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Abstract

Primatologists, psychologists and neuroscientists have long hypothesized that primate behavior is highly structured. However,
delineating that structure has been impossible due to the difficulties of precision behavioral tracking. Here we analyzed a data set
consisting of continuous measures of the 3D position of two male rhesus macaques (Macaca mulatta) performing three different tasks
in a large unrestrained environment over several hours. Using an unsupervised embedding approach on the tracked joints, we identified
commonly repeated pose patterns, which we call postures. We found that macaques’ behavior is characterized by 49 distinct postures,
lasting an average of 0.6 seconds. We found evidence that behavior is hierarchically organized, in that transitions between poses
tend to occur within larger modules, which correspond to identifiable actions; these actions are further organized hierarchically. Our
behavioral decomposition allows us to identify universal (cross-individual and cross-task) and unique (specific to each individual and
task) principles of behavior. These results demonstrate the hierarchical nature of primate behavior, provide a method for the automated
ethogramming of primate behavior and provide important constraints on neural models of pose generation.
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INTRODUCTION

Understanding the principles behind the organization of behavior
has long been an important problem to ethology, psychology and
neuroscience [1–7]. Macaques are especially important in this
regard because of their pivotal role as a model organism for
biomedical research [8, 9]. Indeed, a great deal of research has
benefited from the rudimentary tracking and identification of
behavior in laboratory tasks in macaques. However, precise mea-
surement of behavior has generally been limited to a single motor
modality (typically the eyes or arm) under conditions of bodily
constraint. As a result, we have an impoverished understanding
of behavior in the natural context, involving the free movement
of full bodies in three-dimensional space [10].

Recent years have seen a great deal of success in the devel-
opment of camera-based systems for tracking the behavior of
small animals, including worms, flies and mice [6, 11–16]. There is
now growing interest in larger species, including primates [17–22].
These tracking systems have allowed for the automated identifi-
cation of specific meaningful behavioral units (‘ethogramming’)
in these species [17, 23–25]. Results of these analyses have shown
that behavior in these organisms consists of simple motifs that
are repeated and are organized into a hierarchical structure [18,
23]. These methods are important because they can provide quan-
titative answers to longstanding questions at the core of behav-
ioral science.

Our laboratory has developed a system that can perform
detailed three-dimensional behavioral tracking in rhesus macaques

with high spatial and temporal precision [26, 27]. Our system
uses 62 cameras positioned around a specially designed open
field environment (2.45 × 2.45 × 2.75 m) in which macaque
subjects can move freely in three dimensions and interact with
computerized feeders (see also haydenlab.com/tracking). We used
this system to track the position of 15 joints at high temporal
and spatial resolution as our subjects performed three different
behavioral tasks. The data collected by this system open up the
possibility of automated behavioral identification and analysis in
macaques.

Previous unsupervised approaches to quantifying behavior
were centered on actions [23, 24]. In contrast, our approach
starts with the configuration of landmarks (‘postures’) as the
fundamental unit of behavior. Specifically, we generated 23
variables corresponding to the angles between all major joint
pairs and the velocity of the subject in three dimensions. We
then performed dimensionality reduction to identify postures
and graph theoretic methods to identify extended actions. We
find that behavior clusters into 49 distinct postures. Further
graph-theoretic analyses show that postures are organized into
specific actions. These actions correspond to nameable, intuitive
behaviors and are further organized into higher categories.
Together, these results confirm that monkey behavior obeys
hierarchical organizational principles. These results also indicate
that our pipeline can overcome the daunting problems faced by
patterns of movement in monkeys.

We examined behavior of two macaque subjects performing
one of two different tasks, or, in a third condition, no task. This
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design allowed us to examine the effect of task and of individ-
ual on the organization of behavior. We found prominent cross-
individual differences and only modest cross-task differences.
Having said that, with only two subjects in our sample, the gen-
erality of this cross-individual claim is severely limited. We also
found that the composition of behavior (as inferred by adjusted
mutual information) is more stable during task performance than
during task-free behavior. This finding demonstrates changes
in the way behavioral repertoires are selected on the basis of
behavioral context. Overall, these findings demonstrate that it is
possible to obtain automatic behavioral ethograms in macaque
monkeys and delineate the organization of behavior across con-
texts.

RESULTS
We studied the behavior of two rhesus macaques under three dif-
ferent experimental conditions (see Methods) in a large open cage
that allowed for free unimpeded movement (a 2.45 × 2.45 × 2.75 m
cage with barrels, Fig. 1A, [26]). Each subject performed under one
of three possible task conditions per day (see below and Methods).
Each daily session took about two hours. Each task condition was
repeated three times over three different days (fully randomized
and interleaved order). Our data set therefore consists of 18
sessions (9 for each subject; divided into two different task con-
ditions, 6 task-OFF, 12 task-ON) for a total of 31.4 hours, or about
3.3 million frames. Behavior was tracked with 62 high-resolution
machine vision video cameras, and pose (3D position of 15 cardi-
nal landmarks, see Methods) of each macaque was determined
using OpenMonkeyStudio ([26], Fig. 1B) with secondary landmark
augmentation [27].

Embedding of macaque posture results in
semantically meaningful clusters
We developed a novel pipeline to characterize behavioral states
based on tracked poses. Our pipeline is a variation of one devel-
oped by Berman and colleagues to characterize the behavior
of flies (Methods, Fig. 1C, [23, 28]. The major difference is with
the way that pose data were structured at the beginning of the
pipeline. Briefly, poses were translated using the neck as the
reference. Then, the pose of the subject in each individual frame
was rotated to face a common direction (see Methods). This rota-
tion was defined via two vectors corresponding to the spine and
shoulders. Next, poses were size-scaled (with size defined as hip
to neck distance) so that subjects matched. This process produced
normalized postural orientations. Finally, to further reduce indi-
vidual variation in poses, we aligned poses of individual subjects
via a variation of the Mutual Nearest Neighbors approach (a local
alignment procedure; see Methods and [29]).

After normalization, we embedded poses using all collected
data to generate a single overall postural embedding. To mitigate
possible effects of noise, we first applied a principal component
analysis (PCA) and extracted the first 16 PCs (which accounted for
95% of the explained variance). Projections onto these PCs served
as the features that were then used in subsequent embedding
and clustering. Alignment is required to ensure that idiosyncratic
variability in behavior does not bias the embedding process. This
alignment serves the function of correcting for idiosyncratic day
to day measurement effects, such as the distribution of poses and
transitions present in daily measurements. These effects, while
small, can wind up having very large spurious effects on the
resulting clustering.

We used a dimensionality reduction technique known as uni-
form manifold approximation and projection (UMAP, [30]). This
process results in a reprojection onto two dimensions in which
similar poses are adjacent in the resulting low-dimensional space.
We then performed a kernel density estimation to approximate
the probability density of embedded poses at equally interspersed
points. The color in the resulting plot reflects the probability of
each pose in our data set (Fig. 1C and D).

The clusters have a clear organization. Each cluster reflects a
set of similar poses that are relatively distinct from other sets of
poses. To formally identify these clusters, we used the watershed
algorithm on the inverse of the density map [28]. This algorithm
treats each peak as a sink and draws boundaries along lines that
separate distinct basins. We found that the resulting embedding
space contains 49 distinct clusters. These clusters correspond
to sets of closely related poses (Fig. 1D). We verified that the
embedding space captures differences in poses by correlating
the euclidean distance of pose features with that of embedded
points (bootstrap test, mean Pearson r = 0.45, p < 0.001). We refer
to the clusters of poses as postures. Visual inspection reveals
that these postural states are semantically meaningful in the
sense that they correspond to recognizable postures, such as
left or right stride, sitting, hanging, etc. Each posture lasted on
average 0.612 ± 0.0015 seconds (s.e.m.). The clustered nature of
this embedding space confirms that, at least within our sample
of two subjects, macaque behavior is composed of stereotypical
postures.

Directed graph analysis of posture transitions
reveals behavioral modularity
We next sought to understand how postures combine to form
recognizable behaviors. To do this, we identified sets of postures
with a high probability of occurring in sequence. We therefore
computed transition probability matrices for the specific postures
identified above. Any organization in sequences of postures will
show up in the form of increased likelihood of specific transitions
between the postures within the sequence. Our goal, then, is to
discover sets of postures that have a high probability of transi-
tioning between one another, but not other sets of postures.

The transition probability matrix, in graph theoretic terms, is a
directed graph. In this framework, nodes that form strong links
between each other are referred to as modules or communities.
Because of this, we refer to sets of postures that have a high proba-
bility of co-transition as ‘behavioral modules’. These modules are
roughly equivalent to what are sometimes called actions [1]. The
identification of these modules allows us to re-sort the transition
probability matrix, such that there are blocks on the diagonal;
these blocks correspond to the behavioral modules.

To formally identify behavioral modules in the transition
matrix, we used a recently-developed algorithm named Paris [31].
This algorithm performs hierarchical clustering on the graph
derived from the transition matrix and returns a tree describing
the distance between poses and their composing modules (we will
return to examine the hierarchical structure of behavior below).
Next, to determine the optimal number of behavioral modules,
we proceed to cut the tree at a series of hierarchical levels and
compute a modularity score for each cut tree. We then choose
the cut that corresponds to the tree with the maximal modularity
score. The modules that result from this cut give the highest
average within-module posture–transition probability and the
lowest average across-module posture–transition probability.
Formally speaking, they maximize the difference between these
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Figure 1. Identification of postures in an open-field environment. (A) Depiction of the cage environment. Sixty-two cameras were mounted on an
exoskeleton, facing inwards. (B) Reconstructed pose was defined by 15 landmarks. (C) Outline of general methodological approach. See methods for
details. (D) The heatmap denotes the density of embedded samples. Select postures are visualized here, both as the mean posture within clusters
(monkey stick figures) and example reprojections onto the raw data.

two measures. From this process, we can identify the most likely
behavioral modules.

A transition matrix from an example task-OFF session is
depicted in Figure 2Ai. For this session, the number of modules
that maximizes the modularity score is 5, indicating that the
best fitting classification has five discrete behavioral modules
(Figure 2Aii). As illustrated in the figure, these behavioral modules
hew closely to nameable actions (Fig. 2B) such as walking (Video
1), swaying (Video 2), climbing (Video 3), jumping (Video 4)
and idling (Video 5). The modular nature of the behaviors in
this session is clearly visible in the sorted transition matrix
(Figure 2Aiii).

We tested for modularity by computing the modularity score.
All 18 of the individual data sets we collected individually showed

statistically significant evidence of modularity (randomization
test, p < 0.001, Fig. 3C). The average number of unique behavioral
modules in each session was 3.8 ± 0.15 (s.e.m.), and each behav-
ioral module lasted 2.73 ± 0.0327 seconds. Across all sessions, the
duration of modules ranged from 0.47 to 16.8 seconds. Together,
these results indicate that subjects’ behavior is organized into
discrete behavioral actions that consist of stereotyped patterns
of postures.

Transitions are hierarchically organized
Our next analysis investigated the hierarchical organization
of behavior (Fig. 3). Dendrograms in this figure show the
hierarchical organization of postures according to their transition
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Figure 2. Postures are organized into behavioral modules. (A) Example of modularity in one data set. (i) The original transition probability matrix. (ii)
The modularity score for multiple different cutoffs of the dendrogram. (iii) Same as (i) but sorted according to the results of (ii). Now, it is evident that
transitions between poses occur within modules (highlighted with black squares). (B) All modules in this example. These correspond to semantically
meaningful sequences of poses. (C) Histogram of the maximal modularity score, both for observed (dark) and randomized (light) transition matrices.
Modularity is higher than expected by chance.

Figure 3. Pose transitions are hierarchically organized. (A) Dendrograms for two example sessions from the same individual, for a task OFF (left) and task
ON (right) condition. (B) Dasgupta score, measuring hierarchical organization, from transition matrices derived from observed (dark) and randomized
(light) transitions.

probabilities. Higher-level connections in this dendrogram show
how different sets of poses are related. Not only are different
behavioral modules recognizable actions (see above), but their
relationship in the tree reveals this subject’s idiosyncrasies;
for example, idling before climbing (Fig. 3A). Moreover, across
sessions, similar behavioral modules were composed of similar
postures, highlighting the stable behavioral repertoire of one sub-
ject (more on this below). To quantify the degree of hierarchical
organization, we calculated the Dasgupta score on these den-
drograms, which quantifies the quality of hierarchical clustering
on a graph [32]. A Dasgupta score above chance indicates that

the observed tree indeed has connected components that are
related to one another [32]. The Dasgupta score was significantly
above chance for all 18 data sets (Fig. 3B; randomization test,
P < 0.001).

Behavioral organization is evident for lagged
transitions
The previous sections indicate that at short timescales, behavior
is modular and hierarchical. We next investigated the possibility
of levels of organization defined by even longer timescales. To
this end, we performed the same modularity analysis as above,
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Figure 4. Modular and hierarchical organization of behavior is evident for long timescales. (A) Example transition matrices and associated modularity,
(i) transition matrices with lag 1, 10, 100, 1000. Note that states have been reordered according to module classification. (ii) modularity as a function of
transition lag. Black circles correspond to transition matrices in (i). (B) Mean modularity across all data sets, for observed (red) and randomized (gray)
transition matrices. (C) Mean module stability (adjusted mutual information score) of module assignments between consecutive transition lags, for
observed (red) and randomized (gray) transition matrices.

but constructed the transition probability matrix with lags of up
to 1000 transitions. Thus, if there are long timescale drivers of
behavior, this should again be evident as above-chance behavioral
modularity.

For the same task OFF example data set as above, the mod-
ularity score decreases as a function of transition lag, before
plateauing close to (but greater than) zero around a lag of about
100 transitions (Figure 4Ai). This result demonstrates that behav-
ior is non-stochastic even on very long timescales, but that its
organization decreases with timescale in a systematic and lawful
way. This modularity is also reflected in the transition matrices
for shorter, rather than longer, lags (Figure 4Aii). Across all 18
data sets, the average modularity shows steady decay up to ∼100
transitions into the future (∼60 seconds), before plateauing close
to chance levels (Fig. 4B). This pattern suggests that not only
do poses tend to co-occur in distinct behavioral modules, but
that this organization is evident even when considering longer
timescales.

Because modules are computed independently for each tran-
sition matrix of different lags, a critical question is whether
the extracted behavioral modules are consistent across transi-
tion lags. We assessed this by comparing module assignments
using the adjusted Mutual Information Score (AMI; [33]; see Methods)
between modules derived from transition matrices of consecutive
lags. We found that cluster assignment was stable across transi-
tion lags (Fig. 4C), up to ∼100 transitions into the future (P < 0.05,
multiple comparison corrected). This finding is reassuring; it sug-
gests that behavioral modules are composed of similar poses for
as long as 100 transitions into the future. Taken together, these
results indicate that current states hold information about states
up to at least 100 transitions into the future.

Variability in behavioral repertoire is driven by
individual and task differences
Up to this point, we have considered the organization of behavior
across all individuals and data sets, leaving open the question of
how individual and task variability affects behavioral organiza-
tion. To this end, we first determined if behavioral modularity—
derived from transition probabilities with a lag of 1—was affected
by task and individual. We found that the modularity score varied
as a function of individual (two-way ANOVA; F = 8.08, p = 0.013),
but not task (F = 0.14, P = 0.87). Similarly, the Dasgupta score varied
by individual (two-way ANOVA; F = 5.2, P = 0.039) but not task
(F = 0.1, P = 0.90). Taken together, these results suggest that the
degree of behavioral organization at the shortest timescale is
driven by individuals but not environmental constraints. Note
that this analysis assumes that each session is independent of
each other. We make this assumption out of necessity (because
our number of subjects is low), and it is a limitation of the present
work. Due to the limited number of sessions and animals, our
study cannot capture individual differences or model our findings
in a mixed effects approach. We hope that over time our sample
size will increase to specifically address these shortcomings.

While the degree of organization may not vary by task or indi-
vidual, it is still possible that the composition of behavior differs.
To this end, we compared module stability between individuals
and tasks (Fig. 5). We computed the AMI between all pairs of data
sets and asked if stability between pairs differed as a function of
subject or task. We found that both individual and task influenced
the degree of stability between pairs of data sets (Fig. 5A; two-way
ANOVA; F(individual) = 43.7, P < 0.0001; F(task) = 7.14, P = 0.001). All
individual/task combinations were also more stable than chance
level (Fig. 5A; randomization test, P < 0.001). We also found that
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Figure 5. Behavioral modularity is both shared and unique. (A) Mean module similarity (quantified via the AMI score) across data sets with the same or
different subjects, and same or different task demands. White dots denote significant cells (randomization test, P < 0.05, multiple comparison corrected).
There is significant module overlap both between data sets of the same subject, and that of different subjects. (B) Comparison of module stability
either within the same individuals (green) or across different individuals (between), where the effect of task has been partialled out. (C) Same as (B)
but comparing module stability across different tasks, either task OFF–OFF (orange) or task ON–ON (blue) comparisons. The effect of individuals has
been partialled out. (D) Mean + SEM of module stability comparing task ON–ON (blue) or task OFF–OFF (orange) pairs, after partialling out the effect of
individual. Black lines and dots denote significant differences (multiple comparisons corrected). The mean cutoff that maximized modularity is depicted
in red.

within-subject stability was higher than between subject stability
(Fig. 5B; unpaired t test, T = 9.4, P < 0.001), indicating that while
there is a significant amount of overlap in behavioral modules,
subjects still tend to perform specific actions in idiosyncratic
ways.

We next asked if module stability varied as a function of task
(Fig. 5C). We found that sessions with a task were more similar to
one another, rather than sessions with no task (unpaired t test,
T = 4.16, P < 0.001). This suggests that task demands are a strong
constraint on the expression of behavior.

We further explored the effect of task on behavioral expres-
sion by quantifying stability for different cuts of the dendro-
grams associated with each data set (Fig. 5D). We found that
task ON pairs showed more stable behavioral expression than
task OFF pairs, and this was generally significant for lower and
higher dendrogram cuts (unpaired t test, multiple comparison cor-
rected, P < 0.05). Thus, environmental context constrains behav-
ioral expressivity whether the span of individual behaviors is large
or small.

Timescale of behavioral organization is driven by
individual, but not task, variation
We next asked if the timescales of behavioral organization dif-
fered by task and individual. We operationalized the notion of how
many transitions into the future exhibited modular organization
as the half-life of the function that relates modularity to transi-
tion lag (the modularity curve). Specifically, we fit an exponential
model to the individual modularity curves, and determined the
half-life associated with the exponent term (see Methods). We
found that modularity curves are well fit by the model (Fig. 6A
inset; mean adjusted R2 = 0.95 + 0.005). Half-lives varied signif-
icantly as a function of individual but not task (Fig. 6A; two-
way ANOVA, F(individual) = 26.8, P < 0.001; F(task) = 2.87, P = 0.11).
In other words, individuals varied in the extent of the temporal
horizon of modular behavioral organization.

As noted above, modularity at different lags does not guarantee
similar module composition. Thus, we repeated the same analysis
as above, but fitting module stability curves (AMI as a function of

transition lag) and extracted their half-lives (instead of from the
modularity curves as before). Stability curves were well fitted by
the exponential model (Fig. 6B inset; mean adj. R2 = 0.68 + 0.02).
Half-lives varied by individual, but not task (Fig. 6B; ANOVA,
F(individual) = 18.3, P < 0.001; F(task) = 0.044, P = 0.84).

DISCUSSION
Here we provide the first analyses of macaque behavior derived
from quantitative 3D pose data. Our ability to perform these
analyses relies on our recently developed OpenMonkeyStudio
system, which allows for the tracking of major body landmarks
as macaques move freely in a large space in three dimensions [26,
27]. We find that, within the context of three different task con-
ditions (including a no task condition), macaque behavior can be
classified into 49 different postures, such as left and right strides,
sitting and hanging. We find that these postures in turn can
be clustered into behavioral modules, such as walking, climbing
and swaying; these can in turn be organized into even higher-
level structures. Thus, our method provides a hierarchical descrip-
tion of behavior that spans low-level postures and higher-level
extended action sequences.

We find that these hierarchies vary both across individuals and
task. Behavioral modules were more stable within the same indi-
vidual than across the two individuals. In addition, the presence of
a task resulted in more stable behavior composition as compared
to when no task was present. Finally, we found that the timescale
over which behavior was detectably organized varied strongly as a
function of individual, but not task (although the small number of
individuals, n = 2, limits the generality of this conclusion). Taken
together, these results highlight the importance of both task
demand and individual identity in determining the makeup of
the hierarchy of actions, while also demonstrating that actions
can have consistent cross-individual and cross-task properties.
Our results also raise important lines of inquiry, including what
factors may alter the timescale of structures behavior other than
individual identity, identifying the extent to which the timescale
of structured behavior depends on internally defined or externally
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Figure 6. Timescale of behavioral organization varies as a function of individual, but not task. (A) Mean and standard error of half-life associated with
fitted modularity curves. Fitted modularity curves are visualized in the inset, and plotted as a function of transition lags. Orange (blue) is for task OFF
(ON) sessions, and solid (dotted) lines are for subject C (Y). The half-life of each curve is depicted as a solid circle (triangle), for subject C (Y). Mean
half-life varies as a function of individual, but not task. (B) Same as (A) but calculated for AMI (i.e. module stability) curves. Mean half-life varies as a
function of individual, but not task.

imposed timescales and identifying variation in individual actions
that are relevant for task goals.

Multiple approaches exist to identify relevant behaviors based
on pose data. These can, like our methods, rely on embedding pose
features to discover low-level behaviors [23, 24], on fitting pose
time series using Hidden Markov Models [12, 25] or on pre-trained,
supervised neural network architectures [16, 21]. Regardless of
the method used, there are three important principles to consider
that determine what inferences can be made to determine the
structure of behavior. First, the timescale over which features are
calculated determines the nature of the lowest level of behavior
identified. In our case, because our model inputs correspond to
instantaneous joint positions and speeds, our elementary unit
of behavior is posture. Second, it is important to consider the
way in which low-level behaviors are combined to form high-level
actions. In our case, we do this solely on the basis of subsequent
transitions, which allows for the discovery of actions with no
strong a priori guess about their duration. Third, it can be con-
strained by previously identified behaviors, meaning that learn-
ing is semi-supervised (e.g. [24]) or fully supervised (e.g. [16, 17,
21]); we used an unsupervised method to identify behaviors. The
unsupervised nature means our system can identify a much wider
range of possible behaviors, including new ones not anticipated by
existing theories.

The repertoire of behavior was more stable with an externally
imposed task, suggesting that environmental demands may pro-
vide a force for behavioral stabilization. Stabilization can occur
in one of two (not mutually exclusive) ways: either the repertoire
of actions significantly shrinks during task, or actions themselves
become less variable during task performance. Our data suggest
the latter, as modules were stable even when we considered
relatively high cutoffs of the dendrogram (which is to say, for
larger and more-encompassing behavioral modules, Fig. 5D). This
is reminiscent of hunting behavior observed in zebra-fish placed
in a prey-rich or prey-poor environment [34]. In that study, ani-
mals exhibited behavioral motifs associated with exploitation and
exploration, regardless of the environment. An intriguing future
possibility direction would be to dissociate the sources of variation
underlying variation in actions themselves, or which actions are
expressed, on the basis of task demands.

One major limitation of the present work is that we only
recorded data in two subjects. As such we cannot make strong
claims about individual differences. Indeed, in our statistical

analyses, we use the behavioral session, not the subject, as the
unit of analysis. This approach risks reducing statistical power
because it treats variance between subjects as no different from
variance within. Another result of this limitation is that we have
likely failed to explore the full range of possible behaviors and the
diversity of behavioral organizations. As such, our general claims
must be taken as preliminary. We believe that future work will
mitigate some of these problems by including larger numbers of
research subjects.

One of the greatest potential benefits for statistical analysis
of highly quantified behavior is in the prospect of automated
ethogramming [1, 6, 20]. By ‘ethogramming’, we mean the clas-
sification of pose sequences into specific behavior into ethologi-
cally meaningful categories, such as walking, foraging, grooming
and sleeping [20]. Currently, constructing an ethogram requires
the delineation of ethogrammatical category involves the time-
consuming and careful annotation of behavior by highly trained
human observers. Human-led ethogramming is slow, extremely
costly, error-prone, and susceptible to characteristic biases [1, 35,
36, 37]. For these reasons, it is simply impractical for even moder-
ately large data sets, collected either in an open environment or
the home cage [38, 39]. These kinds of data sets require automated
alternatives. Automated ethogramming requires both high qual-
ity behavioral tracking and novel methods applied to tracked data
that result in detection of meaningful categories. Such techniques
have not, until recently, existed for primates. Our methods take
the raw information needed for ethogramming—pose data—and
infer posture and higher-level categories from it. As such, they
provide the first step toward automated ethogramming in pri-
mates. We are particularly optimistic about the potential benefits
of ethogramming for systems neuroscience. Relating behavior to
neural circuits and networks is an important goal in the field,
so being able to quantify behavior more rigorously—without sac-
rificing freedom of movement or naturalness—is likely to be
invaluable for future studies [40–42].

METHODS
Animal care
All research and animal care procedures were conducted in accor-
dance with University of Minnesota Institutional Animal Care and
Use Committee approval and in accord with National Institutes
of Health standards for the care and use of non-human primates.
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Two male rhesus macaques served as subjects for the experiment.
One of the subjects (C) had previously served as subjects on
standard neuroeconomic tasks, including a set shifting task, a
diet selection task, intertemporal choice tasks, and a gambling
task [43–47]. This subject also participated in a study of forag-
ing decision-making in the same environment as the current
study [48–50]. The second subject (Y) was naïve to all laboratory
tasks before training for this study. Both subjects were fed ad
libitum and pair-housed with conspecifics within a light and
temperature-controlled colony room.

Behavioral training and tasks
Subjects were tested in a large cage (2.45 × 2.45 × 2.75 m) made
from framed panels consisting of 5 cm wire mesh [26]. Subjects
were allowed to move freely within the cage in three dimensions.
The wire mesh allowed them to climb the walls and ceiling, which
they often did. Five 208-L drum barrels, weighted with sand, were
placed within the cage to serve as perches for the subjects to
climb and sit on. There was also a small, swinging tire hung from
the center of the ceiling of the cage. In sessions with a task, four
juice feeders were placed on the wire mesh walls at each of the
four corners of the cage. Feeders were placed at various heights,
including atop barrels. The juice feeders consisted of a 16 × 16 LED
screen, a lever, buzzer, a solenoid valve (Parker Instruments) and
were controlled by an Arduino Uno microcontroller. Each feeder
ran (the same) custom Arduino code.

We first introduced subjects to the large cage environment
and allowed them to become comfortable in it. This process
consisted of placing them within the large cage for progressively
longer periods of time over the course of about five weeks. We
monitored their behavior for signs of stress or anxiety. Notably,
we did not observe these symptoms; indeed, subjects appeared to
be eager to begin their sessions in the large cage, and somewhat
reluctant to terminate them. Nonetheless, to ensure that the
cage environment had positive associations, we provisioned the
subjects with copious food rewards (chopped fruit and vegetables)
placed throughout the environment. We then trained subjects to
use the specially designed juice dispenser. We defined acquisition
of task understanding as obtaining juice rewards in excess of their
daily water minimum. For both subjects, acquisition of reliable
lever pressing took about 3 weeks.

On any given day, animals performed one of three task con-
ditions: [1] a ‘controlled depletion task’, [43] ‘a random depletion
task’ and [17] ‘no task’ (the same tasks were used in [48]). In the
no task condition, animals were free to explore the environment
but no juice feeders were available. For both the controlled and
random depletion tasks, each feeder was programmed to deliver
a specific reward size on pressing of a lever; it started high and
decreased by a specified amount. In the controlled condition each
feeder delivered, a base reward consisting of an initial 2 mL of juice
that decreased by 0.125 mL with each subsequent delivery (turn).
In the random condition, feeder depletion rates were the same
as the controlled depletion condition. However, feeders randomly
increased or decreased the juice delivery amount by 1 mL in
addition to the base reward schedule at a probability of 50%.
Both feeder types delivered rewards following their respective
schedules until reaching the base value of 0, at which point the
patch was depleted, and no more rewards were delivered.

Data acquisition
Images were captured with 62 cameras (Blackfly, FLIR), synchro-
nized via a high-precision pulse generator (Aligent 33120A) at a
rate of 30 Hz. The cameras were positioned to ensure coverage

of the entire arena, and specifically, so that at least 10 cameras
captured the subject with high-enough resolution for subsequent
pose reconstruction, regardless of the subject’s position and pose.
Images were streamed to one of 6 dedicated Linux machines. The
entire system produced about six TB of data for a 2-hour session.
After data acquisition, the data were copied to an external drive
for processing on a dedicated Linux server (Lambda Labs).

To calibrate the camera’s geometries for pose reconstruction,
a standard recording session began with a camera calibration
procedure. A facade of complex and non-repeating visual patterns
(mixed art works and comic strips) was wrapped around two
columns of barrels placed at the center of the room, and images
of this calibration scene were taken from all 62 cameras. These
images were used to calibrate the camera geometry (see below).
This setup was then taken down, and the experiment began.

Pose reconstruction
We first extracted parameters relating to the cameras’ geometry
for the session. To this end, we used a standard structure-from-
motion algorithm (‘colmap’) to reconstruct the space contain-
ing the 3D calibration object and 62 cameras from the calibra-
tion images, as well as determine intrinsic and extrinsic cam-
era parameters. We first prepared images by subtracting the
background from each image in order to isolate the subject’s
body. Then, 3D center-of-mass trajectories were determined via
random sample consensus (RANSAC). Finally, the 3D movement
and subtracted images were used to select and generate a set of
maximally informative cropped images, such that the subject’s
entire body was encompassed. To reduce the chance that the tire
swing would bias pose estimation, we defined a mask of pixels to
ignore that encompassed the tire’s swinging radius.

Next, we inferred 3D joint positions using a trained convolu-
tional pose machine (CPM; [26]). We used a loss function that
incorporated physical constraints (such as preserving limb length
and temporal smoothness) to refine joint localization. We found
residual variability in limb length across subjects after recon-
struction, between subjects, particularly for the arm, resulting in
poses that were highly specific to individual subjects. To prevent
subject-specific limb lengths from biasing subsequent behavior
identification, we augmented the original 13 inferred landmarks
to include two new ones (positions of left and right elbows) using
a supplementary trained CPM model (method described in [27]).
Thus, the augmented reconstruction resulted in 15 annotated
landmarks for each image.

Pose preprocessing
To discover poses, we applied a number of smoothing and trans-
formation steps to the 3D pose data. First, we transformed the
reconstructed space to a reference space that was measured using
the Optitrack system [26]. Then, we ignored any frame where a
limb was outside the bounds of the cage due to poor reconstruc-
tion, or residual frames where subject poses were still subject to
collapse (defined as where the mean limb length < 10 cm). Next,
we interpolated over any segments of missing data (lasting at
most 10 frames, or 0.33 seconds) using a piecewise cubic inter-
polation. Note that only a small number of frames were removed
after this procedure; specifically, 0.64% of frames on average were
ignored.

We next normalized the orientation of poses on individual
frames. To this end, we translated the 3D joints to a common
reference point by subtracting the position of the neck landmark.
Next, we scaled poses to all have the same size, so that the spine
was of length 1.0 (arbitrary units). Finally, we rotated poses to
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face a common direction. To do this rotation, we first defined
two vectors, one corresponding to the spine (neck to hip land-
marks), and the other to the expanse of the shoulders (left and
right shoulder landmarks, which was then centered on the neck
landmark). Poses were then rotated such that the plane defined
by these vectors faced the same direction (in essence, so that the
torso faced the same direction).

We next aligned individual data sets, inspired by the ‘mutual
nearest neighbors’ procedure developed for correcting for batch
effects in genomics data [29]. Broadly speaking, this algorithm
first seeks similar poses between data sets, and then applies a
locally linear correction to align similar poses. Specifically, for two
data sets X1 and X2, we first performed two K-nearest neighbor
(KNN) searches (for samples x2 in X1, and x1 in X2) using a
euclidean distance and searching for K = 100 samples. On the basis
of this search, for each sample, we defined a ‘mutual nearest
neighbors’ set, namely, samples from each data set that were
within each other’s nearest neighbor set. We then computed a
correction vector c for each sample in X2 as the mean of the
difference between the sample and its mutual nearest neighbors,
weighted by their distance. Samples that had no mutual nearest
neighbors did not have a correction vector computed. As poses
vary continuously in time, we then used a median filter (15th
order) to smooth out the correction vectors in time, obtaining a
correction matric C. The aligned data set X2’ was defined:

X2′ = X2 − C

Feature engineering
To label pose samples, we first defined a set of 23 features derived
from the preprocessed pose data. The first 19 features were the
angles at each joint (i.e. the vertex of each triplet of adjacent
landmarks). The other four features were [1] the overall speed of
the subject (calculated from the center-of-mass) and [17, 26, 38]
the speed of the subject in the three canonical dimensions (X, Y
and Z). To prevent feature bias due to differences in scale during
embedding, we normalized each set of features (joint angles,
COM velocity and planar velocities) to the range [0 1]. This was
performed independently for each subject.

We then concatenated data from all 18 data sets. To miti-
gate possible effects of noise, we applied a Principal Component
Analysis (PCA), and extracted the first 16 PCs (which accounted
for 95% of the explained variance). Initial PCA dimensionality
reduction was performed to reduce noise, as well as to sparsen the
data, which greatly increases computational efficiency. The PCA
procedure serves to sparsen the data and reduce noise; the UMAP
serves to implement the high dimensional clustering. Projections
onto these PCs served as the features that were then used in
subsequent embedding and clustering. Alignment is required to
ensure that idiosyncratic variability in behavior does not bias
the embedding process. This alignment serves the function of
correcting for idiosyncratic day to day measurement effects, such
as the distribution of poses and transitions present in daily mea-
surements.

Posture identification via embedding and
clustering
We created behavioral maps by embedding the extracted pose
features into two dimensions using UMAP [30], using a euclidean
distance metric. We set the parameters min_dist = 0.001 and
n_neighbors = 20, which we found to be a good balance between
separating dissimilar poses, while combining similar ones.

To define behavioral clusters, we first estimated the probability
density at 200 equally interspersed points both in the first and
second UMAP dimensions. This produced a smoothed map of the
pose embeddings, with clearly visible peaks. We then employed
the watershed algorithm on the inverse of this smoothed map [28].
This algorithm defines borders between separate valleys in the
(inverse of) the embedding space. Thus, the algorithm determines
sections of the embedding space with clearly delineated bound-
aries (i.e. clusters). Samples were then assigned a posture label
according to where they fell within these borders.

Transition probabilities
We defined transition matrices between postures. Specifically, the
transition matrix M for a transition lag of T was defined as:

[M(T)]i,j = P
(
S (t + T) = i | S(t) = j

)

which describes the probability that the subject would go to
posture S = i given posture S = j at time t after T transitions. Note
that we did this for transitions between different postures (thus,
for a transition lag T = 1, it is impossible for a posture to transition
to itself). We performed this for each data set individually. The
resulting transition probability matrix is a directed graph, where
nodes are the individual postures, and the probabilities are the
weights on the edges between nodes. This formalization allows
us to leverage tools from graph theoretic work.

Measures of behavioral organization
To discover how postures are organized, we employed a hierarchi-
cal clustering algorithm named Paris [31], using the ‘sknetwork’
library (https://scikit-network.readthedocs.io/). This algorithm
employs a distance metric based on the probability of sampling
node pairs and performs agglomerative clustering. Paris requires
no user-defined parameters (as opposed to another popular graph
clustering algorithm, Louvain, which can perform hierarchical
clustering according to a user-supplied resolution parameter). It is
equivalent to a multi-resolution version of the Louvain algorithm
[31]. The result of this algorithm is a dendrogram describing
the relation between different posture transitions (which we
will refer to as the behavioral dendrogram). To segment pose
transitions into modules, we determined the ‘modularity score’
(see below) for different cuts of each dendrogram (space equally
from 0.4 to 1.4). We then determined module assignment by
cutting the behavioral dendrogram where the modularity score
was maximized.

We leveraged three important graph-theoretic metrics to
assess behavioral composition:

• ‘modularity score’: The modularity score describes the degree
to which postures transition within, rather than between,
modules. Transition probability matrices with high modular-
ity scores exhibit a high probability of transitions within mod-
ules, but not between modules. Modularity was calculated
with the MATLAB function ‘modularity.m’.

• ‘Dasgputa score’: To assess whether the graph defined by
posture transitions truly reflected hierarchical organization,
we calculated the ‘Dasgputa score’ [32]. The Dasgupta score
is a normalized version of the Dasgupta cost, which defines
the cost of constructing a particular dendrogram, given dis-
tances between nodes. The Dasgupta score thus provides
quantification of the quality of the hierarchical clustering. We
calculated this score using the function ‘Dasgupta_score’ in
the ‘sknetwork’ library.

https://scikit-network.readthedocs.io/
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• ‘adjusted mutual information score’: We assessed whether
modules were composed of similar poses using the adjusted
mutual information score (AMI) [33]). This measure assesses
the information (in bits) about one set of cluster assignments
given knowledge of another. It is ‘adjusted’ because given two
random clusterings, the mutual information score is biased
by the number of clusters; the adjustment thus corrects
for this bias. AMI was computed using the Matlab function
‘ami.m’.

We further leveraged these measures to determine the
timescale of behavioral organization, and make subsequent
comparisons between data sets. Specifically, we extracted the
half-life associated with the various measures as a function of
transition lag. As a concrete example, we extracted the modularity
score using transition matrices at different lags. We then fit an
exponential model of the form:

M = aebT + c

where M is the modularity score at transition lag T. From this, we
can determine the half-life of the curve H as:

H = −log(2)

b
.

We repeated this analysis using AMI scores between consecu-
tive lags.

Statistical testing
For the present study, we sought to delineate how the structure of
behavior changes with externally imposed task demands. Thus,
we grouped sessions into task ‘ON (controlled depletion task or
random depletion task) or a task OFF (no task sessions)’.

Hierarchical and modular organization
To determine statistical significance of modular and hierarchical
organization of behavior for any one data set, we compared mod-
ularity and hierarchy to a transition matrix defined by random
transitions. To this end, for each data set, we (1) shuffled the pose
labels across the whole session, (2) re-built the transition matrix,
(3) applied hierarchical clustering and then (4) recomputed the
modularity and Dasgupta scores. This was performed 100 times.
The P value was computed by comparing the random distribution
to that of the observed, for each data set individually. We repeated
this analysis for transition matrices defined by different lags.

Module stability across transition lags
To determine if behavioral modules were similar across behav-
ioral trees constructed from different transition lags, we com-
pared module clusterings of consecutive lags (i.e. at lag t + T
and t + T + 1). To assess statistical significance, we again used a
randomization approach. We randomized module labels, and then
recomputed the AMI. This was performed 100 times, from which
we determined the P value.

Comparison of hierarchical and modular organization as a
function of task and individual
To compare modularity as a function of task and individual, we
performed a two-way ANOVA on modularity scores obtained from
transition matrices of lag = 1. We performed the same analysis for
Dasgupta scores in order to compare hierarchical organization.

Module stability between data sets as a function of task
and individual
We compared the composition of postures into modules across
data sets, as a function of task and individual. To this end, we
computed the AMI between module assignments (determined
from a transition matrix of lag T = 1) of all (unique) pairs of data
sets.

To determine if a particular combination of task/individual
exhibited stable module assignments, we employed a randomiza-
tion procedure. Namely, we randomized the module labels for any
one data set, recomputed the AMI and repeated this 100 times in
order to get a random distribution. P values were determined by
comparing the observed AMI to the random distribution.

To determine if task/individual affected stability between
paired data sets, we used a two-way ANOVA. The first factor had
three levels corresponding to individual pairings (subject C–Y, C–C
and Y–Y). The second factor also had three levels (task OFF–OFF,
ON–ON and OFF–ON).

To determine if within-subject modules were more stable than
between-subject modules, we first collapsed data set pairs into
within-subject (subjects C–C and Y–Y) and across-subject (sub-
jects C–Y) groups. Then, because we found AMI varied by task
and individual, we partialed out the effect of task by subtracting
the mean AMI associated with each task pair. Significance was
assessed with an unpaired t test.

We used a similar procedure to compare the effect of environ-
mental demands. Namely, we considered two groups of data set
pairs, either task OFF–OFF or task ON–ON, and partialed out the
effect of individuals by subtracting the mean AMI associated with
individuals. Significance was assessed with an unpaired t test.

Comparison of behavioral organization timescales as a
function of task and individual
To compare the timescale across which behavior is organized,
we compared the half-lives of modularity and AMI curves (i.e.
either of these measures as a function of transition lag). We then
performed a two-way ANOVA on the half-lives, with individual
and task as the factors.
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