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Abstract: Annona muricate is a tropical plant that is well-known for its edible fruit of therapeutic
interest. LCMS/MS analyses were applied to identify phytoconstituents of the ethanolic extract of
the whole fruits and the aqueous extract of the edible fruit part, in addition to the investigation of
their anticancer properties against Ehrlich ascites carcinoma (EAC) in male albino mice. LCMS/MS
analyses resulted in the identification of 388 components, representing a wide array of classes of
compounds, including acetogenins as the major constituents, alkaloids, flavonoids, and phenolics.
Among them, four compounds were tentatively characterized as new compounds (1–4), including
an acid derivative, protocatechuic-coumaroyl-quinic acid (1), and three flavonoid derivatives, di-
hydromyricetin galloyl hexoside (2), apigenin gallate (3), and dihydromyricetin hexouronic acid
hexoside (4). Induction with EAC cells resulted in abnormalities in the gene expression of pro-
apoptotic genes (Bax and caspase-3) and anti-apoptotic gene (Bcl-2) in the tumor mass. Moreover,
microscopic, histopathological, and immune-histochemical examinations of the tumor mass and
liver tissues exhibited extensive growth of malignant Ehrlich carcinoma cells and marked hydropic
degeneration of hepatocytes and infiltration by tumor cells to liver tissue with marked inflamma-
tory reaction. These abnormalities were markedly ameliorated aftertreatment of EAC mice with A.
muricata extracts.

Keywords: Annona muricata; Annonaceae; UPLC-ESI-MS/MS; Bax; Bcl-2

1. Introduction

Annona muricata L., commonly known as soursop, Graviola, is a member of the family
Annonaceae comprising approximately 130 genera and 2300 species [1]. It is a lowland
tropical, fruit-bearing tree found in the rainforests of Africa, South America, and Southeast
Asia, which has been shown to contain a wide range of constituents of interesting biological
activities, such as antiviral, antiparasitic, anti-inflammatory, hypoglycemic, and anticancer
activities [2,3]. The flesh and pulp fruits are rich in water, carbohydrate, vitamins, salts, and
are ideal to be eaten readily or consumed as juice. A. muricata fruit and its juice are often
used to treat fevers, increase milk in nursing mothers, and as a mordant for gastrointestinal
orders such as diarrhea and dysentery [4]. A. muricata is reported to be a rich source of
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acetogenins, the major constituent of Annona, which has been identified to have cytotoxic
activity against different types of cancer cells potentiated by the presence of flavonoids to
enable maximum therapeutic effects [5,6].

Cancer is one of the deadliest diseases globally and especially in Western countries.
According to the International Cancer Observatory, millions of people died in 2020 as a
result of developing cancer [7]. This disorder results from genetic or epigenetic alterations
in the somatic cells along with abnormal cell growth which may be spread to other body
parts [8]. The cell death induced by an anticancer agent is programmed cell death or
apoptosis. This is an important physiological process that is responsible for homeostatic
mechanisms and the maintenance of cell populations in tissues [9]. The intervention of
Bax, Bcl-2, and caspase-3 gene expression is an important factor for determining tumor
susceptibility to a given anticancer agent [10]. Efforts are still being made to search for an
impressive adjuvant anticancer therapy, from natural sources, that would lessen or even
impede cancer progress.

The purpose of this study is to investigate the chemical constituents of both ethanolic
and aqueous extracts of A. muricata using high-performance liquid chromatography (HPLC)
linear ion trap mass spectrometry with negative and positive electrospray ionization modes
and their anticancer effect on induced Ehrlich ascites carcinoma in adult albino mice.

2. Results and Discussion
2.1. Characterization of the Phytochemical Constituents

In the present work, qualitative LCMS/MS analyses of the phytochemical composition
of the ethanolic extract of A. muricata whole fruits and the aqueous extract of the edible
part of the fruit were carried out using HPLC–DAD–ESI-MS/MS in negative and positive
ionization modes (Figure 1). The identification of the compounds based on the comparison
of the results of ESI-MS/MS experiments expressed Rts and fragmentation patterns with
those reported in studies collected from different databases, such as PubMed, Google
Scholar, and Web of Science.
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Figure 1. UPLC—ESI—MS/MS chromatogram of: (A) ethanolic extract of whole fruit, (B) water
extract of the edible part of A. muricata in positive (+ve) and negative (−ve) ionization modes.
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So far, 388 components have been tentatively identified from the ethanolic extract of A.
muricata whole fruits and the water extract of the edible part of the fruit, as presented in
Tables S1–S5. They represent a wide array of classes of compounds, mostly acetogenins
(the major constituents of the genus Annona).

Acetogenins are polyketides, constituted of 35 or 37 carbon atoms arranged as a long
alkyl chain terminated by a γ methyl γ lactone [11]. As represented in Table S1, 142 dif-
ferent types of acetogenins were tentatively characterized in this study. They included
36 acetogenins identified for the first time in A. muricata (Figure S1) and six identified for
the first time from the genus Annona (Figure S2). The other 106 acetogenins were previously
detected in this plant [1,6,11–22].

Alkaloids are the second major identified constituent, possessing isoquinoline-derived
structures. In total, 37 alkaloids were identified, including 14 identified for the first time
from A. muricata (Figure S3) and 11 identified for the first time from the genus Annona
(Table S4) [23–26].

Interestingly, most of the identified compounds, including phenolics and flavonoids,
were tentatively characterized for the first time from A. muricata and the genus Annona
together with other miscellaneous phytochemicals (Tables S2, S3 and S5) [27–82].

Notably, four compounds were tentatively new and previously not described from na-
ture. These included an acid derivative, protocatechuic-coumaroyl-quinic acid (1, Figure 2)
(146, Table S2) and three flavonoid derivatives: dihydromyricetin galloyl hexoside (2,
Figure 2) (239, Table S3), apigenin gallate (3, Figure 2) (241, Table S3), and dihydromyricetin
hexouronic acid hexoside (4, Figure 2) (244, Table S3).
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Figure 2. The structures of the new compounds (1–4) from A. muricata fruit.

Structural Identification of New Compounds

Compound 1 (Rt. 0.42 min) was tentatively assigned as protocatechuic coumaroyl
quinic acid (Figure 2). The ESI–MS spectrum (Figure 3) showed a molecular ion peak at
m/z 473 [M–H]–, and a base peak ion fragment at m/z135 [M–338]–, reflecting the existence
of protocatechuic acid after the loss of coumaroyl quinic acid [30].
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Compound 2 (Rt. 10.92 min) was tentatively assigned as dihydromyricetin galloyl
hexoside (Figure 2). The ESI–MS spectrum (Figure 3) showed a molecular ion peak
at m/z 635 [M+H]+, and fragment ions at m/z 320 [M–galloyl hexoside]+, represent-
ing dihydromyricetin moiety 162 [M–dihydromyricetin galloyl moiety]+, and 152 [M–
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dihydromyricetin glucose]+. Thus, compound 2 was identified as dihydromyricetin galloyl
hexoside [30].

Compound 3 (Rt. 11.14 min) was tentatively assigned as apigenin gallate (Figure 2).
The ESI-MS spectrum (Figure 3) showed a molecular ion peak at m/z 421 [M–H]–, fragment
ions at m/z 170 [gallic acid]+, and a base peak at m/z 151 [M–H–270]+, corresponding to
gallic acid after losing apigenin moiety. From this fragmentation pattern, compound 3 was
tentatively identified as apigenin gallate [30].

Compound 4 (Rt.12.36 min) was tentatively assigned as dihydromyricetin hexouronic
acid hexoside (Figure 2). The ESI–MS spectrum (Figure 3) showed a molecular ion peak
at m/z 657 [M–H]–, and fragment ions at m/z 176 and 162, resulting from the loss of
hexouronic acid and hexoside moieties, respectively. From this fragmentation pattern,
compound 4 was identified as dihydromyricetin hexouronic acid hexoside [30].

2.2. Molecular Findings

Most studies on the apoptotic activity of compounds were confirmed by Bax, Bcl-2, and
caspase-3 regulation mechanisms. Notably, the significant loss or inactivation of caspase-3
impairs the induction of apoptosis, leading to a dramatic imbalance in growth dynamics
and ultimately causing abnormal growth of human cancer cells [83].

This study revealed an elevation of the expression of the Bcl-2 gene with a concurrent
reduction in the expression of Bax and caspase-3 genes upon cancer induction by Ehrlich
tumor cells, as shown in Table 1 and Figure 4. Inversely, the expression of the Bcl-2 gene
decreased, and the expression of Bax and caspase-3 genes increased after treatment with dif-
ferent A. muricata extracts, as shown in Table 1 and Figure 4. These results are in agreement
with Awad et al. (2020) [84], who suggested that treatment with A. muricata extract trig-
gered apoptosis by upregulating apoptotic genes Bax and caspase-3, and downregulating
the anti-apoptotic Bcl-2 gene.

Table 1. The effect of cisplatin (2 mg/kg), A. muricata water extract (200 mg/kg), and A. muricata
ethanol extract (200 mg/kg) on the pro-apoptotic and anti-apoptotic gene expression in tumor mass
by using real-time PCR.

Parameters GII
(EAC)

GIII
(EAC + Cisplatin)

GIV
(EAC + Water)

GV
(EAC + Ethanol)

BAX 1.00 ± 0.58 6.51 ± 0.71 b 2.19 ± 0.11 2.07 ± 0.21
Bcl-2 1.00 ± 0.15 0.31 ± 0.09 b 0.19 ± 0.05 b 0.45 ± 0.13 b

Casp-3 1.00 ± 0.20 5.71 ± 1.88 b 3.21 ± 1.40 2.13 ± 0.88

Results were expressed as mean ± SEM (n = 10). from the control group. p < 0.01 and b p < 0.001 from the EAC
group. p < 0.001 from the EAC + Ethanol group. p < 0.001 from EAC + Water groups.

Moreover, our study agreed with the apoptotic effects found in vivo, where A. muricata
inhibited the progression of orthotopically implanted breast and pancreatic tumors in mice,
and chemically induced breast cancer in rats [85–87]. Interestingly, these in vivo studies
showed different anticancer pathways. Furthermore, Torres et al., (2012)reported that
Graviola can kill cancer cells through necrosis rather than apoptosis [86].

However, Dai et al., (2011), Syed Najmuddin et al., (2016), and Zeweil et al., (2019)
reported mitochondrial-dependent apoptotic pathways, and they proved that Graviola is a
powerful anticancer agent that does not cause additional harm to normal cells. This indi-
cates the selectivity of Graviola on cancer cells and elicits the safety of Graviola on animals,
unlike conventional anticancer drugs that show severe toxicity [85,87,88]. Moghadamtousi
et al., (2015) also reported that Graviola induced apoptosis by activating caspases 3/7
and 9, upregulating Bax, and downregulating Bcl-2 at the mRNA and protein levels [1].
Therefore, Graviola upregulated Bax expression, resulting in the release of mitochondrial
cytochrome c from mitochondria to the cytosol to form the apoptosome complex, which
triggers activated caspase-3 expression [89].
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Figure 4. Analysis of PCR product of: (A) Bax gene, (B) Bcl-2 gene, and (C) Caspase-3 gene in tumor
mass in different experimental groups by using RT-PCR. Results were expressed as mean ± SEM
(n = 10). b p < 0.001 from the EAC group. p < 0.001 from the EAC + Ethanol group. p < 0.001 from
EAC + Water groups.

2.3. Histopathological Findings

In the current study, histopathological evaluation of the plant extracts was conducted
in a detailed manner. The therapeutic regimens were investigated according to histopatho-
logical, immune histochemical, and morphometric analyses. Histopathologically examined
tumor mass of EAC and the possible hepatic metastatic cells, together with the associated
immune cell response, degenerative, necrotic, and/or apoptotic changes in the different
experimental groups (GII-GV), were recorded as shown in Figures S4, S5 and 5–7.

In contrast with normal hepatic parenchyma with preserved portal triads (Figure S4,
GIA and GIB), the greatest pathologic lesions were seen in mice that received EAC alone
(GII). This was represented by large nodules in the peritoneal cavity and metastatic changes
in the liver parenchyma, evidenced by atypical epithelial cells with large hyperchromatic
nuclei with many mitotic activities (Figures S4 and S5, GII). Such findings were related to
the high viability, mobilization, and metastatic probability of the used tumor cell line, and
they were in accordance with the observation of Chakraborty et al., (2007) and Mansour
et al., (2019),who reported similar histopathologic changes in mice that received EAC
only [90,91].

Immunohistochemical and morphometric analyses of GII pointed out characteristic
changes represented by the controversial reaction of the markers used, p53, and pancytok-
eratin (CK) (Figures 5 and 6, GII; and Table 2). That is, the tumor cells were highly negative
for p53 and highly positive for CK, indicating high viability and a high proliferative index
of the tumor cell line. Such findings are in accordance with the result reported by Bassiony
et al. (2014) [92].
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Figure 5. Photomicrograph from the tumor mass of different experimental groups immune-stained
with P53. (GII): cells with negative staining reaction. A few apoptotic tumor cells appeared with
dark positive cytoplasmic staining reaction (blue stars); (GIII): large numbers of necrotic cells with
hazard staining reaction to the used marker. Some cells showed apoptotic reaction with dark positive
brownish nuclear staining (dark circle); (GIV): marked apoptotic reaction in about 75–80% of the
tumor cells as represented by dense brown cytoplasmic stainability of the affected tumor cells (blue
stars); (GV): marked apoptotic reaction in about 75–80% of the tumor cells as represented by dense
brown cytoplasmic stainability of the affected tumor cells (blue stars).
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(GIII): massive necrosis of the tumor cells with negative staining reaction. Some cells showed hazay
cytoplasmic membrane brownish staining reaction (black circle); (GIV): remnants of tumor mass
were seen with positive cytokeratin cytoplasmic staining reaction in most of the remaining cells
(blue stars).
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Figure 7. Photomicrograph from the liver of different experimental groups immune-stained with
CK. (GI): normal hepatocytes free from any malignant cells (black arrow); (GIII): focal aggregates
(deposit) of weak positive malignant cells (black circles); (GV): liver parenchyma appeared negative
for any of metastatic cells, no positive reactivity for the used marker was detected (black arrow).

Table 2. Morphometric analysis of P53 and CK.

Groups
Parameters

P53 CK

Ethanol extract 2.44 ± 0.12 ab# 2.78 ± 0.12 ab#

Water extract 18.58 ± 0.48 * 16.40 ± 0.24 *
Cisplatin 19.35 ± 0.31 * 17.66 ± 0.41 *
Control −ve (GI) 2.24 ± 0.36 3.97 ± 0.69
Control +ve(GII) 19.05 ± 0.64 * 19.44 ± 0.61 *
p value 0.0001 0.0001

Results are expressed as mean ± SEM. * significantly different from group I (p < 0.001), a significantly different
from group II (p < 0.01), b significantly different from cisplatin (p < 0.001), # significantly different from water
extract (p < 0.001).

Cisplatin treatment showed histopathological changes represented by complete tu-
moral necrotic changes with focal calcification of the intraperitoneal tumor mass, along with
degenerative changes of hepatic cells, massive portal and interstitial inflammatory reaction,
portal fibrosis, and multifocal hepatocellular coagulative necrosis (Figures S4 and S5, GIII).
The aforementioned histopathological changes are drastic reactions attributed to the strong
cytotoxic effect of cisplatin against tumor cells. Unfortunately, the cytotoxic effect is not
limited to tumor cells, but it also includes normal healthy tissue, and it interferes with
normal viable hepatic activities, so its therapeutic uses are limited [93]. These findings are
in accordance with those reported by Do Amaral et al., (2008), Gong et al., (2015), and Niu
et al. (2017) [94–96].

The immunohistochemical analysis of the group that received cisplatin (GIII) showed
characteristic changes represented by large numbers of necrotic cells with a hazard staining
reaction to the p53 marker and a negative staining reaction to the pan-cytokeratin marker
with massive necrosis of the tumor cells (Figures 5 and 6, GIII; and Table 2). Such findings
are in accordance with those reported by Ikitimur-Armutak et al. (2015) [97].

Treatment with Graviola water extract from the edible part of the fruit (GIV) induced
ameliorative changes and the disappearance of most pathological changes in tumor mass
and metastatic tumor cells in the liver tissue. The tumor mass in the peritoneal cavity
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displayed necrotic and apoptotic changes in 80%–85% of cells, while liver tissue sections
showed normal hepatic parenchyma free of metastatic tumor cells and normal portal
structure and blood vessels (Figures S4 and S5, GIV). Such changes could be attributed to
the protective and ameliorative effects of the compounds in the edible part, with a promising
feature to include the extracted purified active compounds to be used in combination with
other chemical drugs to fight the highly social-facing battle of patients’ lives (tumor spread
and death). The above-mentioned results are in agreement with Samin et al. (2016) and
Alzergy et al. (2018) [98,99].

The group treated with ethanolic extract of the whole fruit (GV) showed a completely
necrotic intraperitoneal tumor mass, and the hepatic parenchyma appeared normal and free
of metastatic cells with the appearance of healthy active hepatocytes (Figures S4 and S5,
GV). This was in accordance with findings reported by Abd El-Kaream et al. (2019) and
Shukry et al. (2020) [100,101].

Moreover, the results for GIV and GV were confirmed by the results of the markers
used, including p53 and cytokeratin (Figures 5–7, GIV and GV; and Table 2). This revealed
controversial signaling responses leading to marked apoptotic reactions in about 75–80% of
tumor cells, represented by dense brown cytoplasmic stainability of the affected tumor cells.
Such findings are in accordance with Prasad et al., (2019), who observed that acetogenins
from A. muricata elevated the levels of p53 found in the nucleus upon treatment [102].

3. Materials and Methods
3.1. Plant Materials and Extract Preparation

Plant materials (fruits) were purchased from a local market in November 2020. The
extraction of Graviola was conducted in the Faculty of Pharmacy, Zagazig University. The
plant was identified and verified by Dr. Marwa Mohsen Eldemerdash, (Assistant Professor
of Plant Taxonomy, Faculty of Science, Zagazig University). A voucher specimen (Ann.S-2)
was deposited in the Herbarium of the Department of Pharmacognosy, Faculty of Pharmacy,
Zagazig University, Egypt.

3.2. Extract Preparation
3.2.1. Ethanolic Extraction of the Whole Fruits

Fresh fruits of A. muricata (5 kg) were cleaned, washed with distilled water, dried in
the oven at 60 ◦C, milled into powder (1000 g), soaked in two liters of 95% ethanol for
48 h, and filtered through gauze and then filter paper. This step was repeated three times.
The obtained alcoholic solution was evaporated and concentrated at room temperature
by a rotary evaporator. The dried sticky extract (40 g) was dissolved using 1% Dimethyl
sulfoxide DMSO in normal saline for pharmacological studies (each 1 gm of the sticky
extract was dissolved in 1 mL of 1%DMSO) [103].

3.2.2. Aqueous Extraction of the Fruit Pulps

The fruit pulp (the edible part inside the fruit) (4 kg) (without seeds) was extracted
with distilled water at a percentage of 1:4 (pulp:distilled water). The mixture was fil-
tered to discard any solid material. Finally, the filtrate extract was dried using the freeze
dryer/lyophilizer machine to give the final product (700 mg), which was dissolved in 1 mL
of 1%DMSO in normal saline for pharmacological studies [104].

3.3. UPLC-ESI-MS/MS Analyses of A. muricata Extracts
3.3.1. LC/MS Instrument and Separation Technique

The sample solutions of the ethanolic extract of the whole fruits and the aqueous
extract of the edible part of the fruit (100 µg/mL) was prepared using HPLC analytical-
grade solvent of MeOH, filtered using a membrane disk filter (0.2 µm), and then subjected
to LC-ESI-MS analysis. Samples of injection volumes (10 µL) were injected into the Ultra-
performance liquid chromatography (UPLC) instrument (XEVO-TQD triple quadruple
instrument, Waters Corporation, Milford, MA, USA) equipped with a reverse phase C-18



Molecules 2023, 28, 5744 10 of 18

column (ACQUITY UPLC-BEH C18, 2.1 × 50 mm, 1.7 µm). The sample mobile phase was
prepared by filtering using a 0.2 µm filter membrane disk and degassed by sonication
before injection. Mobile phase elution was made with a flow rate of 0.2 mL/min using
a gradient mobile phase comprising two eluents: eluent A was H2O acidified with 0.1%
formic acid and eluent B was MeOH acidified with 0.1% formic acid. Elution was performed
using the following gradient: 20% B, 0–1 min; 20–90% B, 1–18 min; and 20% B, 18–20 min.
The parameters for analysis used negative and/or positive ion mode as follows: source
temperature 150 ◦C, cone voltage 30 eV, capillary voltage 3 kV, desolvation temperature
450 ◦C, cone gas flow 50 L/h, and desolvation gas flow 900 L/h.

3.3.2. Determination of UPLC-ESI-MS-MS

Mass spectra were detected in the ESI negative and/or positive ion modes between
50 m/z and 900 m/z. The peaks and spectra were processed using Maslynx 4.1 software
and tentatively identified by comparing their retention time (Rt) and mass spectrum with
the reported data. For fragmentation collision energy, 40 eV was used.

3.4. Cytotoxic Activity

The cytotoxic study was conducted at the scientific and medical research center
(ZSMRC) at Zagazig University. The experiment was conducted on 50 mice, which were
randomly divided into 5 groups of 10 mice (Figure S6).

3.4.1. Experimental Animals

Fifty male Swiss albino mice (25–30 g weight) were obtained from the animal house of
the National Cancer Institute (NCI, Cairo University, Egypt). The animals were housed in
metal cages and kept under standard laboratory conditions for aeration and room tempera-
ture at about 25 ◦C. They were provided with adequate rodent food and a water supply.
Animals were handled and sacrificed ethically according to the procedures reviewed and
approved by the Zagazig University research center’s institutional animal care and use
committee (IACUC) under number ZU-IACUC/2/F/91/2020.

3.4.2. Ehrlich Ascites Carcinoma

Ehrlich ascites carcinoma cells were gathered in vivo from male Swiss albino mice at
the National Cancer Institute (NCI), Cairo University, Egypt.

3.4.3. Cisplatin

Cisplatin was used as a positive control anticancer drug and obtained from Mylan
Pharma, France, and freshly prepared before the treatment.

3.4.4. Induction of Cancer by Ehrlich Ascites Carcinoma

The solid tumors were initiated by injecting (2.5 × 106) cells subcutaneously in the
right thigh of the lower limb of each mouse in GII-GV (n = 40). The tumors formed a week
later [105].

3.4.5. Treatment Regimen

Group I (the normal control group of healthy mice) received only the normal laboratory
diet and tap water for 28 days. Group II (the positive control group) received only the
EAC cells. Group III (the cisplatin-treated group) was treated with cisplatin at a dose of
2 mg/kg I.P. once weekly (day 10, day 17, and day 24) after 10 days of induction EAC for
28 days [106]. Group IV (the aqueous extract-treated group) received water extract at a
daily dose of 200 mg/kg orally after 10 days of induction of EAC for 28 days [103]. Group
V (ethanolic extract-treated group) received fruit extract at a daily dose of 200 mg/kg orally
after 10 days of induction of EAC for 28 days [103].
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3.4.6. Tissue Samples

Immediately after collecting their blood, the animals were sacrificed and dissected.
The tumor mass and liver were removed and washed with 0.9% NaCl to flush out any
blood and blotted dry on paper. Parts of the tumor masses of all groups were kept at
−80 ◦C until they were used to determine the gene expression of Bax, Bcl-2, and caspase-3
using reverse transcription polymerase chain reaction (RT-PCR). Other parts of the livers
and tumor mass slices were kept in 10% neutral buffered formalin for histopathological
and immunohistochemistry examinations.

3.4.7. Molecular Determination

Total RNA was isolated from the tumor mass using an RNA extraction kit (Thermo
Fisher Scientific, Inc.; Dreieich, Germany). Total RNA was reverse transcribed to com-
plementary DNA (cDNA) using the HiSenScriptTM RH (-) cDNA Synthesis kit (iNtRON
Biotechnology Co., Seongnam, Kyonggi-do, South Korea) in a Veriti 96-well thermal cy-
cler (Applied Biosystems, Foster City, CA) for 60 min at 45 ◦C followed by 10 min at
85 ◦C. The primers sequence (5′-3′) used for PCR was as follows: Bax (forward primer:
CTACAGGGTTTCATCCAG and reverse primer CCAGTTCATCTCCAATTCG); Bcl-2 (for-
ward primer: GTGGATGACTGAGTACCT and reverse primer CCAGGAGAAATCAAACA-
GAG); caspase-3 (forward primer TGCGTGTGGAGTATTTGGATG and reverse primer
TGGTACAGTCAGAGCCAACCTC); and GAPDH (forward primer GAGAAACCTGC-
CAAGTATG and reverse primer GGAGTTGCTGTTGAAGTC). Thermal cycling conditions
were as follows: 1 cycle at 95 ◦C for 12 min for denaturation; 40 cycles at 95 ◦C for 15 s,
60 ◦C for 30 s for annealing, and 30 sec extensions at 72 ◦C. All samples were compared
using the relative CT method.

3.4.8. Histopathological Examination

Tissue (tumor mass and liver) from different groups of mice were quickly removed
and fixed in 10% neutral buffered formalin for histopathological and immunohistochemical
examination. Fixation comprised tissue immersion in 10% buffered formalin for 48 h,
followed by removal of the fixative in distilled water for 30 min. Dehydration was then
carried out by exposing the tissue to 70% alcohol for 120 min, followed by 90% alcohol
for 90 min, and then two cycles of absolute alcohol, each for one hour. Then, the samples
were cleaned in several changes of xylene. This consisted of tissue immersion for an hour
in a mixture of 50% alcohol and 50% xylene, followed by pure xylene for one and a half
hours. Samples were impregnated with molten paraffin wax and then embedded and
blocked out. Paraffin sections (4–5 µm) were stained with hematoxylin and eosin [107].
Stained sections were examined for circulatory disturbances, inflammation, degeneration,
apoptosis, necrosis, and any other pathological changes.

3.4.9. Immunohistochemistry Investigation

The tissue sections were microwave treated. The presence of antigens in the tissues
was identified by immunostaining, using a two-step process. The primary antibody was
first bound to the related antigen, and then the reaction was visualized using a biotin–
streptavidin (BSA) system [108]. 3,3′-Diaminobenzidine (DAB) was used for the permanent
preparation, and hematoxylin was used for counterstaining. Five-micron-thick paraffin
sections were mounted on positively charged glass slides (Biogenex, Freemont, CA, USA).
Paraffin sections were soaked in xylene overnight and then passed through ethanol in
concentrations of 100%, 95%, 75%, and 50%. The excess buffer was blotted off, and the slides
were dried. One drop of supersensitive primary monoclonal antibodies (Pan-Cytokeratin
and P53) was placed on the sections.

After incubation for 60 min, the slides were rinsed for 5 min in phosphate-buffered
saline (PBS). Two drops of DAKO EnVision were applied for 20 min, followed by rinsing
with PBS. DAB chromogen was applied for 10–20 min until the desired brown color was
obtained, and then the slides were washed in the buffer to remove the DAB. Mayer’s
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hematoxylin (Hx) was used to counterstain the nuclei in the sections. In accordance with
the degree of nuclear staining, sections were placed in Hx solution for 3–5 min, then washed
in tap water and differentiated in acid–alcohol before being washed again in tap water.
Air-dried slides were mounted with Canada balsam.

For myeloperoxidase immunohistochemistry, the heat was applied to the slides in a
pressure cooker in Tris-buffered saline with 0.075% Tween-20 (pH 7.6) for 10 min to extract
the antigen [109]. The samples were then incubated in 0.3% v/v H2O2 in methanol for
20 min at room temperature to inhibit endogenous peroxidase activity [110]. The sections
were incubated at room temperature for 30 min with polyclonal rabbit antihuman myeloper-
oxidase antibody diluted 1:1500, and then stained. Immunostaining was performed using
an avidin-biotin-horseradish peroxidase system (Vector Laboratories, Burlingame, CA) with
3-amino-9-ethyl carbazole as the chromogen for myeloperoxidase and diaminobenzidine
for CD68 (Kirkegaard and Perry Laboratories, Gaithersburg, MD, USA).

3.4.10. Morphometric Analysis

Image analysis slides were digitized using an Olympus digital camera (Olympus LC20-
Tokyo, Japan) installed on an Olympus microscope (Olympus BX-50, Tokyo, Japan) with
a 1/2× photo adaptor, using a 40× objective. The resulting images were analyzed on an
Intel® Core I3®-ased computer using Video Test Morphology 5.2 software (Mosco, Russia)
with a specific built-in routine for immunohistostaining analysis and stain quantification.
The system measured the area percentage of caspase-3 positive expression. Images from
five slices per tissue were taken 200 µm apart. Five visions per slice were randomly chosen
for assessing positive cells using image analysis software (JID801D). The average grayscale
of the positive cells was calculated automatically [111].

3.5. Statistical Analysis

The results are expressed as mean values ± SEM (standard error of the mean). To
assess the influence of the treatment groups on the different biochemical parameters, a
one-way analysis of variance (ANOVA) was used. All analyses and charts were performed
using the Statistical Package for Social Sciences version 28.0 (SPSS, IBM Corp., Armonk,
NY, USA).

4. Conclusions

Our study represents the first comprehensive report on the phytochemical composi-
tion of the ethanolic extract of whole fruits and the aqueous extract of the edible part of
the fruit of A. muricata cultivated in Egypt using HPLC–DAD–ESI-MS/MS and an inves-
tigation of their anticancer properties against EAC in male albino mice. The LCMS/MS
analyses resulted in the tentative identification of 388 components that represented many
types of classes of chemical compounds—including acetogenins, alkaloids, flavonoids,
and phenolics—and mostly belonging to acetogenins. Four phenolic compounds were
tentatively characterized for the first time in nature.

Biologically, induction of cancer with EAC cells resulted in a decrease in the gene ex-
pression of pro-apoptotic genes Bax and caspase-3 in tumor mass and a significant increase
in anti-apoptotic gene Bcl-2 (EAC-treated group). Moreover, microscopic, histopathological,
and immunohistochemical examination of the tumor mass and liver tissues of the EAC
group exhibited extensive growth of malignant Ehrlich carcinoma cells, and the liver tissue
showed marked hydropic degeneration of hepatocytes and infiltration by tumor cells,
causing a marked inflammatory reaction. However, the administration of the different
A. muricata extracts elevated the gene expression of pro-apoptotic Bax and caspase-3 and
decreased the level of anti-apoptotic Bcl-2. Moreover, the microscopic, histopathological,
and immunohistochemical abnormalities were markedly ameliorated after treating the
EAC mice with A. muricata extracts, which appeared to be rich in biologically highly active
cytotoxic constituents. This is what motivates us to recommend eating Graviola during
chemotherapy to enhance its therapeutic benefits.
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In conclusion, this represents the first chemical and biological study to explore these
findings and is considered an addition to the bibliographic exploration of the chemical
diversity and therapeutic values of A. muricata extracts. In the future, further comparative
studies will be pursued to study the chemical constituents and the efficacy of these extracts
in comparison with other commercial Annona products available in the market, which
could aid in the development of new therapeutic agents and safe natural alternative
therapies for the treatment of cancer.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28155744/s1, Figure S1: Acetogenins identified for the
first time from A. muricata; Figure S2: Acetogenins identified for the first time from genus Annona;
Figure S3: Alkaloids identified for the first time from the genus Annona; Figure S4: Photomicrograph
from the liver of different experimental groups (GII-GV); Figure S5: Photomicrograph of tumor mass
of different experimental groups (GII-GV); Figure S6: Flow chart of animals’ cytotoxic study; Table
S1: Acetogenins detected and characterized in A. muricata extracts; Table S2: Phenolics detected and
characterized in A. muricata extracts; Table S3: Flavonoids and flavonoid derivatives detected and
characterized in A. muricata extracts; Table S4: Alkaloids detected and characterized in A. muricata
extracts; Table S5: Phytochemical compounds (miscellaneous) detected and characterized in A.
muricata extracts.
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