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Abstract

Mucosa-associated invariant T (MAIT) cells are unconventional T cells with innate-like 

antimicrobial responsiveness. MAIT cells are known for MR1-restricted recognition of microbial 

riboflavin metabolites giving them the capacity to respond to a broad range of microbes. However, 

recent progress has shown that MAIT cells can also respond to several viral infections in humans 

and mouse models, ranging from HIV-1 and hepatitis viruses to influenza virus and SARS-CoV-2, 

in a primarily cognate antigen-independent manner. Depending on the disease context MAIT cells 

can provide direct or indirect antiviral protection for the host, may help recruit other immune 

cells, but may also in some circumstances amplify inflammation and aggravate immunopathology. 

Furthermore, chronic viral infections are associated with varying degrees of functional and 

numerical MAIT cell impairment, suggesting secondary consequences for host defense. In this 

review, we summarize recent progress and highlight outstanding questions regarding the emerging 

role of MAIT cells in antiviral immunity.
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Introduction

Conventional αβ T cells recognizing peptides presented by MHC molecules represent 

the main part of the T cell compartment. However, there are several exceptions to this 

paradigm with substantial T cell populations recognizing non-peptide antigens presented 

by mechanisms distinct from the standard MHC class I and II antigen presentation 

pathways (1). In humans, the largest such unconventional αβ T cell population are the 

mucosa-associated invariant T (MAIT) cells, normally found at levels of 1–10% of T cells 

in peripheral blood (2, 3). These unconventional T cells express a semi-invariant TCR 

repertoire and recognize small non-peptide antigens presented by the non-polymorphic 

and evolutionarily conserved MHC class I-related protein 1 (MR1) (4–6). MAIT cells 

primarily recognize microbial vitamin B2 metabolites, including the strong agonist 5-(2-

oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU) (7), although a range of other 

MR1-presented antigens have also been characterized (8).

MR1-restricted responses of MAIT cells are rapid and innate-like with production of diverse 

cytokines such as IFNγ, TNF, IL-17 and IL-22 (2, 9), as well as potent cytolytic effector 

function against infected cells and bacteria mediated by perforin, granzymes and granulysin 

(10–14). Notable features of these cells include expression of a broad set of tissue homing 

chemokine receptors (2), as well as a tissue residency transcriptional program (15). Tissue 

localization influences the functional profile of MAIT cells, with stronger propensity to 

express IL-17 in oral mucosa (16), female genital mucosa (17), and lung (18), as compared 

blood where expression of IFNγ and TNF dominates.

Consistent with their ability to take up residency in tissues, MAIT cells play important 

roles in different aspects of barrier immunity (19–21). Findings in murine models support 

their significant role in the control of bacterial infections in the lung, including Francisella 
tularensis (22, 23), Legionella longbeacheae (24), and Klebsiella pneumoniae (25). Recent 

evidence indicates that activation of MAIT cells in tissues has consequences outside their 

direct antimicrobial function, as they can contribute to tissue maintenance and repair in 

an MR1-dependent manner (26–28). MAIT cells are recruited to wounds via the CXCR6/

CXCL16 axis and contribute to wound closure via the production of amphiregulin (29). It 

is thus becoming clear that MAIT cells have broad functions in protecting and maintaining 

barrier tissues.

MAIT cells in viral diseases

Beyond their role in MR1-restricted antimicrobial immunity, it is now known that MAIT 

cells respond strongly to many viral infections (30–32) (Table I). Here, we will briefly 

review some key discoveries and patterns, as well as highlight some outstanding questions 

for future research. Most data in the field comes from studies in human infectious diseases. 

However, we also discuss work from mouse models of viral and bacterial infections where 

relevant to the human disease context.
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HIV-1

The first observation of MAIT cell involvement in human viral disease was the finding that 

they were numerically and functionally impaired in peripheral blood in patients with chronic 

HIV-1 infection (33, 34). Loss of MAIT cells was found to be irreversible by antiretroviral 

therapy (ART) (33–35), although the functional responses of residual MAIT cells to E. 
coli stimulation tended to recover at least partially (12, 33, 34). This pattern was initially 

unexpected as MAIT cells are mostly CD8+, and very few express CD4 and appear resistant 

to infection (34), despite high levels of CCR5 expression (36). Furthermore, the depletion of 

MAIT cells was less pronounced in gut mucosal tissues (33), giving rise to the hypothesis 

that loss from blood may at least partly be a consequence of recruitment to tissues where 

they may respond to microbial translocation (37, 38). In this context it is interesting to note 

that mice deficient in MR1 have been reported to exhibit impaired gut barrier integrity and 

increased microbial translocation (39). MAIT cell depletion in HIV-1 infected individuals 

was associated with activation levels (33), and a role for activation-induced pyroptosis in 

MAIT cell loss has been suggested (40).

The level of depletion at different tissue sites varies as MAIT cells in lung (41) and lymph 

nodes (42) are lost, whereas they are relatively preserved in female genital mucosa (43), as 

well as in gut mucosa (33). Chronic HIV-1 infection is thus not only associated with loss 

of peripheral blood MAIT cells, but perhaps rather with a level of redistribution to some 

mucosal sites. The numerical loss of MAIT cells in blood is also paired with functional 

impairment, although some recovery of responsiveness occurs as patients initiate ART (12, 

33). IL-10 production by monocytes in response to HIV-induced chronic IFNα stimulation 

may at least partially explain the impaired MAIT cell responses to bacteria in this context 

(44). Notably, the small subset of CD4+ MAIT cells contributes to the HIV reservoir in 

persons on long-term effective ART (45).

In contrast to the loss of MAIT cells in chronic HIV-1 infection, recent studies demonstrated 

that acute HIV-1 infection is associated with MAIT cell expansion (46). Activated MAIT 

cells expand during the first weeks of HIV-1 infection both in blood and in gut mucosa 

(46), and a similar pattern was seen in pigtail macaques acutely infected with SIV (47). 

MAIT cell activation during acute HIV-1 infection correlated with markers of microbial 

translocation, and MAIT cells acquired increasing expression of CD56 as infection 

progressed (46). This is significant as CD56 expression is associated with an enhanced 

level of innate cytokine responsiveness in MAIT cells (9). Interestingly, recent findings 

in vitro suggest that MAIT cells are activated by HIV-1 in a cytokine-dependent and MR1-

independent manner, and mediate antiviral effects via chemokines CCL3, 4 and 5 (48).

Human T-Lymphotropic Virus type 1 (HTLV-1) is another retrovirus that infects CD4 T cells 

and interrupts immune system function (49). Similar to HIV-1 infection, persons infected 

with HTLV-1 have a reduced frequency of MAIT cells in circulation, and residual MAIT 

cells are highly activated and display lower responses to bacterial stimulation (50). It is 

interesting to speculate that impaired MAIT cell frequency and function could contribute 

to the increased susceptibility to Mycobacterium tuberculosis reported for HTLV-1 carriers 

(51).
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Viral hepatitis

Among all human organs investigated so far, the liver has the highest concentration of MAIT 

cells representing often 10–30% of the hepatic T cell pool (2, 52). This enrichment together 

with the role of the liver as site of filtration of blood coming from the gut, has prompted an 

interest in how MAIT cells respond to hepatitis virus infections. In this regard patients with 

chronic hepatitis C virus (HCV) infection resemble HIV-1 infected individuals in that MAIT 

cell levels are low in circulation and residual cells are functionally impaired (53–55), and 

do not readily recover after direct-acting antiviral treatment-induced clearance of HCV (53, 

55). In contrast to HIV-1 infection, these numerical and functional impairments are observed 

already in acute stages of HCV infection (56), and loss of MAIT cells is evident both in 

blood and in the liver (54). Interestingly, the frequency of intrahepatic MAIT cells was 

observed to be inversely correlated with fibrosis, and intrahepatic MAIT cells were activated 

and maintained cytotoxic potential (54).

Hepatitis B virus (HBV) infection is associated with a similar pattern of MAIT cell loss, 

albeit probably a bit slower and less severe (57, 58). This pattern changes in HBV infected 

people who become co-infected with Hepatitis delta (HDV) and develop a severe form of 

viral hepatitis, which is associated with drastic loss of MAIT cells (59). Available data from 

these different studies suggest that IL-18 produced in response to hepatitis virus infection 

may drive the activation and exhaustion of MAIT cells in this context (54, 59).

Viral infections of the respiratory tract

The human lung contains relatively lower levels of MAIT cells than the liver, more in line 

with the percentages seen in peripheral blood (41, 60). Nevertheless, recent results indicate 

that MAIT cells can play both protective and pathogenic roles during pulmonary viral 

infections. In mice, MAIT cells provide a protective effect against influenza virus infection, 

and this effect seems to be mediated by IFNγ (61). In humans, activation of MAIT cells in 

response to influenza virus infected lung epithelial cells in vitro depends on IL-18, which 

triggers IFNγ and granzyme B expression (62). In both mice and humans, higher levels of 

MAIT cells in the host were associated with better outcome (61, 62).

Compared to influenza, a different picture has emerged from studies of patients with severe 

COVID-19. In such patients SARS-CoV-2 infection provokes strong activation of MAIT 

cells and leads to a rapid and sharp decline in circulating MAIT cell numbers in peripheral 

blood, with an apparent enrichment in the airways (63–65). The loss of MAIT cells is much 

more pronounced than for other T cell subsets in terms of percentage and absolute counts 

(63). Strikingly, in severe COVID-19 higher MAIT cell activation levels are associated with 

and predictive of mortality (63, 64, 66). This does not exclude the possibility that MAIT 

cells may afford some protection in most non-severe cases of COVID-19. It is currently 

unclear if the MAIT cell compartment rebounds in individuals who recover from severe 

COVID-19. The work by Flament et al. indicated that the severe COVID-19 MAIT cell 

phenotype was associated with a progressive shift from a type I IFN immune profile towards 

an IL-18 immune environment via a transcriptional switch in monocytes and macrophages 
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(64). Thus, IL-18 may drive both protective and pathogenic MAIT cell responses depending 

on the disease context.

Measles virus (MV) is a highly contagious pathogen causing acute respiratory viral illness in 

unvaccinated individuals. Recent findings indicate that MAIT cells are directly targeted by 

MV via their high expression of the MV receptor CD150, and infected cells die by apoptosis 

(67). Taken together, considerable emerging evidence now points to MAIT cells playing 

diverse important roles in respiratory viral infections.

Zoonotic and vector borne RNA viruses

Hantaviruses are single-stranded negative-sense RNA viruses belonging to the Bunyavirales 

order that infect humans upon inhalation of dust containing rodent excrement. Two recent 

studies have investigated the response of MAIT cells in patients infected with hemorrhagic 

fever with renal syndrome (HFRS) caused by Puumala orthohantavirus (PUUV) (68), or in 

patients with HFRS caused by Hantaan virus (HTNV) (69). Both studies see similar patterns 

of MAIT cell activation, decline in circulation, functional impairment, and eventually partial 

recovery in convalescent patients. However, the two studies differ regarding findings on the 

main drivers of MAIT cell activation, where activation by PUUV appears to be dependent on 

IFNα (68), while activation by HTNV appears dependent on IL-18 (69).

Dengue virus (DENV) and Zika virus (ZIKV) are flaviviruses transmitted mostly via 

mosquito bites. DENV infection in humans was found to be associated with increased MAIT 

cell activation as assessed by CD38 and granzyme B expression, with just slight reduction in 

cellular frequency in blood (70, 71). MAIT cell activation in response to DENV in vitro was 

dependent on antigen presenting cell expression of IL-12 and IL-18, in an MR1-independent 

manner (70). Furthermore, IL-18 levels and MAIT cell activation correlated with disease 

severity in patients with acute dengue infection (70). Similar IL-18-mediated activation was 

observed in response to ZIKV infection in vitro (71).

Mechanisms of MAIT cell activation in response to virus

The data available so far indicate that MAIT cell responses to viral infections are driven 

primarily by innate cytokines produced by other cells in response to virus, with little or no 

direct contribution of MR1 (Fig. 1). Cytokines that have been shown to stimulate MAIT 

cell responses include IL-12, IL-15, IL-18, IL-7 and IFNα/β (12, 68, 70, 72–74). It is 

important to note that the effector functions elicited by cytokines are relatively limited to 

activation with upregulation of CD69, cytolytic arming with upregulation of granzyme B, 

and expression of IFNγ. This effector profile is relatively limited, but on the other hand 

these responses happen with rapid “innate-like” kinetics. Another important aspect is that 

most of the activating cytokines are not very efficient activators alone, and combinations are 

much more potent such as the combination of IL-12 and IL-18. In an infected host these 

cytokines may also act in sequence and involve different cells, as some cytokines such as 

IL-12 have more restricted expression patterns than for example IL-18, and others such as 

IFNα may have faster kinetics. Interestingly, this was nicely illustrated by the response to 

chimpanzee adenovirus Ox1 (ChAdOx1) vaccine vector, where robust MAIT cell activation 
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required both IFNα produced by plasmacytoid dendritic cells and monocyte-derived IL-18 

(75). In this setting, robust activation also needed secondary TNF production by monocytes 

in response to IFNα. Altogether, current understanding of factors involved in MAIT cell 

activation suggests that modes of activation will depend on the type of virus, and which cells 

and organs this virus infects. It is important to note that the cytokine-mediated activation 

discussed above does not exclude involvement of MR1-presented antigens derived from 

cellular metabolomes, microbiota and co-infecting bacteria. This will be important to study 

in particular in situations of barrier breach and microbial translocation.

Downstream consequences of MAIT cell activation for adaptive immune 

responses

It is likely that the most significant immediate anti-viral effect of MAIT cell activation 

occurs via the production of IFNγ, such as with the example of influenza virus infection 

in mice (61). Thus, MAIT cell responses may be similar to NK cells in the viral infection 

context. However, MAIT cells may be more efficient in infiltrating tissues and responding 

to inflammatory cues via their expression of for example CCR5, CXCR3, CCR2, CCR6 

and CXCR6, which will allow homing to sites such as liver and lung (2, 76). However, the 

work with ChAdOx1 has indicated that the rapid activation of MAIT cells also provides an 

adjuvant-like effect, allowing stronger generation of antiviral CD8 T cell responses in mice 

(75). In line with this, MAIT cell activation in mice infected with the bacterial pathogen 

F. tularensis promoted monocyte differentiation in vivo via GM-CSF production and 

subsequent recruitment of CD4 T cells (77). Yet another example of MAIT cell promotion 

of effective adaptive immunity comes from work with Vibrio cholerae where MAIT cells 

promoted B cell differentiation and V. cholerae specific IgA responses (78). Infections with 

F. tularensis and V. cholerae give rise to riboflavin metabolite antigens and are in this way 

clearly distinct from the viral infection situation where direct MR1-dependent activation 

of MAIT cells is unlikely to occur. However, recent findings in mouse models indicate 

that MAIT cell activation by MR1-presented agonist can induce adaptive humoral viral 

immunity via dendritic cell activation and priming of follicular T helper cell responses (79). 

Thus, the adjuvant effect of MAIT cells could be influenced by interferons and cytokines 

triggered by the virus. Additionally it is tempting to speculate that MR1-presented antigen 

derived from unrelated microbes in the virus-infected host may also provide such stimulus 

in situations where gut, skin or lung barrier integrity is compromised. In this context it is 

interesting to note that in the human viral COVID-19 mRNA vaccine setting, it was recently 

observed that MAIT cells correlated positively with the magnitude of SARS-CoV-2 spike 

protein-specific CD4 T cell and antibody responses (80). In summary, emerging evidence 

suggests that MAIT cells may influence the magnitude and quality of downstream adaptive 

immune responses.

Emerging evidence of viral immune evasion

Viruses have evolved numerous ways of targeting components of immune pathways to 

avoid or delay recognition by host immunity (81). This includes active targeting and 

downregulation of MHC class I molecules (82), as well as non-classical CD1d molecules 
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(83), by viral mechanisms to prevent antigen presentation to T cells. Emerging evidence now 

indicates that the MR1 antigen presentation pathway is also inhibited by several viruses (Fig. 

1). McSharry et al. found that several herpesviruses, including herpes simplex virus type 1 

(HSV-1), suppress MR1 cell surface expression and target intracellular MR1 for proteasomal 

degradation, whereas MR1 at the cell surface escapes HSV-1-dependent targeting (84). The 

HSV-1 downregulation of MR1 is dependent on the viral protein US3 and inhibits MAIT 

cell activation (84). Another herpesvirus, the cytomegalovirus (CMV), was also recently 

reported to inhibit MR1 surface expression via the action of the US9 glycoprotein (85). 

Viral targeting of intracellular MR1 stores for degradation was recently found for Varicella 

Zoster virus (VZV), and this was partially mediated by the VZV ORF66 gene product (86). 

Together, these virus-mediated mechanisms for targeting MR1 define an emerging immune-

evasive strategy that disrupts the MR1 antigen presentation pathway. More studies are 

needed to understand the importance of these mechanisms for the host-pathogen relationship 

during viral infection.

Future perspectives

We now know that many viral infections are associated with numerical and functional 

changes in the MAIT cell compartment. However, more studies are needed to understand 

the downstream consequences of these changes for the host. Considering recent advances, 

one could expect consequences for control of microbial infections and for the relationship 

with microbiota at mucosal surfaces, as well as for the ability of MAIT cells to contribute 

to wound healing. A better understanding of the underlying mechanisms of MAIT cell 

impairment during and after viral infections would help efforts to restore them. Here, there 

is evidence that the IL-7Rα/IL-7 axis plays a role, as IL7RA polymorphisms influence 

MAIT cell resilience during chronic HIV-1 infection (87), and IL-7 treatment of humans 

can boost MAIT cell numbers in vivo (88, 89) The supportive effects of IL-7 on MAIT 

cells extends boosting their function in vitro in different disease contexts (12, 90, 91), but 

more research is needed in this area. Furthermore, we know too little about the actual roles, 

both protective and potentially immunopathogenic, that MAIT cells play during serious viral 

diseases. For example, what differs in the MAIT cell response between their apparently 

protective role during influenza virus infection and their seemingly detrimental role during 

severe COVID-19? Are antiviral MAIT cell responses always MR1-independent, or are there 

instances where MR1 presents altered cellular metabolome products or microbiota-derived 

antigens to trigger MR1-restricted antiviral MAIT cell responses as recently suggested by 

findings from in vitro assays with HBV (58)? Finally, the potential of MAIT cells as a 

biomarker of disease risk should be further explored, as supported by the recent observation 

that MAIT cell levels are associated with CMV reactivation in allogeneic hematopoietic 

stem cell transplantation recipients (92).

Conclusions

Our understanding of how MAIT cells respond and are impacted during the acute and 

chronic stages of viral infection has improved considerably over the last decade. However, 

in many ways we have thus far only scratched the surface and, as outlined above, many 

key questions remain. Given the unique immunobiology of MAIT cells and MR1, including 
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a high level of evolutionary conservation, the relative lack of MR1 polymorphisms, high 

numbers of MAIT cells in healthy individuals, and rapid innate-like responsiveness, it 

is likely that MAIT cell responses play a role in many acute conditions including viral 

infections.
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FIGURE 1. 
Model of MAIT cell activation in response to viruses. MAIT cell activation in the virus 

infection context is primarily driven by cytokines including IFNα and IL-18, and it is 

unclear if TCR-mediated activation is involved. The description of subsequent responses is 

mostly based on in vitro studies with some support also from in vivo studies in humans and 

mouse models. The involvement of MR1-restricted responses to virus antigen or microbial 

translocation antigens is currently unclear or hypothetical, as indicated by the question mark. 

Created with BioRender.com.
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Table I.

Summary of MAIT cell responses to diverse viral infections

Virus Host 
species

Acute 
infection

Chronic 
infection

Convalescent/
Treated

Immune 
evasion

Consequence for 
host

Key 
references

HIV-1 Human Activation/
expansion

Loss/
exhaustion

No/limited 
recovery

N.D.a Antiviral via 
chemokines

33, 34, 35, 46, 
48

HTLV-1 Human N.D. Loss/
exhaustion

N.D. N.D. N.D. 50

HCV Human Activation Loss/
exhaustion

Limited recovery N.D. N.D. 53, 54, 56

HBV Human N.D. Weak loss N.D. N.D. Antiviral activity 57, 58,

HDV Human N.D. Severe loss/
exhaust

N.D. N.D. N.D. 59

SARS-
CoV-2

Human Strong 
activation & 
loss

N.A.b Partial recovery N.D. May be pathogenic 
in severe cases

63, 64, 65, 66

DENV Human Activation N.A. N.D. N.D. N.D. 71

ZIKV Human Activation N.A. N.D. N.D. N.D. 71

PUUV Human Activation/
loss

N.A. Partial recovery N.D. N.D. 68

HTNV Human Activation/
loss

N.A. Partial recovery N.D. N.D. 69

FLU Human Activation N.A. N.D. N.D. Probably protective 61, 62

FLU Mouse Activation N.A. N.D. N.D. Antiviral via 
interferon

61, 62

MV Human N.D. N.A. N.D. Direct 
infection

Probably loss of 
MAIT cells

67

HSV-1 Human N.D. N.D. N.D. Downreg. 
MR1

N.D. 84

VZV Human N.D. N.D. N.D. Downreg. 
MR1

N.D. 86

CMV Human N.D. N.D. N.D. Downreg. 
MR1

Role in CMV 
reactivation in 
HSCT

85

a
N.D., Not determined.

b
N.A., Not applicable.
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