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Abstract

Chronic diseases of aging are increasingly common. Dementia, often due to multiple etiologies
including Alzheimer’s disease (AD), is at the forefront. Previous studies reported higher rates of
dementia among persons with diabetes, yet less is known about how insulin resistance relates to
cognition. We examine recently published data on the relation of insulin resistance to cognition
and AD and discuss remaining knowledge gaps in the field. We conducted a structured review

of studies over a five-year period, investigating insulin and cognitive function in adults with a
baseline mean age =65 years. Our search yielded 146 articles, of which 26 met the predetermined
inclusion and exclusion criteria. Among the nine studies which specifically examined insulin
resistance and cognitive dysfunction and/or decline, eight studies suggest an association, but some
only in sub-analyses. Results were mixed in studies relating insulin to structural and functional
changes on brain imaging, and data on intranasal insulin for cognition remain unclear. We review
gaps in the field and propose future avenues to elucidate the impact of insulin resistance on brain
structure and function, including cognition, in persons with and without AD.
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INTRODUCTION

Advancements in public health and healthcare in the last century have led to an increase in
the average life expectancy, but chronic diseases of aging are now more common. Among
the most disabling conditions in aging is dementia, often due to combined Alzheimer’s
disease (AD) and one or more other neuropathologies. With few treatments and ineffective
preventive approaches, biomedical researchers are working to better the understanding of
potentially modifiable dementia risk factors. Diabetes has emerged as a modifiable risk
factor and has been associated with cognitive impairment, cognitive decline, and dementia,
including dementia attributed to AD. Several studies have now shown a 50% increase in
dementia risk among persons with diabetes, compared to those without (1, 2). Furthermore,
diabetes appears to be associated with cognitive decline in some cognitive domains more
than others, notably executive function, working memory, and attention (3-6).
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The global prevalence rate of diabetes was 10.5% in 2021, and is expected to rise to
12.2% by 2045 (7). Type 2 diabetes is the most prevalent form, particularly among older
persons, and a large body of literature has examined its’ relation to cognition in aging.
Insulin resistance is a key defining feature among many persons with type 2 diabetes and
is the focus of this paper. Insulin resistance can easily be assessed with a simple blood test,
for instance by using the calculated Homeostatic Model Assessment for Insulin Resistance
(HOMA-IR) (8, 9). However, the role of insulin resistance in the development of dementia
and cognitive impairment, using HOMA-IR or otherwise, is not well-understood (10-

15). Understanding the pathophysiology underlying the relationship of insulin sensitivity/
resistance, diabetes, and cognitive dysfunction is important to identify potential molecular
pathways and focus diabetes management efforts and dementia therapeutic targets. The
objective of this paper on insulin resistance and cognitive function is to review the recent
published data derived from human studies, including clinical trials, and offer a perspective
on the ongoing knowledge gaps and future directions in the field.

METHODS

RESULTS

We conducted a review of the published literature on April 14, 2021, using PubMed. The
search terms were: “Insulin [title] and (brain or cognition or dementia or Alzheimer’s
disease).” Inclusion criteria were: publication date in the last five years, and baseline ages
65+ years. We chose to focus on studies in older persons, given that both diabetes and
dementia are significantly more common among older populations. We reviewed citation
titles, abstracts, and full manuscripts when needed, to exclude publications which were not
of original research, not directly relevant to the brain and insulin pathways, or with a small
sample size and limited power to detect associations (<75 persons in total).

Using the search strategy, 146 articles were retrieved. Upon review of every citation, we
excluded 120 articles that were not directly relevant to this review: 28 examined other
diseases (type 1 diabetes, cancer, trauma, Down syndrome, atherosclerosis, psychiatric
disorders, frailty, sleep disorders, or diseases of the heart, lungs, liver, eyes, or
rheumatologic system), 22 focused on other neurological diseases (stroke, Parkinson’s
disease, Huntington’s disease), and 22 were related to other medical topics (medications/
supplements, overtreatment, post-operative issues, exercise, symptomatology, genetics/
epigenetics, public awareness or individual perspectives, feeding behavior and other). 9 were
other types of articles (case report, analytic methods, opinion piece, review, not written in
English), and 7 were using animal models. An additional 32 were excluded because of small
sample sizes (fewer than 75 subjects) or a baseline mean or median age <65 years (not target
age range for conditions of interest). Thus, 26 articles were included in this review.

Part A: Insulin Resistance and Cognition

Cross-sectional studies—Four cross-sectional studies examined insulin resistance, as
measured by serum insulin or HOMA-IR, and cognition based on performance (see Table
1). The first two studies assessed cognition using a single test, while the other two utilized a
more extensive neurocognitive test battery (two individual tests or more).
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A population-based study (16) of 1028 cognitively-normal participants tested cognitive
performance using the Digit Symbol Substitution (DSS) subtest of the Wechsler Adult
Intelligence Scale, a sensitive measurement of cognitive dysfunction (17). In multivariable
linear regressions adjusted for socio-demographics, clinical lab results, and comorbidities,
higher insulin resistance as measured by HOMA-IR was associated with worse DSS
performance. This result suggests that a simple test of perceptual speed may be informative
in clinical practice to detect cognitive dysfunction in older persons with insulin resistance.
Strengths include the sample size, representation of the US population, and adjustments
for multiple covariates. However, the only cognitive data was the DSS, and there was no
consideration for other cognitive domains, mild cognitive impairment (MCI), AD dementia,
depression, or APOEe4, which is an effect modifier (18).

In a study of 212 patients with type 2 diabetes (19), results showed fasting plasma insulin
levels and HOMA-IR were risk factors for lower Mini-Mental State Exam (MMSE). This
study shows that greater insulin resistance is associated with worse cognitive performance
on a global measure of cognition commonly used in clinical practice. But, this single-
institution study was limited to hospitalized patients with diabetes, and cognition was
evaluated using only a general crude test.

Secondary analysis of a clinical trial of persons with cognitive impairment utilized a more
comprehensive cognitive test battery (20). In 160 participants with vascular Cognitive
Impairment, No Dementia (CIND) (21), cognition was assessed using a 45-60 minute
battery testing for executive function, verbal memory, and visual memory. Individual tests
were used to form composite scores for each cognitive domain. Higher HOMA-IR and
plasma leptin levels were associated with lower executive function, suggesting insulin
resistance may mediate the relation of obesity to executive function. While the study has
expanded cognitive testing and collected multiple metabolic measurements, it has limited
generalizability since the participants were obese and sedentary.

A brief report, which showed no difference in insulin resistance between AD (n=40) and
controls (n=40), had important weaknesses in the small sample size, biased selection for

the controls, lack of baseline characteristics, and limited analyses (22). Interestingly, higher
insulin levels correlated with more severe dementia for the subgroup with AD, raising the
possibility that insulin resistance may be associated with worse cognition even in individuals
with already advanced dementia.

In summary, three (16, 19, 20) of four cross sectional studies suggest that peripheral

insulin resistance is inversely associated with cognitive performance on individual tests

such as the DSS and MMSE, but also on more comprehensive cognitive testing of executive
function. While the fourth study (a brief report) did not find a relation, it had important
limitations (22). Two (19, 20) of the four studies measured plasma insulin levels, which
were associated with cognitive dysfunction; but whether insulin resistance is involved was
unclear. In conclusion, even though the four studies are limited by their cross-sectional study
design, overall, they appear to indicate that there is an association between higher insulin
resistance with lower levels of cognition.
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Longitudinal studies—Longitudinal study design provides the opportunity to assess
change in cognitive performance over time and inform on a meaningful health outcome. We
identified five studies utilizing a longitudinal design following participants for more than 5
years and examined the relationship between insulin resistance, as assessed by HOMA-IR,
with change in cognitive function (see Table 2).

A prospective case-control study of 477 participants (335 with diabetes and 142 without)
were divided into three groups based on HOMA-IR (23). Authors examined the change

of MMSE and Alzheimer’s Disease’s Assessment Scale-Cognitive subscale (ADAS-Cog)
between baseline and annual follow-up examinations for 7 years. Analysis included 444
subjects, with high follow-up rate (93%). Using multiple regressions, those with the highest
insulin resistance had lower MMSE scores and higher ADAS-Cog, suggesting that only high
levels of insulin resistance were associated with severe cognitive impairment. This implies
that perhaps there is a point at which insulin resistance will negatively affect cognition.

A major limitation is the absence of a control group without diabetes. Also, analyses did
not consider all cognitive data collected over the years by using mixed effects models.
Furthermore, participants were observed to switch between assigned HOMA-IR groups
during the study, which was not considered in the analyses.

In 269 adults without dementia from the Cardiovascular Risk Factors, Aging, and Dementia
Study, serum insulin, glucose, and HOMA-IR were measured only at baseline (24).
Participants were examined at both baseline and 7-year follow-up for global cognition
(MMSE), episodic memory, executive function, verbal expression, and psychomotor speed.
Adjusted multivariable linear regressions showed no associations between insulin resistance
or serum insulin with cognition. However, exclusion of incident dementia cases (n=19) at
7-year follow-up showed that higher baseline HOMA-IR was related to worse performance
in global cognition and psychomotor speed. Also, increased insulin levels were related to
worse global cognition. There was no significant relationship between serum glucose and
other cognitive domains. Detailed cognitive assessment and long follow-up were strengths
but having one time point of serum data and using 10-year frozen samples were limitations.

Another study used similar variables with different indices. This prospective cohort,
involving 1544 Japanese men without type 2 diabetes or dementia, assessed baseline insulin
resistance using HOMA-IR, McAuley, and combined indices (25). McAuley index utilizes
fasting insulin and triglyceride values to estimate insulin resistance, but the authors do

not explain how combined indices were created (26). The incidence of total dementia

and AD was examined 3 years after initial examination, using physician consensus and

the Cognitive Abilities Screening Instrument score (27). Subjects were also evaluated for
APOEe4. In separate adjusted models, HOMA-IR was not associated with incident dementia
or AD, but insulin resistance as measured by a McAuley index <5.8, was associated with
decreased odds of incident dementia (OR=0.61; 95%CI:0.39-0.94). The authors conclude
that blood measures of insulin resistance were related with decreased dementia risk. Though
insulin resistance as measured by HOMA-IR did not show significance, the McAuley index
showed association with dementia, suggesting that the triglyceride levels in the McAuley
index formula may be relevant to cognitive decline and the development of dementia.
Insulin resistance measurements were not assessed over time and may have fluctuated
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in between examinations. Having subjects with similar age, same sex, and ethnicity in a
longitudinal timeline is a strength of this study, but these subject characteristics also reduce
generalizability.

In a subsample of persons participating in a prospective study, 442 individuals with normal
baseline cognition were followed for 6 years (28). HOMA-IR, HbA1C, fasting insulin, and
lipid profile were obtained at two visits. Cognition was measured with the Korean version
of MMSE. In an adjusted linear regression, elevated insulin resistance (fully adjusted model,
p=0.004), and fasting insulin (p=0.001), were associated with a greater decline in MMSE.
These results further support the association between insulin resistance and reduced global
cognition. Study strengths include cohort size and consideration of multiple covariates,
including APOEe4 status, education, and diabetes. However, the study was limited by
having a single measure of cognition and only two time points.

A larger study included 1759 women, who had normal baseline cognition and completed
examinations over a 15-year follow-up (29). Participants were assessed for risk factors

of metabolic syndrome (MetS: BMI >30kg/m?, elevated blood pressure, impaired fasting
plasma glucose, low HDL, and elevated triglycerides), HOMA-IR, and two short cognitive
tests, the Category Fluency Test and Short Blessed Test (30, 31). The odds of cognitive
dysfunction on the Category Fluency Test were nearly three times higher in those with

all five MetS risk factors compared to those with none (OR=3.09; 95%Cl:1.09-8.69).
Subjects with insulin resistance had a higher likelihood of cognitive dysfunction with verbal
fluency than those without insulin resistance (OR=1.47; 95%CI:1.09-1.99). Overall, the
study showed that individuals with poorer metabolic profiles had greater likelihood of
developing cognitive dysfunction, suggesting that having higher number of risk factors will
increase cognitive impairment, compared to having fewer factors. The large sample size
and similarity between the participants’ study group and nonparticipants in the population
were strengths. The absence of repeated plasma data and a limited cognitive assessment
were limitations. APOEe4 status was a confounding variable that was acknowledged but not
considered in analyses.

In conclusion, three (23, 28, 29) of five longitudinal studies suggest that insulin resistance,
measured by HOMA-IR, is associated with worsening performance on measures of global
cognition (most often using the MMSE), and possibly the specific cognitive domain of
verbal fluency. The other two (24, 25) of the five studies showed an association between
insulin resistance and cognition in subanalyses, with one showing an association with
psychomotor speed after exclusion of incident dementia cases (24), while another showing
an association using McAuley index of insulin resistance (25). Furthermore, two (24, 28) of
the five longitudinal studies specifically examined plasma insulin levels, and both showed
that insulin itself was also associated with lower global cognition. Taken as a whole, the
longitudinal studies suggest that insulin resistance and levels are associated with worse
global cognition and possibly specific cognitive domains, though inconsistently. Results may
have been affected by several sources of bias, including selection bias because cognitive
impairment may negatively influence study retention. Though investigators examined
baseline and follow-up cognitive measurements (and/or plasma measures), some studies
that did not analyze these data over more time points raise the issue of information bias. For
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example, cognitive data are prone to various sources of variability, random and non-random
(e.g., practice effects with improved scores over time).

Part B: Insulin Medication and Cognition

A line of research in relating insulin resistance to cognition is whether the administration of
insulin improves cognition in persons without diabetes. Indeed, intranasal insulin delivery
is a relatively new strategy which may restore brain insulin function for older adults with
cognitive impairment by circumventing the blood brain barrier without affecting peripheral
insulin levels. Using our pre-defined search criteria, we found two recent clinical trials
which utilized intranasal insulin therapy to examine change in cognitive performance (see
Table 3).

Leveraging the Study of Nasal Insulin in the Fight Against Forgetfulness (SNIFF120), a
placebo-controlled clinical trial investigated the effect of intranasal insulin (INI) on plasma
levels of insulin receptor substrate-1 (IRS-1), a previously described biomarker of AD and
brain atrophy (32, 33). IRS-1 has multiple phosphotypes, of which higher pS312-IRS-1
and lower pY-IRS-1 suggest insulin resistance (34). As part of the parent clinical trial
involving participants without diabetes, 35 subjects with AD and 56 subjects with MCI
were randomized to 20 or 40 U of INI or placebo for 4 months. Neither dose of INI

was associated with a change in total IRS-1. However, patients treated with 20 U of INI
showed positive correlations with certain phosphotypes (pS312-IRS-1 and pY-IRS-1), which
were associated with worse cognitive performance on ADAS-Cog. Interestingly, in post
hoc sensitivity analysis, this correlation was only observed among APOEe4 non-carriers,
whereas the 40 IU INI group was unaffected regardless of APOEe4 status. Individuals with
low genetic risk for AD who received low dose INI had insulin resistance compared to
individuals who received a higher dose of INI. These results are challenging to interpret.
One possible explanation is that small doses of INI could already be sufficient to induce
insulin resistance and worsen cognition. Another possibility is that higher doses of INI may
have little additional effect and that a plateau of insulin resistance is reached with no more
effect on cognition, regardless of the APOEe4 status. While there is indication of relation
of insulin resistance based on phosphotypes with a measure of cognition, the small sample
sizes, short study duration, and lack of additional cognitive testing are weaknesses.

In another trial, 27 sites recruited 289 persons without diabetes but with either MCI or
AD (35). This double-blinded placebo-controlled trial examined the efficacy of daily 40
IU of INI for 12 months, followed by a 6-month open-label extension phase. The first
intranasal device used by the first 49 participants was deemed unreliable midtrial. A second
intranasal device was utilized by the other 240 participants, who were determined as the
primary intention-to-treat population. ADAS-Cog was assessed at baseline and 3-month
intervals while MRI, insulin, and biomarkers from cerebrospinal fluid (CSF; specifically
AB42, Ap40, total tau [t-tau], and tau p-181), were measured at baseline and 12 months.
The insulin-treated group using the first device had improved ADAS-Cog scores at 6
months during the blinded phase (p=0.01) and at 15 and 18 months during the open-label
phase (p=0.004 and p=0.02, respectively). Individuals using the second device showed
no cognitive improvement. CSF biomarker changes were noted, despite no significant
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differences in individual biomarkers only in those using the first device. Volume loss in

the greater entorhinal cortex was found only in the insulin-treated group using the first
device (p=0.003). Hippocampal volume loss was present only in those using the second
device (p=0.03). Upon combining devices, the total group showed no changes for any
outcome except entorhinal cortex volume loss at 12 months, but its impact on cognition is
not yet known. The trial had moderate adherence rates with the first device, which had been
used with good reliability in former studies by the same authors (36, 37). Despite showing
significant results for those using the first device, the small sample reduced the power of
the study. The second device had >90% adherence rates for insulin and placebo arms in
blinded and open-label phases but had never been used in previous AD trials. Despite good
adherence and a multisite trial, the use of two devices with different delivery mechanisms
is a major limitation of this study. Cognitive improvement using the first device suggests
that an intact insulin signaling cascade may play a role in cognition, but the consequence

of volume loss on cognition is currently unknown and will need further examination. The
study showed potential in the initial results before switching devices, and further study with
the first device could provide stronger evidence of cognitive improvement with intranasal
insulin.

To summarize, results of these medication studies were mixed. While it seems that either
higher doses of INI may improve or have no effect on cognition, the results may be at least
in part, because the methodology differed regarding measures of global cognitive function,
optimal drug dosage, and form of medication administration. Larger studies, especially in a
clinical trial setting, are needed to better understand the true effects of intranasal insulin on
cognitive function, and several are underway.

Part C: Insulin and in-vivo markers of brain structure and function

Studies of structural and functional neuroimaging—Neuroimaging allows for the
assessment of brain structure and function, including regional cerebral glucose metabolism
by brain PET scanning. The following four MRI and PET studies explore how insulin levels
or insulin resistance affect the structure, connectivity, or glucose metabolism in the brain.

Enlarged perivascular space (EPVS) are commonly found on MRI with aging, especially

in the basal ganglia, and have been found to contribute to cognitive impairment and

decline (38, 39). A cross-sectional study examined the correlation between insulin
resistance and EPVS among 235 participants without diabetes or cognitive impairment,
who were admitted to a hospital over four years (40). EPVSs in basal ganglia were

counted by neuroradiologists, based on size and shape, and stratified by severity (mild

vs moderate/severe). Insulin resistance (by HOMA-IR) was associated with an increased
risk of moderate/severe EPVSs, after controlling for cardiovascular risk factors (OR=3.53;
95%Cl:1.63-7.64). Excluding persons with diabetes, and no other structural MRI data or
blood measurements of glucose or insulin, were limitations. Nonetheless, the findings imply
that insulin resistance may be a contributing factor to structural changes in the brain among
a healthy group of older persons.

In a longitudinal study of MCI (n=50) and cognitively-normal adults (n=60), data from
clinical evaluations, neuropsychological testing, and functional MRI (fMRI) scans were
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collected (41). Gene sequencing for exons involved in brain insulin resistance was
performed. Cognitive testing evaluated general cognition (MMSE), episodic memory,
visuospatial function, information processing speed, and executive function at both baseline
and follow-up of maximum 35 months. Investigators performed genetic association analyses
with single nucleotide polymorphisms to determine their cognitive relevance, and a brain
network was subsequently constructed with various regions of interest. Multivariate linear
regressions examined the relationship between network connectivity and cognitive decline.
The MCI group had more regional deficits in connectivity on fMRI, as characterized

by disconnections (presumed to be synaptic) in the cerebellum-frontal-temporal regions,
compared to the cognitively-normal group. This suggests that certain genes of insulin
resistance may lead to neuronal disconnections in the brain that further impair cognition.
Some limitations include a large age range (54 to 80 years) and only two time points to
measure cognitive change, but this novel study raises interesting avenues for future work.

Two PET studies examined cerebral glucose metabolism (CMglu) in 205 cognitively-normal
adults without diabetes for the association between fasting blood insulin and HbA1c levels
with AP positivity and neurodegeneration (42). In multiple linear regressions, decreased
insulin levels were associated with increased AR positivity. Insulin was also positively
associated with CMglu in AD-related brain regions, but not with cortical thickness. While
HbALc was not associated with AB, it was associated with neurodegeneration positivity

rate in selective regions typically affected by AD. This study suggests that insulin levels
may contribute to AD pathology, even among cognitively normal adults without diabetes.
Further research into the associations among persons with cognitive impairment (MCI and
dementia) and diabetes, and with longitudinal data, are needed.

The same research group examined basal insulin levels and resting-state CMglu in specific
brain regions among 234 cognitively-normal adults without diabetes (43). After adjustments
for APOEe4, glucose, cardiovascular risk factors, and demographics, there were positive
associations between blood levels and CMglu in specific cerebral cortices and hippocampus,
especially the right posterior hippocampus, parahippocampal region, and angular gyrus.
There was correction for multiple comparisons and many covariates were considered, but it
is unknown how the association between insulin and glucose metabolism would change in
an active state or with comorbid conditions.

Overall, it appears that insulin resistance is associated with changes in brain structure and
metabolism. More severe EPVS and decreased regional connections by fMRI may reveal
underlying mechanisms for cognitive impairment induced by insulin resistance. Elevated
blood or brain insulin indices also are associated with increased cerebral glucose metabolism
in cerebral cortices and hippocampal regions, which may be involved in cognition as well.
Some findings are regional, with increased blood insulin being associated with cerebral
glucose metabolism in hippocampal regions specifically.

Other in-vivo studies—Insulin resistance reduces transport of insulin across the blood
brain barrier, and greater CSF insulin levels reflect central (brain) insulin resistance (44).
A study explored the association between CSF insulin levels with cognition and CSF AD
biomarkers, amyloid-p and tau (45). Persons with subjective cognitive impairment (n=45),
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MCI (n=44), or AD dementia (n=49) from memory clinics, completed neuropsychological
tests for global cognition (MMSE) and memory. There was no association between CSF
insulin and cognitive performance or CSF AD biomarkers in any group. However in
stratified analyses, higher CSF insulin was associated with cognitive impairment, and

with higher CSF tau (t-tau and p-tau) among women and in individuals without APOEe4.
Limitations include the sample size, absence of fasting state prior to sample collection, and
lack of blood samples. Despite these weaknesses, the study suggests that CSF insulin levels
are affected by sex and APOEe4.

A study examined the association between insulin resistance and pancreatic p-cell function
(HOMA-B) with cognitive performance and AD biomarkers, specifically CSF amyloid-p,
tau, and hippocampal burden (46). A cohort of 1264 individuals were either cognitively-
normal (n=905), with MCI (n=156), or with AD (n=203). In adjusted regression analyses,
HOMA-IR increased in the AD group compared to the cognitively-normal group. HOMA-B
was elevated only in the MCI group in post hoc analysis. Within the cognitively-normal
group, HOMA-IR was inversely associated with verbal episodic memory, executive function,
and global cognition, and there was a positive association with CSF t-tau and p-tau.
HOMA-B was also weakly associated with executive function and global cognition in the
cognitively-normal group and showed no changes in CSF biomarkers. After stratifying by
sex, HOMA-IR and HOMA-B increased in MCI or AD groups in women only, in keeping
with the prior study (45). The study had a large cohort and findings suggest increased insulin
resistance may play a role in cognitive impairment and increased CSF tau levels in older
adults.

Overall, these studies show that central insulin resistance as reflected by higher CSF insulin
or HOMA-IR, is associated with worse cognitive performance and more AD pathology
(elevated CSF total and p-tau levels). Among individuals with cognitive dysfunction, a study
demonstrates insulin resistance is associated with lower global cognition in only women

and those without APOEe4 allele (45). Among cognitively-normal participants, insulin
resistance was associated with worse global cognition as well as verbal episodic memory
and executive function (46). Pancreatic function as measured by HOMA-B shows a weak
association with cognition in the cognitively-normal group, but may play a role in women.
These findings suggest that insulin resistance is involved in affecting cognition and elevating
AD biomarkers.

Part D: Insulin-like Growth Factor-1 and Binding Proteins, and Cognition

Cross-sectional studies—Insulin-like growth factor-1 (IGF-1) is a hormone that
mediates the effects of human growth hormone and is also neuroprotective by promoting
neurogenesis and inhibiting apoptosis (47-49). Decreased levels of IGF-1 are associated
with various neurodegenerative conditions (50, 51). As most IGF-1 bind to IGF-binding
proteins (IGFBP), including IGFBP3 which contributes to tau phosphorylation, we
examined studies on IGF and its binding proteins in association with cognition (52).

In a study (53) of patients with AD (70 with dementia; 11 with MCI), serum IGF-1, Ap42,
and Ap40 were measured. Cognition was assessed with the MMSE and the Hasegawa’s
Dementia Scale-Revised (54). While results showed that IGF-1 decreases with increasing
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age, there were positive correlations between IGF-1 with the MMSE and dementia

scale, especially in recall, verbal fluency, and attention subscales. With findings from the
regression analyses, these data suggest that IGF-1 may be implicated in some aspects

of cognition. Interestingly, there was also a positive correlation between IGF-1 and the
AB42/AB40 ratio. The meaning of this result and clinical significance are unclear at this
time. Weaknesses of this study include the sample size, the basic statistical approach used,
and lack of a control group.

Another study explored associations of IGF-1 with cognition in 203 Ashkenazi Jewish adults
(mean age >95 years) (55). Women with low circulating IGF-1 levels had decreased odds

of cognitive impairment compared to those with higher levels. Men showed no significant
association. Limitations include generalizability, small sample size of men, and potential for
reporting bias (self-reported medical history and cognitive impairment). It is possible that
the “younger-old” group will show different findings compared to the “oldest-old” as studied
here.

In a study of plasma IGFBP-2 and AD biomarkers (56) among 354 participants from

the Alzheimer’s Disease Neuroimaging Initiative (58 cognitively-normal; 197 with MCI;
99 with AD), high IGFBP-2 levels were associated with smaller hippocampal volumes

in amyloid negative individuals (on CSF testing). This could suggest that IGFBP-2 may
lead to neurodegeneration through pathways independent of AD neuropathology. Strengths
include a large cohort with measurements of multiple AD biomarkers across modalities and
biofluids, and cognitive performance. However, this is a well-educated and predominantly
Caucasian sample, limiting generalizability.

Recent approaches to study complex conditions leverage mendelian randomization. In a
study of select genes affecting circulating IGF concentrations, investigators examined nine
IGF related single nucleotide polymorphisms within 984 subjects with AD and 10,304
controls from the Swedish Twin Registry (57). Results did not show that variation in IGF-1
affected AD risk.

Two (53, 55) of four cross-sectional studies show association between IGF-1 and brain
function (cognition) or related measures (including AD biomarkers). In the other two
studies, one demonstrates that genes affecting IGF concentrations may not be involved (57),
while the other suggests IGFBP-2 may affect hippocampal volume through mechanisms
apart from neuropathology with no significance with cognition (56). These studies show
conflicting results, and much work needs to be done to disentangle the role of IGF-1 and
IGFBPs in cognitive impairment.

Longitudinal studies—Baseline total serum IGF-1, IGFBP-3, and IGFBP-1 were
measured in 840 cognitively-normal, Ashkenazi Jewish adults (58). Over a 7-year median
follow-up, all-cause mortality, and composite incident morbidity, defined as onset of
cardiovascular disease, diabetes, cancer, or multiple-domain cognitive impairment (MDCI),
were assessed. A higher IGF-1/IGFBP-3 molar ratio (estimate of free circulating IGF-1)
was associated with higher mortality risk. Higher IGF-1 levels were also associated with

a greater risk for morbidity (HR=1.24; 95%CI:1.00-1.54) and incident MDCI outcome
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specifically (HR=1.56; 95%CI:1.08-2.25). Other IGF-1 related proteins did not show
associations. Analyzing persons with low prevalence of chronic diseases may be a strength
because of fewer confounders. However, weaknesses include a single measure of IGF-1 to
determine free circulating IGF-1 and no consideration of IGF-2, which can bind the same
receptors as IGF-1.

A clinic-based study evaluated 342 participants with subjective complaints or MClI,
determined by the Global Deterioration Scale, for baseline serum IGF-1 (59). At 4-year
follow-up, cognition was reassessed and dementia status categorized. In Cox proportional-
hazards regression analysis, IGF-1 levels did not show associations with dementia due to AD
in those with cognitive impairment, though there were associations with vascular dementia.
Further research is needed to collect repeated measurements of IGF-1. Change in IGF-1 or
other proteins over time may be more important in predicting future cognitive impairment.

An analysis of data explored the association between IGF-1 and IGFBP3 with dementia

in older men (60). Of 3967 men, 535 showed cognitive impairment on the MMSE.

The remaining 3432 without cognitive impairment were followed for 9 years, with 571
developing dementia and 1230 dying without dementia. IGF-1 was not associated with
incident dementia. However, men in the lowest quintile of IGFBP-3 had a 47% greater risk
of incident dementia compared to the highest quintile. Strengths include the community
setting and large sample. Some limitations are the absence of APOEe4 data, and potential
bias, as lower IGFBP-3 levels could be associated with other morbidities.

Thus, only one (58) of three recent longitudinal studies showed IGF-1 as being clearly
related to risk of cognitive impairment, while there was some suggestion of a relation
of IGF-1 and perhaps also IGFBP-3 to dementia. As a whole, there appears to be weak
indication for a role of IGF-1 and related binding proteins in cognition.

Part E: Brain insulin signaling in human postmortem tissue

Examination of human postmortem tissue could further elucidate the association between
different pathways in brain insulin signaling and cognitive function. Two recent studies
examined how signaling may associate with antidiabetic medication and cognition,
respectively.

A study measured insulin receptor signaling pathway (IRSP) and endothelial cell markers
in the parahippocampal gyrus of postmortem human brain (61). Groups included controls
(n=30; without AD and without diabetes), persons with AD (n=19), and persons with both
AD and type 2 diabetes treated with insulin and/or oral medications, mostly sulfonylureas
(n=34). There were more reductions in gene expression of endothelial cells and associated
IRSP in AD compared to controls. In AD subjects treated for diabetes, there were fewer
changes in endothelial cell and IRSP associated genes. Authors postulate that antidiabetics
may normalize gene expression. However, whether gene expression is improved due to
antidiabetics remains unclear, since there was no comparison with persons with both AD and
diabetes but without exposure to antidiabetic agents. While more research is warranted, this
study suggests a possible benefit of antidiabetic therapies on preserving gene expression.
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A study from our group was among the retrieved articles. We measured, among 150 older
subjects with or without diabetes, brain insulin signaling, including serine/threonine-protein
kinase-1 (AKT1) and insulin receptor substrate-1 (IRS-1) by enzyme-linked immunosorbent
assay (ELISA) and other methods (62). Subjects completed detailed neuropsychological
tests grouped into five cognitive domains and global scores. Adjusted regressions showed
that AKT1 phosphorylation was associated with lower scores on global cognition, as well as
episodic memory and working memory, but IRS-1 phosphorylation showed no association.
Secondary analyses showed AKT1 was also positively associated with AD pathology.
Findings need replication and expansion, for example to assess blood glucose and insulin
levels.

These two human postmortem studies suggest that brain IRSP and AKT may be involved in
cognition, but much work remains.

DISCUSSION

This review included 26 studies that were identified by a literature search. Nine studies (16,
19, 20, 22-25, 28, 29) directly addressed the relation of insulin resistance with cognitive
function. Taken as a whole, these nine studies provide data supporting an association
between insulin resistance and poorer cognition, ranging from subtle cognitive changes to
MCI and AD dementia. The other 17 studies addressed potential mechanisms of insulin and
related measures on the brain; two intranasal insulin studies (32, 35), four on brain structure
and metabolism (40-43), two on CSF biomarkers (45, 46), seven on various IGF proteins
(53, 55-60), and two using postmortem human brain tissue (61, 62). These 17 studies cover
different aspects of insulin and the brain and offer a range of insights. Results suggest that
structural and metabolic changes in the brain, AD biomarkers, and brain IRSP and AKT
insulin signaling pathways may each play a role in relating insulin to cognitive impairment.

Among the nine studies directly examining the relationship between insulin resistance
with cognition, three (16, 19, 20) of four cross-sectional studies (22) showed associations
between HOMA-IR and cognition; three (23, 28, 29) of five longitudinal studies showed
relation to cognition while the other two showed significance only after subanalyses (24,
25). Most studies show that insulin resistance reduces cognitive performance on global
cognition as well as specific measures on executive function, psychomotor speed, verbal
fluency, and verbal episodic memory. These results suggest a broad effect of insulin on
different cognitive systems.

In addition to examining cognition as an outcome, imaging studies examined the relation
of insulin resistance to brain structure and pathology. Neuroimaging is useful for in-vivo
studies to identify structural and functional changes in the brain over time, along with
cognitive changes within the same individuals. Findings showed that insulin resistance

is associated with enlarged perivascular spaces, increased regional deficits in synaptic
connectivity, and increased insulin activity in the hippocampal region, seemingly more so
in the right hemisphere. Structural neuroimaging, and potentially functional neuroimaging
(while less practical), may shed insight into pathobiologic mechanisms linking insulin to
brain dysfunction including cognition, and may also be used to study disease progression.
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However, more molecular studies, including of insulin growth factors, binding proteins, and
other molecules, are needed to better deconstruct the relation of diabetes, insulin resistance,
and cognition, since results with current human data have been inconsistent. Postmortem
studies have shown that IRSP and AKT pathways may be involved in brain insulin signaling
and cognition, which could be further explored in the future.

Yet another avenue for research on insulin and the brain, is insulin delivered intranasally,
which has been found to be safe and potentially beneficial for treating and preventing
worsening cognition in AD. Of two clinical trials, one showed positive correlations

with ADAS-Cog, while the other showed ADAS-Cog improvement only within a subset.
However, many questions remain such as delivery mode and optimal dosage. Study with
larger sample sizes, using different drugs and formulations, and with repeated outcome
measures of cognitive performance, are underway to further expand this line of research.
While most studies examine insulin resistance in the periphery, more studies examining
brain insulin resistance specifically are needed. Whether the optimal metabolic targets for
treating and preventing cognitive decline are peripheral or central (brain) remains unclear,
and active research in ongoing for both (e.g., intranasal insulin, metformin, and other
approved anti-diabetes medications).

Strengths of this review include the use of a robust, systematic search strategy to

identify recent cross-sectional and longitudinal studies as well as clinical trials involving
older persons with or without dementia or insulin resistance as measured by insulin

levels or HOMA-IR. Other studies involving varying imaging modalities, biomarkers, and
insulin growth factor serum levels were included to provide a broader understanding of
insulin resistance and its structural and functional impact on the brain. Moreover, many
studies examined the level of cognitive function as measured by a global score (e.g.,

using the MMSE), and/or by specific cognitive domains based on various individual
neuropsychological tests or combination of tests, giving additional insights into underlying
pathobiology.

Yet, there are many scientific gaps that remain in the field. First, mechanisms underlying
insulin resistance, as well as cognitive impairment and AD, are complex conditions and still
poorly understood. While the past decades brought many important scientific discoveries,
our understanding of the complex interplay of biologic factors including genetic, and
environmental factors including the exposome, remains incomplete. Second, while the links
of peripheral insulin resistance and diabetes to cerebrovascular disease including stroke,
and from cerebrovascular disease to cognitive impairment including dementia, are well
established (e.g., vascular contributions to cognitive impairment and dementia [VCID]), a
deeper understanding of this vascular pathway and elucidation of other pathways leading

to dementia are urgently needed. Third, biomarkers for these conditions are limited,
especially those that are practical for clinical practice. For example, HOMA-IR is not

as useful longitudinally, and AD and VVCID blood biomarkers are still not accepted as
standard of care. Yet, the biomarker field for these common and disabling conditions is
rapidly evolving, and promises to soon improve prediction, diagnosis, clinical course, and
response to therapies. Fourth, there are currently limited resources of well-characterized
and diverse persons for research, despite the knowledge that insulin resistance, diabetes,
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and dementia are significantly more common in historically-marginalized populations (e.g.,
Blacks, Latinos). Specifically, we are not aware of any study of a large group of women
and men from diverse racioethnic and other backgrounds and in mid-to-late life, with

and without peripheral insulin resistance, diabetes and co-morbidities at baseline, who are
well characterized clinically including for brain function (longitudinally-collected cognitive
measures) and metabolic function (e.g., laboratory measures), as well as with other data
(e.g., exposome, genome, transcriptome, etc.), and in whom blood and other biospecimens
are available to characterize peripheral and central (brain) functions. Fifth, little is known
about the relationship of peripheral to central insulin resistance (e.g., can brain insulin
resistance occur in the absence of peripheral resistance, and if so then what triggers this?),
and of these to brain structure and function including cognition and dementia. In fact, how
to best define and measure brain insulin resistance remains unclear, particularly /n-vivoin
humans (63).

To be impactful on science and ultimately clinical care and public health (dementia
prevention), future research needs to identify and characterize the biologic and
environmental mechanisms involved in insulin resistance and cognitive impairment
including AD, while evaluating for sex, racioethnic and exposome factors. In addition to
experimental models of disease (e.g., animal and cell culture studies), studies should focus
on humans, with an emphasis on large, diverse population-based and community-dwelling
cohorts. At enrollment, participants would have a spectrum of metabolic dysfunction, from
normoglycemia (controls) to insulin resistance and pre-diabetes, to diabetes. Prospective,
longitudinal evaluations should include detailed phenotyping, with performance-based
cognitive testing across domains, biospecimen collection (e.g., for novel blood biomarkers
of insulin resistance, epigenetic markers of cognitive decline, microbiome analyses, etc.),
neuroimaging (e.g., MRI), and evaluations of a range of medical (e.g., vascular) and
environmental factors (e.g., social and behavioral). Sophisticated analytic approaches, such
as with computational neuroscience, would be employed to analyze large and complex
datasets, using bioinformatics and biostatistical modeling, as well as robust methods to
minimize biases and errors. Results would rapidly be made publicly available, and data and
remaining biospecimens would be available for sharing with qualified scientists to conduct
additional research, following ethical and legal standards for resources sharing. While there
is much work to be done in the space of insulin resistance, cognition and AD, the current
state-of-the-science is well poised to support meaningful research with the long-term goal of
decreasing and preventing cognitive impairment in aging.
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STUDY IMPORTANCE
What reviews have already been published on this subject?

. While there are prior publications on insulin resistance and cognition or
Alzheimer’s disease (AD), many used animal models of disease or other
experimental non-human designs.

. There are few reviews using a structured search of the literature to specifically
examine the recent data relating insulin and cognition, with a focus on older
persons.

What are the new findings in your manuscript?

. Most cross-sectional and longitudinal clinical studies show an association
between insulin resistance, often defined by HOMA-IR, and cognition in
older persons. But often, only a single or global cognitive test is used, and
there is little information on which specific cognitive domains are implicated.

. Several studies used imaging and other tools to study insulin and cognition.
While results are mixed, changes on brain imaging such as in cerebral glucose
metabolism in hippocampal regions, appear to be associated with cognitive
impairment. Further, brain insulin receptor signaling may be involved in
cognition.

. Many gaps remain in knowledge about insulin resistance, cognition, and AD.

How might your results change the direction of research or the focus of clinical
practice?

. Insulin resistance and cognition manifest uniquely in humans compared to
animals or other experimental setting.

. Further human research relating insulin to cognition at various levels from
molecular, genetic, and other biologic pathways, to environmental, exposome,
and other factors, are needed.

. Because insulin metabolism is potentially modifiable, such research has
potential to inform future clinical practice.

. Future research will include studies with large and diverse populations, with
detailed clinical and laboratory phenotyping, who are prospectively followed
longitudinally including with detailed cognitive function data
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