 
2.5 months

Razavi 
et al. (2017)

Randomized, 
controlled 
trial

120 women with 
gestational 
diabetes mellitus

Omega-3 fatty acid (1000 mg twice 
daily) (N = 30)

Vitamin D (50,000 IU every 2 weeks) 
(N = 30)

Omega-3 fatty acid (1000 mg twice 
daily) + vitamin D (50,000 IU every 
2 weeks) (N = 30)

Placebo (N = 30)

Omega-3 fatty acid plus vitamin 
D reduced high-sensitivity 
CRP while increased total 
antioxidant capacity and 
glutathione; it also decreased 
the incidences of newborns' 
hyperbilirubinemia and 
hospitalization compared with 
other treatments

Benvenga 
et al. (2016)

Prospective study 236 thyroid disease-
free women

Swordfish (equivalent to 6.3 ± 2.1 g 
DHA + EPA monthly) (N = 48)

Oily fish (equivalent to 13.2 ± 5.4 g 
DHA + EPA monthly) (N = 52)

Swordfish+other fish (equivalent to 
6.0 ± 2.8 g DHA + EPA monthly) 
(N = 68)

Fish other than swordfish and oily 
fish (equivalent to 5.1 ± 3.8 g 
DHA + EPA monthly) (N = 68)

Positive rates and serum 
concentrations of 
thyroglobulin and 
thyroperoxidase antibodies 
were the lowest in oily fish 
group

Taghizadeh 
et al. (2016)

Randomized, 
controlled 
trial

60 women with 
gestational 
diabetes mellitus

Omega-3 fatty acid (1000 mg daily) 
plus vitamin E (400 IU daily) 
(N = 30)

Placebo (N = 30)

Omega-3 fatty acid plus vitamin 
E had beneficial effect on 
fasting plasma glucose, serum 
insulin concentration, and 
serum lipids

Jamilian 
et al. (2016)

Randomized, 
controlled 
trial

60 women with 
gestational 
diabetes mellitus

Omega-3 fatty acid (1000 mg 
daily) + vitamin E (400 IU daily) 
(N = 30)

Placebo (N = 30)

Omega-3 fatty acid promoted 
total antioxidant capacity but 
did not affect high-sensitivity 
CRP; it also decreased 
hyperbilirubinemia incidence 
in newborns

Haghiac 
et al. (2015)

Randomized, 
controlled 
trial

49 obese pregnant 
women

DHA plus EPA (2 g daily) (N = 25)
Placebo (N = 24)

DHA plus EPA treatment reduced 
plasma CRP and TLR4 in 
adipose and placental

Samimi 
et al. (2015)

Randomized, 
controlled 
trial

56 women with 
gestational 
diabetes mellitus

DHA plus EPA (1000 mg daily) (N = 28)
Placebo (N = 28)

DHA plus EPA resulted in a 
greater serum insulin change 
and lower high-sensitivity 
CRP, but did not affect fasting 
plasma glucose and lipid 
profiles

Abbreviations: CRP, C-reactive protein; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; IL-1, interleukin-1; LDLR, low-density lipoprotein 
receptor; PBMCs, peripheral blood mononuclear cells; PGF2α, prostaglandin F2α; PPAR-γ, peroxisome proliferator-activated receptor gamma; RM, 
recurrent miscarriage; TLR4, toll-like receptor 4; TNF-α, tumor necrosis factor-α.
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randomized controlled trial analyzed 49 obese pregnant women who 
either received placebo (N = 24) or daily 2 g of DHA plus EPA (N = 25) 
from weeks 10 to 16 of gestation to term. The results show that plasma 
C-reactive protein was reduced in women who received DHA plus 
EPA. Meanwhile, the adipose tissue and placenta in women who re-
ceived DHA plus EPA presented lower levels of inflammatory markers 
(Haghiac et al., 2015). A double-blinded, randomized, controlled trial 
revealed that in pregnant women with gestational diabetes mellitus, 
the administration of 180 mg of EPA and 120 mg of DHA twice a day for 
6 weeks increased the mRNA expression of peroxisome proliferator-
activated receptor gamma (PPAR-γ) and reduced the mRNA expression 
of low-density lipoprotein receptor (LDLR), IL-1, and tumor necrosis 
factor alpha (TNF-α) in peripheral blood mononuclear cells, indicat-
ing a lower level of insulin resistance (Jamilian Samimi, Mirhosseini, 
Afshar Ebrahimi, Aghadavod, Taghizadeh, et al., 2018). Similar findings 
have also been reported by other randomized controlled trials (Samimi 
et al., 2015; Taghizadeh et al., 2016). In a prospective study, 236 thy-
roid disease-free, Caucasian pregnant women were assigned to take-
in swordfish, oily fish, swordfish plus other fish, and fish other than 
swordfish and oily fish. The serum levels of thyroid antibodies were 
lowest in women consuming oily fish. Meanwhile, a negative relation-
ship was found between fish consumption and serum levels of thy-
roid antibodies in women consuming oily fish (Benvenga et al., 2016). 
A prospective study enrolled 725 pregnant women, among whom 
165 women consumed omega-3 fatty acids in the third trimester. The 
analysis revealed that the levels of urinary 8-iso-prostaglandin F2α, 
an oxidative stress marker, and its metabolite were lower in women 
who consumed omega-3 fatty acids (Sley et al., 2020). This study in-
dicates that omega-3 fatty acids reduce oxidative stress during preg-
nancy. Similar findings have also been reported (Jamilian et al., 2017; 
Kajarabille et al., 2017; Razavi et al., 2017). However, these studies did 
not directly focus on the effect of omega-3 fatty acids on pregnancy 
outcomes in patients with RM. Rather, they could only serve as indi-
rect evidence implying the treatment potential of omega-3 fatty acids 
in these patients. In addition, the dosage of omega-3 fatty acids var-
ies among studies, and the optimal dosage of omega-3 fatty acids still 
needs to be investigated. Moreover, most of these studies have a small 
sample size (fewer than 60 in each group), which would affect the sta-
tistical power and reliability of the findings.

5  |  CONCLUSION

RM greatly hampers reproductivity, which is induced or highly cor-
related with obesity, thyroid dysfunction, polycystic ovary syndrome, 
antiphospholipid syndrome, dysregulation of immune cells such as NK 
cells, T cells, and macrophages, oxidative stress, and other factors. In 
this review, it is clarified that omega-3 fatty acids may prevent the 
pathogenesis of RM by modulating the dysregulation of trophoblasts, 
immune cells, oxidative stress, and endocrine function. In addition, the 
summarization of clinical evidence suggests that omega-3 fatty acid 
supplements may serve as a potential therapeutic agent for RM, ei-
ther directly improving pregnancy outcomes in patients with RM or 

indirectly ameliorating inflammation, insulin resistance, oxidative 
stress, and thyroid dysfunction during pregnancy (Figure 1). However, 
there is too little evidence directly demonstrating the involvement 
of omega-3 fatty acids in the pathogenesis of RM or the efficacy of 
omega-3 fatty acids in treating patients with RM. Therefore, future 
studies should investigate the effect of omega-3 fatty acids on immu-
nity, oxidative stress, inflammation, and the endocrine system in RM, 
as well as the underlying molecular mechanisms. More importantly, 
further clinical studies should be conducted to clarify the therapeutic 
role of omega-3 fatty acid supplements in treating RM, thus promoting 
the outcome of these patients.
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