
Nature Biotechnology | Volume 41 | August 2023 | 1117–1129 1117

nature biotechnology

https://doi.org/10.1038/s41587-022-01624-4Article

A universal deep-learning model for zinc 
finger design enables transcription factor 
reprogramming

David M. Ichikawa    1,2,6, Osama Abdin    3,6, Nader Alerasool4, 
Manjunatha Kogenaru    1, April L. Mueller    1, Han Wen    4, David O. Giganti1, 
Gregory W. Goldberg    1, Samantha Adams1, Jeffrey M. Spencer    1, 
Rozita Razavi3,4, Satra Nim4, Hong Zheng3,4, Courtney Gionco1, 
Finnegan T. Clark    1, Alexey Strokach5, Timothy R. Hughes    3,4, 
Timothee Lionnet    1, Mikko Taipale    3,4, Philip M. Kim    3,4,5  & 
Marcus B. Noyes    1,2 

Cys2His2 zinc finger (ZF) domains engineered to bind specific target 
sequences in the genome provide an effective strategy for programmable 
regulation of gene expression, with many potential therapeutic 
applications. However, the structurally intricate engagement of ZF 
domains with DNA has made their design challenging. Here we describe 
the screening of 49 billion protein–DNA interactions and the development 
of a deep-learning model, ZFDesign, that solves ZF design for any genomic 
target. ZFDesign is a modern machine learning method that models global 
and target-specific differences induced by a range of library environments 
and specifically takes into account compatibility of neighboring fingers 
using a novel hierarchical transformer architecture. We demonstrate the 
versatility of designed ZFs as nucleases as well as activators and repressors 
by seamless reprogramming of human transcription factors. These factors 
could be used to upregulate an allele of haploinsufficiency, downregulate 
a gain-of-function mutation or test the consequence of regulation of a 
single gene as opposed to the many genes that a transcription factor would 
normally influence.

Programmable regulation of gene expression would offer both pow-
erful research tools as well as enormous therapeutic potential. Dis-
eases caused by haploinsufficiency, gain-of-function mutations or 
misexpression of a gene can be directly treated by modification of gene 
expression1–3. While CRISPR–Cas and transcription activator-like effec-
tor (TALE)-based tools have been developed for such applications4–9, 

their intrinsic characteristics could limit their therapeutic efficacy. 
For instance, the size of these proteins10 complicates delivery—in 
particular the use of adeno-associated viruses (AAVs), clinically the 
best validated delivery method. Moreover, pre-existing immunity in 
humans for spCas9 (refs. 11,12) makes their long-term expression an 
immunogenic risk.
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However, because combinatorial explosion quickly exceeds the maxi-
mum practical library size for any screening platform, incomplete 
randomization schemes and the sampling of a limited number of heli-
cal positions become necessary. We hence reasoned that the solution 
lies in a combined approach that uses multiple exhaustive libraries in 
a comprehensive set of interface environments. In other words, each 
library presents a fully randomized single ZF helix in a unique interface 
environment, producing a broad catalog of binding strategies that are 
enabled by that single-interface environment. When considered across 
all libraries screened, this laborious but inclusive approach produces a 
comprehensive portfolio of general and interface-specific ZF binding 
solutions (Fig. 1). We theorized that this interface-derived complexity 
would provide (1) the diversity necessary to generate compatible ZF 
pairs able to bind a wide range of DNA targets and (2) the depth of data 
required to support a model for ZF array design.

The profound influence exerted by adjacent ZFs on one another 
can be explained by the multiple side chains of adjacent ZFs that 
bind DNA in close proximity to one another. This is most obvious at 
the ‘overlap’, where position 6 of an N-terminal helix can be within 
hydrogen-bonding distance of positions −1 and 2 side chains of its 
C-terminal neighbor (Fig. 1b). In this way the N-terminal helix is present-
ing a specific interface interaction, or ‘environment’, to its C-terminal 
neighbor that is based on the side chain employed and the base spec-
ified at the overlap position (Fig. 1a,b). Therefore we screened ten 
ZF libraries, each presenting the randomized C-terminal helix in a 
unique adjacent finger environment defined by the adjacent ZF helix  
(Fig. 1c,d). We screened these libraries across each of the 64 possible 
three base pair (bp) targets in independent selections to recover func-
tional ZF helices. Each library presents a unique interaction between the 
side chain at position 6 of the adjacent finger and the base it specifies 
at the overlap that defines the unique adjacent finger influence of each 
library (Fig. 1d and Supplementary Fig. 3). We designed the majority of 
our libraries to contact adenine or cytosine at the overlap, to provide a 
contrast to the arginine–guanine contacts that presented at the over-
lap in most previous ZF screens. In addition, two of our libraries can 
specify two different bases at the overlap (nos. 1-A or -C and 3-A or -G). 
Therefore, we completed two comprehensive screens of these librar-
ies, one with each base presented at the overlap. In total, we screened 
>49 billion protein–DNA interactions from ten libraries, across 12 sets 
of 64 selections per library, for 768 independent selections.

From these screens we found global and target-specific differences 
induced by library environments, indicative of the strength of the con-
straint exerted by each adjacent finger context on the selected ZF. The 
total number of selected helices ranged from 128,000 to >1 million per 
library screened (Supplementary Fig. 3). To distinguish selections that 
appeared to have low enrichment because of overlapping but unique 
strategies to bind the selection target from selections that truly failed 
to enrich functional helices, we used reasoning based on information 
content. We first used MUSI34, a method designed to identify multiple, 
unique sequence clusters in complex datasets such as these. We then 
quantified the information content across motifs generated from the 
different sequence clusters recovered in each selection. Reasoning that 
a successful selection should produce clusters where at least one helical 
position has been strongly selected for, we removed selections lacking 
any clusters with at least one position with high information content 
(Supplementary Fig. 3). We used this same threshold, the maximum 
information content at a single helical position of a cluster, to quantita-
tively compare different libraries (Fig. 1e). From this analysis we found 
that 39–100% of the 3-bp target selections led to successful enrichment 
of ZFs, depending on the library (Supplementary Fig. 3). In fact, for nine 
of the libraries screened at least 55 of the 64 selections (>85%) success-
fully enriched ZFs with specific sequence composition. In addition, for 
each of the 64 three-base-pair targets, at least eight different library 
contexts resulted in successful enrichment of ZFs, demonstrating the 
ability of ZFs to bind any 3-bp target in a wide range of adjacent finger 

Research applications designed to probe regulatory mecha-
nisms could also be hampered by the difference in size and spatial 
arrangement of SpCas9 fusions compared with natural transcription 
factors (TFs): SpCas9 is five to ten times the size of the most common 
DNA-binding domains (DBDs) found in human TFs, with the com-
mon C-terminal effector domain more than six times further from 
the DNA13,14 (Supplementary Fig. 1). In addition, the presentation of 
effector domains out of their natural context could impact their func-
tion. For example, it is unclear how the repressive potential of KRAB 
domains differs in isolation compared with their expression in their 
parent proteins. Further, most synthetic activators use the viral VP16 
domain15,16 or one of its derivatives, which may not accurately mimic 
natural activating TFs that can encourage expression through different 
interactions and spatial arrangements. Finally, the effect of artificial 
regulators was shown to be highly dependent on binding position; dif-
ferences as little as a single base can have a large impact17, potentially 
restricting CRISPR-based tools due to their protospacer adjacent motif 
(PAM) limitations.

By contrast, the Cys2His2 zinc finger (ZF) domain offers unique 
advantages for targeting of effector domains to the desired genomic 
loci18,19. ZFs require <170 amino acids to specify a unique sequence in 
the human genome, enabling routine—even multiplexed—delivery by 
AAVs. In addition, ZF domains are less likely than SpCas9 to be immu-
nogenic because nearly 50% of human TFs use this DBD to specify their 
genomic targets20. In fact, 343 human ZF TFs utilize KRAB domains21 
for repression while dozens of others are known to activate transcrip-
tion20,22,23. While the potential utility of designer ZF arrays has long 
been recognized, their engineering has remained challenging with 
no proper design code having emerged thus far. This is not for lack of 
effort, because multiple approaches have been used to generate ZF 
libraries24–26 and ZF modules27,28 to provide designer ZF arrays. However, 
these approaches either require multiple rounds of laborious selection 
that produce ZFs with inconsistent activity or the application of pre-
selected modules that often fail when expressed out of their selected 
context. Conversely, a proper code for ZF array design could enable 
the reprogramming of natural ZF TFs to provide tools that can activate 
or repress target genes and that are sufficiently small for multiplexed 
delivery in AAVs with minimal risk of immunity.

Here we found a comprehensive survey of adjacent finger influ-
ences that enabled a design model for ZF arrays, and show that these 
arrays can seamlessly reprogram transcription factors. By testing mul-
tiple TFs, we demonstrate that their reprogramming with designer ZFs 
is a robust approach to commandeer the function of TFs that activate 
or repress for the regulation of reporter genes or genes directly from 
their genomic loci.

Results
Selection of ZF specificity and compatibility
Two general approaches have been used to engineer ZFs with novel spec-
ificity (Supplementary Fig. 2). The first focused on engineering one fin-
ger at a time by selection of functional variants from ZF libraries where 
the six base-specifying positions of the helix have been randomized 
(Supplementary Fig. 2b). The second approach focused on the interface 
between adjacent ZFs of an array, because the influence of adjacent fin-
gers on one another has been apparent since the first structures of ZFs 
bound to DNA were solved (Supplementary Fig. 2c); this influence leads 
to combinatorially greater complexity, which is the main reason for the 
failure of previous attempts to build a code. While the first approach 
allows for a comprehensive screen of all amino acid combinations at 
the six critical positions of the ZF alpha-helix24,26,27,29–32, it samples these 
combinations only in a single-adjacent-finger context. As a result, only 
ZF strategies enabled by this initial selection environment are available 
in subsequent rounds of selection or as the foundation of a ZF model. 
By contrast, the second approach captures the complexity of com-
patibility at the interface between ZFs25,28,33 (Supplementary Fig. 2c).  

http://www.nature.com/naturebiotechnology
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environments. Also note that at least one library that bound either A, 
C or G at the overlap successfully enriched helices in at least 61 of the 
64 selections (for example, library 1 with an A overlap, library 7 with a 
C overlap and library 9 with a G overlap), suggesting that functional 
ZFs exist in a wide variety of contexts independent of the overlap base. 
By contrast we found libraries 6 (C overlap) and 10 (A overlap) to be 
the least successful (Supplementary Fig. 3). To assess the impact of 
the biophysical properties of the adjacent helix on library success, we 
performed molecular dynamics simulations using the helices utilized 
in library contexts. We found that the number of contacts between the 

adjacent finger (domain 1 in Fig. 1d) employed in each library and the 
DNA it specifies were related to global library success, indicating that 
higher affinity of the neighboring finger enables more ZF strategies 
(Fig. 1e). Hence, adjacent fingers have a large impact on ZF function 
while viable ZF binding strategies exist for each overlap base.

G-rich binding modularity and promiscuity
The majority of published ZF selections have been carried out with an 
arginine–guanine contact presented at the overlap, due to the high 
affinity offered by this contact and its historical presence in the parent 
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Fig. 1 | Overview of interface-focused ZF screens. a, Structure of adjacent ZF 
domains showing their close proximity. Helical position 6 of domain 1 (red) 
and position −1 (blue) of domain 2 are outlined. b, Cartoon of interactions 
between adjacent helices and DNA. The six helical positions of the three 
domains are shown as circles, with the common contacts made by positions 
−1, 2, 3 and 6 indicated by arrows. The overlap environment, which includes 
the base adjacent to the library interaction and the amino acid used to specify 
that base, is highlighted in green. This environment is unique for each library. 
c, Cartoon of B1H selections. The three-fingered protein is expressed as a 
C-terminal fusion to the omega subunit of RNA polymerase. For each library, 
ZF domain 2 is randomized at six helical positions and screened for amino acid 
combinations able to specify each of the 64 possible NNN targets. This is done 
in 64 independent screens. Domains 0 and 1 bind to their known, preferred 
targets and thereby anchor the protein adjacent to the NNN target sequence and 
present an overlap environment unique to that library. Only helices able to bind 
the target in the unique library overlap environment will recruit the polymerase, 

activate the reporter and survive on selective media. d, Left, helical residues 
for domains 0, 1 and 2 are shown for each library screened. Domain 2 contains 
all possible combinations of the six helical residues whereas domain 1 is fixed 
in the selections but varied by library. The sixth residue of domain 1 is the side 
chain that will be exposed at the interface between domains 1 and 2. Domain 0 
is the same in all libraries except library 1. Right, there are 64 DNA targets for 
domain 2 to be screened against in 64 independent selections. The fixed targets 
for domain 1 of each library are shown, with the overlap base color coded by 
nucleotide. e, Left, to assay the success of each selection we determined clusters 
from the data for each selection. Here we show the maximum information 
content at one position of the strongest cluster to provide a relative measure of 
enrichment across all selections. Right, molecular dynamic simulations were 
performed on all domain 1 helices in their previously characterized contexts.  
The number of suggested contacts between domain 1 and the DNA is shown for 
each library.
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Fig. 2 | Specificity solutions are library specific. a, Top, dot plot comparison 
of 1 Hamming distance is provided comparing the similarity of helical strategies 
enriched in libraries 1–9 for three G-rich targets (right) and three G-poor 
targets (left). The darkness of the dot represents the similarity of the enriched 
populations, with darker dots being more similar. Empty spots indicate a failed 
target selection for one or both of the libraries compared. Bottom, normalized 
Hamming distance for all libraries across all targets, listed from least similar (left) 
to most similar (right). The targets compared above are underlined in yellow 
for G-poor targets and in blue for G-rich targets. b, Clusters were determined 
by MUSI from the enriched helices in each library selection. Three clusters are 
shown for four different binding sites (CCA, TTT, CCG and GAG). If a cluster was 
enriched in a library selection, the corresponding box is filled black in the table. 

c, Schematic illustration (top) and molecular dynamics snapshot (bottom) of 
hydrogen bonds between the arginine at position 2 of the domain 2 helix QsRYtt 
with the G* of the CCG* target when an asparagine is at position 6 of the adjacent 
finger (library 2 environment), or when an arginine is at position 6 of the adjacent 
finger (library 3, 9 environment). d, Left, paired format for two-finger selections 
using the base-skipping linker to encourage modularity, allowing test pairs 
(yellow) to function independently from the fixed pair (blue). Right, cartoon 
of B1H two-finger selections. e, The number of helices enriched in two-finger 
selections is shown as a factor of the number of single-finger libraries in which 
they originated. f, Comparison of helices enriched in the two-finger selections 
showing average number of single-finger libraries in which a helix originated, by 
binding site.
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protein scaffolds that were used to engineer specificity. Consequently 
we reasoned that the libraries reported here presenting adenine and 
cytosine contacts at the overlap would enrich novel types of ZF-binding 
strategies. Therefore, to measure the similarity of helices enriched in 
different library contexts we computed pairwise Hamming distances 
(normalized by sequence length) between all helices enriched for each 
successful 3-bp target selection across all different library contexts. 
We then compared the mean normalized Hamming distance for each 
of the 3-bp targets to compare library differences. While there were 
general trends that libraries employing the same overlap base were 
more similar (Supplementary Fig. 4), the most striking difference was 
found when comparing libraries with adenine and cytosine at the over-
lap with the two libraries displaying an arginine–guanine contact at 
the overlap (Supplementary Fig. 4c). The arginine–guanine contact 
libraries (3 (G) and 9) were more similar to each other than any other 
libraries screened. Interestingly, a comparison of helices selected to 
bind various targets across all libraries showed that G-rich binding is less 
influenced by library context (Fig. 2a and Supplementary Fig. 5). This 
suggests that G-rich binding is more modular, because these helices 
appear less dependent on the adjacent finger interaction. However, this 
independence in binding could lead to more promiscuity. To address 
this possibility, we calculated how frequently helices recovered in a 
particular 3-bp target selection were recovered in other target selec-
tions. The 15 targets with the greatest target selection entropy (that is, 
recovered in the majority of other selections) all had a G at the GNN or 
NNG position, where arginines were the dominant amino acid enriched 
at corresponding positions 6 and −1, respectively (Supplementary  
Fig. 6). Conversely, none of the 13 targets with the lowest target selec-
tion entropy had a G at these positions. These results demonstrate 
that helices binding a G at either the first or third position of a binding 
site are more likely to be promiscuous ZFs. This could help explain 
the G-rich bias in ZFs previously selected, engineered or assembled 
as modules. This may also suggest that these modules tend towards 
more off-target binding.

General and specialized binding strategies
For a more fine-grained analysis of the differences between libraries, 
such as the types of binding strategies enabled by one library environ-
ment versus another, we compared the clusters generated by MUSI for 
each target site selection. For most targets we found general strategies 
common to several successful library selections. We also found spe-
cialized strategies recovered in a small number of selections and, in 
some cases, recovered with only a single library environment (Fig. 2b).  
Previous work has shown that recovery of helical strategies in one 
library versus another is indicative of activity only in the recovered 
contexts, rather than sampling influences35. In addition, because dif-
ferent library contexts present different structural influences at the 
overlap, we investigated the physical influences that might lead to 
the selection of a particular type of ZF in a specific library context. For 
example, in most NCG selections we found a cluster of ‘QxRYxx’ helices 
(see CCG in Fig. 2b). However, this cluster was not recovered in librar-
ies that presented an arginine from the adjacent finger at the overlap 
(libraries 3 and 9). Molecular dynamics simulations suggested that 
this is due to potential competition between position 2 of the selected 
finger and the arginine at position 6 of the adjacent finger (Fig. 2c).

The data demonstrate global and specific differences in ZF func-
tion dictated by the adjacent finger environment, but they represent 
only a small number of potential adjacent finger influences. To test how 
greater variability at the interface might influence compatibility, we 
created 200 two-finger libraries by assembling pools of helices success-
fully selected to bind each 3-bp half-site of a 6-bp target. These pools 
represented helices preselected to bind each half-site of the target 
across the small but diverse adjacent finger influences assayed in our 
primary selections. The 6-bp targets for these 200 two-finger selections 
were chosen to accommodate the construction of ZF nucleases (ZFNs) 

that will bind longer sequences in the enhanced green fluorescent 
protein (eGFP) coding sequence (Supplementary Fig. 10). In this way 
we were able test and validate the function of the selected two-fingered 
modules in the context of longer arrays necessary for ZFN activity while 
providing detailed compatibility data that could be used to train the 
model. Mimicking single-finger selections, we used two fixed fingers 
with known specificity to anchor the binding and properly position 
ZF pairs in the pool library to engage the test 6-bp target (Fig. 2d). To 
minimize the potential influence of fixed fingers on ZF pairs in the 
library we employed a long, flexible linker between the fixed and library 
pairs to encourage independence in binding. This linker prefers a base 
to be skipped between the binding sites of the fixed and screened ZF 
pairs, reducing the potential influence of fixed fingers on ZFs in the 
library and encouraging these pairs to work as independent modules36.  
In this way, the screens should produce ZF pairs that are dependent on 
one other but also function as an independent module relative to the 
fixed pair in the array. We selected compatible pairs of ZFs from these 
200 libraries and analyzed the number of starting library environments 
from which the helices were enriched. Most helices enriched in these 
compatibility assays were recovered in only a minority of the library 
environments (Fig. 2e). This suggests that, despite the fact that all of 
these helices were preselected to bind each half-site, only a fraction 
is enabled in these new environments. Interestingly, when we plotted 
compatible helices by target selection and examined the number of 
primary libraries in which they were recovered, we again found that 
G-binding ZFs recovered in the two-finger selections originated in a 
large number of the primary libraries while compatible ZFs recovered 
to bind G-poor targets originated in a small number of library selections 
(Fig. 2f). Together these results demonstrate that, even for a more 
comprehensive set of presented environments, the interface has a 
large influence on ZF function and that G-rich binding helices tend to 
be more modular and promiscuous. The data from these two-finger 
library selections offer crucial insight into the pairwise compatibility 
of individually functional ZFs.

Hierarchical transformer integrates selection data
Despite considerable effort, previous attempts to generate a general ZF 
design code have failed. However, those attempts were hampered by 
sparse datasets that ignored adjacent finger influences and/or severely 
undersampled the potential complexity. Given the unprecedented 
depth of our screening data, we sought to develop a unique model that 
explicitly addresses these neighbor finger influences. Also artificial 
intelligence technology—in particular from natural language process-
ing–vastly outperforms earlier machine learning models at capturing 
intricate detail in large pools of data. We separately make use of the 
comprehensive single-finger library selections that describe speci-
ficity in a variety of neighbor finger contexts, as well as the 200 pair 
selections confirming which ZFs are compatible with each other as 
neighbors (Fig. 3a). This information is by nature hierarchical and, to 
make optimal use of it, we developed a neural network architecture 
that implements attention modules in a hierarchical manner (Fig. 3b). 
The first layer of this hierarchical architecture contains two modules 
trained on the single-finger selection data for each of the half-sites 
of a desired two-finger target. Because we consider each target 3-bp 
plus the adjacent base, this becomes two overlapping 4-bp targets 
or a 7-bp, two-finger target. The single-helix modules generalize to 
unseen sequences; interestingly, residue–nucleotide relationships 
are captured in the attention values (Supplementary Figs. 7 and 8).  
The residue embeddings from these two modules are then fed into a top 
module trained on data recovered from the 200 ZF pair selections (Fig. 3b).  
This is akin to the experimental procedure of taking selection pools 
from single-finger selections and performing two-finger selections on 
them (Fig. 3a,b for comparison). In effect, the modules of the first layer 
design functional single ZFs (for a given neighbor environment) while 
the second layer module assembles compatible ZF pairs.
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The overall model retains a traditional encoder–decoder archi-
tecture: An encoder generates a high-dimensional representation 
for each DNA base and a decoder then generates predictions for each 
residue in a ZF helix, using self-attention layers and attention layers 
that relate nucleotide bases to helical residues. The model was trained 
using the masked language model objective37; during training we pro-
vided the nucleotide target as well as a partially masked ZF sequence 
and evaluated cross-entropy loss between predicted residues and the 
ground-truth ZF sequence (Methods). We achieved reconstruction 
accuracy (sequence identity to the six masked residues) of 0.62 and 
0.69 on the validation and test data, respectively; some positions 
(such as −1) that were strong determinants of binding specificity had 
higher reconstruction accuracies (Fig. 4a–c). Overall, because some 
variability in the 12 residues is allowable while retaining the ability 
to bind a target sequence, 0.62–0.69 reconstruction accuracy can be 
considered quite high (Fig. 4c).

ZFDesign generates compatible ZF pairs
Our method (ZFDesign) generates sequences in an incremental fashion: 
Starting from an empty sequence, the model is run once for each amino 
acid in the ZF helix pair. At each iteration an amino acid is predicted, 
and this prediction is provided as context in subsequent iterations. For 
optimal sequence generation we adapted both an A*-based sampling 
method38 and a temperature-dependent sampling procedure39. We 
sought to compare ZFDesign with a baseline, but no previous model 
has explicitly attempted to perform full ZF-array design for a given 
target and with only a few collections of ZFs available. However, previ-
ous models designed to capture ZF binding specificity exist and can 
be adapted to design ZFs for given targets; we used ZFpred, a recently 
developed method that outperformed previous models35. We then 
used both ZFDesign and ZFpred to generate ZF sequences to target 
6-mers from our test dataset. As alternative baseline comparisons, 
we first used the single-finger models (for example, only the bottom 
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module in Fig. 3b) to generate ZF sequences for each DNA 3-mer and 
concatenated them. In a similar fashion, we also took sequences 
directly from each of our 3-mer bacterial one-hybrid (B1H) selections 
and concatenated them, which is akin to previous methods of simply 

concatenating pre-existing collections of fingers as modules. All three 
methods performed noticeably worse than our hierarchical model  
(Fig. 4d–f). When directly comparing representative sequence logos 
of the sequences generated, ZFDesign produced logos that broadly 

0.44

a

0.67
0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.66

0.65

0.64

0.63

0.43

0.42

0.41

0.40
Validation

Training
Validation
Test

Training
Validation
Test

Training

6 residues masked
8 residues masked

10 residues masked
12 residues masked

Validation
Test

Training

Validation
Training

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
M

SE
 w

ith
 p

re
di

ct
ed

 P
W

M
s

M
SE

 w
ith

 p
re

di
ct

ed
 P

W
M

s

M
SE

 w
ith

 p
re

di
ct

ed
 P

W
M

s

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

Re
co

ns
tr

uc
tio

n 
ac

cu
ra

cy

0.39

0.030 0.030

0.025

0.020

0.015

0.010

0.005

0

0.030

0.025

0.020

0.015

0.010

0.005

0

0.025

0.020

0.015

0.010

0.005

0

3

4 2.0

1.5

1.0

0.5

0

3

2

1

0

2

1

0

3

2

1

0

3

3

2

1

0

4

2

1

0

–1 1 2 3 5 6 –1

Residue

B1H logo Predicted logo Concatenated B1H logos

1 2 3 5 6 –1 1 2 3 5 6 –1

Residue

TCCATAG

AACAGCG

1 2 3 5 6 –1 1 2 3 5 6 –1

Residue
1 2 3 5 6

–1 1 2 3 5 6 –1

Residue
1 2 3 5 6 –1 1 2 3 5 6 –1

Residue
1 2 3 5 6 –1 1 2 3 5 6 –1

Residue
1 2 3 5 6

0 0.005

MSE with PWMs generated
using ZFPred

MSE with concatenated PWMs
predicted using single-helix model

MSE with concatenated B1H PWMs
0.010 0.015 0.020 0.025 0.030 0 0.005 0.010 0.015 0.020 0.025 0.030 0 0.005 0.010 0.015 0.020 0.025 0.030

0 0.5 1.0 1.5

Number of training data points
Number of training

data points

Helix residue
2.0 2.5 0.4 0.6 0.8 1.0 1.2 –1 1 2 3 5 6

1 × 108

1 × 106

b c

d e f

g

Fig. 4 | Performance of two-helix design model. a, Training and validation 
accuracy during pretraining step. b, Training and validation accuracy during fine-
tuning step. c, Helix sequence reconstruction accuracy with different numbers 
of masked residues. d, Comparison of differences between predicted and real 
selection logos using the developed model and ZFPred based on the mean-square 
error (MSE) of predicted position weight matricies (PWMs) to ground-truth 

PWMs. e, Comparison of differences between predicted and real selection logos 
using the two-helix model and concatenated logos from the single-helix design 
model. f, Comparison of differences between predicted and real selection 
logos using the two-helix model and concatenated logos from single-helix B1H 
selections. g, Predicted logos, real B1H logos and concatenated single-helix B1H 
logos for test set sequences.

http://www.nature.com/naturebiotechnology


Nature Biotechnology | Volume 41 | August 2023 | 1117–1129 1124

Article https://doi.org/10.1038/s41587-022-01624-4

captured those from the B1H two-helix selections whereas the concat-
enated logos from the one-helix selections were noticeably different 
(Fig. 4g and Supplementary Fig. 9), underlining the fact that ZFDesign 
captures interhelix relationships absent from single-helix selections.

For experimental validation of ZFDesign we performed a GFP 
disruption assay in a U20S cell line previously used to approximate 
nuclease activity for ZFNs40, TALENs41 and SpCas9 (ref. 42), because 
indels in the coding sequence of GFP led to frameshifts and loss of 
fluorescence. For each ZFN, two ZF arrays were designed as ZFNs requir-
ing dimerization of the Fok1 catalytic domain, presented as C-terminal 
fusions from each ZF array in a tail-to-tail orientation (Supplementary 
Fig. 10a). The arrays use a longer linker between two-finger modules 
to enable independent binding, because the linker allows a base to be 
skipped between the binding sites for each two-finger module36. The 
DNA targets for the two-finger selections detailed above had been spe-
cifically chosen to accommodate targets in the GFP coding sequence. 
Therefore, for each target we first assembled ZFNs that use four ZFs per 
monomer (eight per ZFN) based on the most frequent pairs recovered 
in the corresponding two-finger selections. Next, we designed five 
ZFNs that also use four ZFs per monomer for comparison with the 
B1H-selected ZFs that bind the same targets. All of the designed ZFNs 
were functional above background, but four of the five demonstrated 
decreased activity relative to the selected arrays (Supplementary  
Fig. 10b). However, the substitution of single modules largely increased 
activity (Supplementary Fig. 10c), demonstrating the stringency of 
the assay because a single weak module can have a large impact on 
overall function. Nevertheless, because these designs were functional 
on all targets, and longer arrays have overcome the presence of weak 
modules43, we designed and tested 16 ZFNs that use six ZFs per mono-
mer (12 per ZFN). We found all 16 to be functional, with a mean 53.6% 
loss of fluorescence (Supplementary Fig. 10d). Finally, to determine 
whether six fingers are sufficient for monomeric binding, we designed 
a six-finger array to label a genomic locus as a GFP fusion. Because many 
copies of GFP are necessary to visualize punctate GFP expression, we 
designed the array to bind a repetitive sequence on chromosome 14, 
which appears three times in HEK293T cells. We observed three points 
of GFP fluorescence by live cell imaging (Supplementary Fig. 10e). 
These results suggest that ZFDesign consistently produces highly 
functional ZF arrays and that six or more fingers routinely produce 
strong on-target activity in the human genome.

Seamless reprogramming of human transcription factors
Because half of human TFs use ZFs to engage DNA, we reasoned 
that these endogenous ZF domains could be seamlessly replaced 
by designed ZFs without impacting the protein’s regulatory func-
tion (Fig. 5a). This approach presents the designed ZFs in the exact 
context in which ZFs would occur naturally in the parent protein. 
Such reprogrammed transcription factors (RTFs) present the effector 
domain in its natural context, maximize secondary interactions of 
the TF, avoid the use of foreign effector domains and enable research 
focused on the precise investigation of TF binding events. As potential 
therapeutics, RTFs present maximally native-like human proteins with 
correspondingly low immunogenicity risk. We chose the TF encoded 
by KLF6 as our activation scaffold because we recently identified 
KLF6 as a potent activator when tethered to a reporter gene44. To 
test the activity of the KLF6 architecture, we replaced KLF6 ZFs with 
a series of ZF arrays designed to bind the tet operator sequence (tetO) 
(Supplementary Fig. 12). We replaced KLF6 ZFs with these designed 
ZF arrays and expressed RTFs in a stable HEK293T cell line contain-
ing a GFP reporter with a minimal promoter and seven tetO sites44,45  
(Fig. 5b). Three of the four designs activated the reporter at a sim-
ilar or greater level than rTetR-VP64. Next, we replaced the DBDs 
of three other activating TFs (genes KLF7, FOXR2 and ZXDC)44 with 
Tet ZF array 3 (Fig. 5b). All of these RTFs activated the reporter as 
well or better than the rTetR-VP64 control. This included the FOXR2 

RTF, where its natural forkhead DBD was replaced by the ZF array  
(Supplementary Fig. 13a).

We chose a TF encoded by ZIM3 as our TF scaffold for repres-
sion, because the ZIM3 KRAB domain has proven a potent repressor 
as a SpCas9 fusion46. We replaced ZIM3 ZFs with the same series of 
tetO-binding ZF arrays tested with KLF6. We expressed these ZIM3 
RTFs in a HEK293T cell line with a GFP reporter driven by a constitutive 
promoter. Three of the four ZF arrays repressed GFP expression relative 
to controls, with array 3 outperforming dCas9 (Fig. 5c and Supplemen-
tary Fig. 13b). To confirm that this RTF approach for repression was 
not restricted to the ZIM3 protein, we replaced the ZFs of three other 
KRAB-containing proteins (genes ZNF10, ZNF264 and ZNF324) with ZF 
array 3. In all cases we observed similar levels of repression (Fig. 5c). 
Interestingly, despite the fact that the KOX1 KRAB domain (ZNF10) 
provides less repression potential than the ZIM3 KRAB domain when 
expressed as an isolated spCas9 fusion domain46, its activity was similar 
when expressed here as RTFs, suggesting that the presentation context 
can have a large impact on the potency of these domains.

Moving beyond reporter-based assays, we next designed RTFs 
to regulate genes from their natural loci in the human genome. We 
applied the ZIM3 architecture to repress three endogenous genes 
(DPH1, RAB1A and UBE4A). For each target gene we designed three 
arrays that bind at the transcriptional start site (1) and both the forward 
(2) and reverse sequence (3) that corresponds to a guide RNA target 
previously identified as a potent repressor of these genes by CRISPR 
interference. To maximize the likelihood of function, we designed 
these as eight-finger proteins and maintained the base-skipping linker 
between each designed ZF pair (Supplementary Fig. 15). HEK293T cells 
were transfected with RTFs and expression levels assayed by quanti-
tative PCR with reverse transcription (RT–qPCR). While eight of the 
nine RTFs repressed the target gene, only two did so by >50% (Supple-
mentary Fig. 15b). However, considering the extreme size difference 
between Cas9 and ZFs, it is possible that these functional positions for 
Cas9 are not optimal for ZFs. Therefore, we designed 11 ZF arrays to 
bind sequences across a 252-bp region downstream of the transcrip-
tion start site (TSS) for DPH1. Again, we expressed these arrays in the 
ZIM3 scaffold and assayed DPH1 expression. All arrays repressed DPH1 
relative to controls but two arrays, 15 and 126, repressed DPH1 by >80% 
(Fig. 5e). Finally, to activate an endogenous target we took a similar 
approach and reprogrammed KLF6 with a series of arrays designed to 
canvass a 150-bp region upstream of the TSS in the CDKN1C promoter. 
All seven RTFs increased the expression of CDKN1C (in three of the 
seven by 9–43-fold) (Fig. 5d).

Specificity and genome-wide regulatory activity of RTFs
ZFDesign enables the reprogramming of TFs for either activation or 
repression. To test the precision of regulation we used RNA sequencing 
(RNA-seq) to quantify RTF on- and off-target regulation. We focused 
on the two most potent KLF6 RTF activators for CDKN1C (arrays 125 
and 200) and the most potent ZIM3 RTF repressor of DPH1 (array 15) 
(Fig. 5d,e). In all cases the target gene was either the most—or one of 
the most—significantly regulated genes, but off-target activity ranged 
from seven (DPH1, array 15), to 268 (CDKN1C, array 200) and to 1,173 
(CDKN1C, array 125) misregulated genes (Fig. 6a). Because KLF6 and 
ZIM3 are human TFs, we tested whether off-target activity is due to sec-
ondary interactions of the TF rather than ZF arrays. RNA-seq was carried 
out for CDKN1C arrays 125 and 200 using VP64 as the activation domain 
in place of KLF6, as well as KLF6 without any ZFs. These data suggest that 
off-target activity is primarily dictated by ZF arrays, because the KLF6 
and VP64-ZFs had similar off-targets and KLF6 without ZFs resulted 
in only four genes with altered expression (Supplementary Fig. 16).

The specificity of ZF arrays can be impacted by both target content 
and affinity. As noted, G-rich binding tends to be more promiscu-
ous. Consistent with this observation, the CDKN1C target with the 
lowest G content (no. 200; Supplementary Fig. 17) also led to the 
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fewest off-target events while target 125 led to the most. To further 
test the influence of G-rich binding, we designed an array to target 
the reverse complement of the 125 sequence, which is necessarily a 
C-rich sequence. This approach reduced off-target activity to just one 
off-target gene (Fig. 6a, right). In addition to minimization of target G 
content, ZF specificity can be improved by reduction in the nonspecific 

affinity provided by contacts made between each ZF and phosphate 
backbone47,48 (Fig. 6b). This puts more pressure on the base-specifying 
interactions of each helix to provide the binding affinity necessary for 
function. We created mutant versions of CDKN1C array 200 that replace 
two, four or eight phosphate-contacting arginines at position −5 of the 
ZF scaffold with glutamines. Position −5 is dominated by basic residues 
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Fig. 6 | ZF specificity and genome-wide activity. a, Genome-wide RNA-seq 
results for CDKN1C arrays 125 and 200 and DPH1 array 15, and comparison with an 
array that binds the reverse complement of CDKN1C array 125. b, Left, structure 
of a ZF bound to DNA highlighting two potential phosphate contacts51. Right, 
the human ZF consensus with phosphate-contacting positions highlighted in 
yellow (−5) and blue (9)49. c, qPCR comparison for activation of the on-target 
CDKN1C gene as well as two off-target sequences with CDKN1C array 200 with 
between none and eight modifications at phosphate-contacting position −5. 
d, RNA-seq results for CDKN1C array 200 with arginines or glutamines at the 

−5 position of each ZF. e, On-target qPCR results for arrays with the N-terminal 
(F3–8) or C-terminal (F1–6) ZF pairs removed compared to an empty vector 
negative control (neg.). f, Specificity of CDKN1C array 200 array with glutamine 
at position −5 as determined by ChIP–seq, B1H selection at low (5 mM) and high 
(10 mM) stringency and specificity as predicted by ZFDesign. B1H specificity is 
a concatenation of the specificities determined for each of the two-finger pairs. 
ChIP–seq peaks contained two independent motifs, suggesting that the base-
skipping linker allows modular, independent binding.
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in an analysis of human ZFs49 (Fig. 6b). We first compared the impact 
of these mutations by qPCR at both the target locus and two off-target 
loci found to be upregulated by RNA-seq (Fig. 6c). The expression of 
these off-target genes was reduced by up to 70 or 55%, respectively, 
as we increased the number of phosphate-contacting modifications. 
On-target activity, on the other hand, was reduced by only 12%. RNA-seq 
demonstrated that the number of off-targets was decreased as the 
number of modifications was increased, and that only CDKN1C was 
upregulated with the full eight arginine-to-glutamine modifications, 
thus providing single-target regulation. Interestingly, taking the same 
approach with DPH1-repressing array 15 resulted in a large reduction in 
on-target activity (Supplementary Fig. 18). It is notable, however, that 
the unmodified version of the array produced only six misregulated 
genes initially. This might suggest that DPH1 array 15 could already be at 
a low-affinity regime that cannot be lowered while preserving on-target 
activity. Together these data suggest that affinity and genome-wide 
specificity are tightly linked.

For the arrays used to regulate endogenous targets we used four 
pairs of ZFs to provide a greater opportunity for function, but it is not 
clear whether eight ZFs are necessary. A six-finger array provides up 
to 18 bp of specificity that would give single-target resolution in the 
human genome. To test whether eight fingers are necessary in each 
array, we tested the on-target activity of CDKN1C arrays 125 and 200 
and DPH1 array 15 with either the N- or C-terminal ZF pairs removed 
(Fig. 6e). In the case of CDKN1C array 200, removal of either termi-
nal pair led to a large decrease in activity. Conversely, removal of the 
C-terminal pair for CDKN1C array 125 or of the N-terminal pair for 
DPH1 array 15 had very little impact on activity. Together, these data 
suggest that in some (CDKN1C array 125 and DPH1 array 15), but not 
all (CDKN1C array 200), a six-finger version of proteins can provide 
similar activity but eight-finger proteins may capture activity for more 
challenging targets.

Finally, to characterize the DNA-binding specificity of the ZF 
arrays, we first performed independent B1H binding selections for 
each pair within CDKN1C arrays 125 and 200 and DPH1 array 15 (Sup-
plementary Fig. 19). Because the flexible linker between pairs in these 
arrays will lead to modular and independent binding (Fig. 2d), these 
screens were used to confirm that each pair can bind their subtar-
get independent of the full array. We screened these pairs with an 
8-bp library at two stringencies and found that specificities were 
in general agreement with their designed targets (Fig. 6f and Sup-
plementary Fig. 20). Next, we tested the genome-wide specificity 
of the full eight-finger arrays by chromatin immunoprecipitation 
sequencing (ChIP–seq). Here we found that, despite the proper 
specificity provided by each pair, subsets of ZFs appear to drive 
binding genome wide. This is probably due to the modular design of 
our arrays that allows each pair to bind independently, and therefore 
the highest-affinity arrays will guide most ChIP–seq peaks. We used 
this design approach for simplicity in this proof-of-concept stage 
but, in future work, ZF arrays employing conventional linkers that 
do not skip bases should exhibit reduced off-target binding because 
in those, much less independent binding of ZF pairs will occur. It is 
furthermore worth noting that ZFDesign can be used to approxi-
mate the specificity of designed arrays with relatively high accuracy 
(Methods), and with much better accuracy than approaches trained 
specifically to predict ZF specificity (Fig. 6f and Supplementary  
Fig. 20). This suggests that ZFDesign can potentially be used to 
identify ZF arrays that are more likely to show specific binding before 
experimental validation.

Discussion
In this study we present ZFDesign, a hierarchical attention-based 
artificial intelligence model trained on comprehensive screens of 
ZF–DNA interactions that consider the influence of multiple adjacent 
finger environments. ZFDesign captures these influences to provide 

a general design model for ZF arrays. By contrast, previous efforts 
produced incomplete collections of ZF modules that often fail out of 
context and produce low on-target activity. Conversely, our model 
consistently produced ZF arrays across a wide range of targets at 
high efficacy as nucleases, repressors and activators. Thus, ZFDe-
sign represents an important advance because the design of ZFs for 
any given target is now available at the push of a button and is open 
to the academic community for study of a myriad of academic and 
therapeutic applications, with the advantages of small size and low 
immunogenicity.

The modularity of our arrays led to a large amount of off-target 
binding, despite the fact that each pair within the array presents a speci-
ficity profile that would accommodate the target sequence. Off-target 
binding is probably driven by the highest-affinity pairs in the array that 
will bias the binding towards their targets, because our linker arrange-
ment will encourage this modularity. These data are juxtaposed by the 
RNA-seq results that demonstrate very low off-target activity. Together 
these data demonstrate that, much like natural TFs that have thousands 
of binding sites across the genome, the position of binding is critical for 
regulation and not all binding events have the potential to modify gene 
expression. This disparity between binding and activity has also been 
seen with SpCas9, where ChIP–seq can reveal thousands of off-target 
binding events dominated by seed specificity despite minimal evidence 
of off-target catalytic activity50.

Design limitations remain because our model was trained on 
two-finger selections that sampled <5% of the possible 6-bp targets, 
and single-finger selections did not sample T at the overlap positions. 
Therefore, we are most confident in those domains that bind A, C or G 
at the overlap. Further, we are just beginning to understand specific-
ity and off-target activity because the model was first built to capture 
compatibility. As more arrays are screened and specificities gener-
ated, the model will be continuously improved to capture the rules of 
specific binding. Nevertheless, we have shown that the modification 
of nonspecific affinity can improve specificity for ZF designs, even at 
single-target resolution. This suggests that ZFDesign arrays do prefer 
the on-target sequence, but modularity and our understanding of their 
discrimination against alternative sequences is limited. Nevertheless, 
a ZFDesign user might choose high-activity designs that maintain 
natural phosphate contacts or high-specificity designs by starting 
with the modified domains.

Finally, we present a generalizable design method that allows 
for the seamless replacement of a TF natural DNA-binding domain to 
direct the TF to any target of interest. These RTFs can produce activa-
tion and repression activities similar to CRISPR-based tools, estab-
lishing these proteins as attractive therapeutics comprising solely 
human components. In addition, these tools allow us to better probe TF 
function because they more accurately mimic natural TFs. We believe 
these tools will open exciting opportunities in systems and synthetic 
biology for the investigation and modification of gene regulation on 
a genome-wide scale.
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Methods
Experimental
Library builds. Primary ZF libraries. All primary ZF libraries were built 
actions35,52. To provide templates for PCR, gBlocks were ordered from 
IDT that coded for the finger 0 and 1 domains of each library. The critical 
difference between libraries is the different environment presented at 
the interface between domain 1 and library domain 2. gBlock provides 
the template that will differentiate each library. These libraries were 
chosen to present side chains at the interface with a range of biochemi-
cal properties (basic, acidic, polar, aromatic and hydrophobic interac-
tions) and thereby comprehensively capture a broad range of potential 
adjacent finger influences. Next, an oligonucleotide was designed 
with degeneracy (NNS) at the codon positions corresponding to the 
six critical residue positions of the ZF domain 2 alpha-helix. This oligo 
was used to build all libraries with only the gBlock template differen-
tiating one library from the next. For each library, PCR reactions were 
run in 96-well-plate format and pooled. PCR products were digested 
and cloned into the B1H expression vector. Library ligations were elec-
troporated into 15 aliquots of electrocompetent cells and recovered in 
1 l of super optimal broth with catabolite repression (SOC) media for 
expansion. To select for transformants, carbenicillin was then added to 
the culture 1 h post electroporation and grown to mid-log. Library DNA 
was then recovered by Qiagen maxiprep. Library sizes ranged 1–3 × 109. 
This approach has been consistently shown to produce libraries with 
diversity approximating random52.

Two-finger libraries. Second-round selections were used to select 
compatible pairs from preselected ZF pools generated in the primary 
ZF library selections. We pooled recovered plasmid DNA from our pri-
mary single-finger screens on a binding site basis, resulting in a pool of 
diverse helices (termed ‘round 2 pools’) with broad compatibility for 
each of the 64 different binding sites. These round 2 pools were used 
as a PCR template to create either ‘domain 1’ or ‘domain 2’ amplicons 
using the Expand High Fidelity PCR system (Roche), and 15 cycles of PCR 
and two-finger pools were then assembled by overlapping PCR using 
the domain 1 and 2 amplicon as the template for a subsequent round 
of PCR. These two-finger pools were purified, digested and cloned 
into our two-finger expression vector. One hundred nanograms of the 
ligation was electroporated into USO-ω cells, recovered in SOC for 1 h 
and titered to measure library size. Based on these cell counts, 5 × 106 
cells were plated on 15-cm rich medium agar plates with carbenicillin, 
grown at 30 °C for 12–14 h, harvested by scraping and miniprepped to 
obtain the final two-finger libraries.

Eight-base-pair library. The specificity of two-finger modules was 
determined using a modified B1H reporter (conceptually similar to a 
10-bp library used to characterize ZF–homeodomain fusions53; Sup-
plementary Fig. 19). The library was built as previously described54, 
with a random barcode and library window placed between the Not1 
and EcoRI restriction sites of the B1H reporter vector.

ZF selection. Primary ZF libraries. Libraries were built in a vector 
that expresses ZFs as a fusion to the omega subunit of the bacterial 
polymerase that acts as the activation domain in this system. Each 
binding site reporter vector was built by placing the binding site of 
interest 10 bp upstream of the −35 box of the promoter that drives 
HIS3 and GFP expression in the previously described GHUC vector. For 
each selection, the ΔrpoZ selection strain was transformed with the ZF 
library and the appropriate reporter plasmid by electroporation. Cells 
were expanded in 10 ml of SOC for 1 h at 37 °C with rotation, recovered 
and resuspended in minimal medium supplemented with histidine and 
grown with rotation for an additional 1 h at 37 °C. Finally, cells were 
washed in minimal medium lacking histidine, recovered in 1 ml of this 
medium and 20 μl was plated in serial dilution on rich plates contain-
ing kanamycin and carbenicillin to quantify double transformants. 

This plate was grown at 37 °C overnight while the remaining 980 μl 
of transformed cells was stored at 4 °C. Once grown, serial dilutions 
were counted and a volume containing a minimum of 5 × 108 cells were 
taken from the stored transformants and plated on selective medium 
containing 2 mM 3-AT, a competitive inhibitor of HIS3. Plates were 
incubated for 36–48 h at 37 °C. Colonies were counted, cells pooled 
and DNA harvested and amplified for Illumina sequencing.

Compatible two-finger module selection. Round 2 libraries were 
cotransformed with the matching reporter vector in USO-ω cells, 
recovered and titered for cell count, then 1 × 106 cells were added in 
triplicate to a 96-well deep-well plate containing a sterile bead for 
efficient agitation. Selections were performed in 1 ml of NM + Ura/-His 
supplemented with 100 μg ml–1 carbenicillin, 50 μg ml–1 kanamycin, 
1 μM isopropyl-β-d-thiogalactopyranoside and 5 mM 3-AT. These were 
grown at 37 °C in a plate shaker for 18, 24 or 40 h and harvested on reach-
ing visible turbidity (typically optical density >0.6). Triplicates were 
pooled, miniprepped and deep sequenced on an Illumina NextSeq 500.

Eight-bp library selections. Four-finger proteins were expressed as 
C-terminal fusions to omega (rpoZ) that functions as the activation 
domain in the B1H assay (Supplementary Fig. 19). The first two fingers 
are fixed and their target sequence is placed downstream of the random 
region of the library. In this way, the fixed fingers function as anchors 
that site the test pair of fingers in an optimal position to interact with 
DNA sequences in the library window. An upstream 4-bp barcode is 
used to filter the rare cells that escape selective pressure, to minimize 
their influence on downstream analysis. Each ZF expression vector was 
cotransformed with the 8-bp library vector, and 6.5 × 106 cells were 
plated on selective medium supplemented with either 5 mM 3-AT (low 
stringency) or 10 mM 3-AT (high stringency). Plates were incubated for 
24–36 h at 37 °C. Surviving colonies were pooled, DNA recovered and 
sequenced by Illumina.

U20S GFP disruption assay. Zinc finger nuclease activity was assessed 
by measuring disruption of an integrated, constitutively expressed 
eGFP reporter in a clonal U2OS cell line previously described41. Cells 
were cultured in DMEM supplemented with 10% FBS, 2 mM GlutaMax 
(Life Technologies), 1% penicillin/streptomycin, 1% MEM nonessential 
amino acids (Life Technologies), 2 mM sodium pyruvate and 400 μg ml–1  
G418. One microgram of each ZFN monomer plasmid DNA and 200 ng 
of ptdTomato-N1 plasmid DNA were transfected in duplicate into 5 × 105 
cells using a Lonza Nucleofector 2b Device (Kit V, Program X-001). In 
each assay 2 μg of parental empty vector (a modified derivative of the 
JDS71 vector from Addgene) and 200 ng of ptdTomato-N1 were used as 
a negative control, and 2 μg of a dual-spCas9-guide-expressing vector 
(modified Addgene plasmid no. 41815) and 200 ng of ptdTomato-N1 as a 
positive control, in each experiment. Cells were grown in six-well dishes 
for 3 days post transfection, harvested, maintained on ice and analyzed 
for expression of eGFP and tdTomato on a Sony SH800 cell sorter. To 
restrict the analysis to cells that probably received both ZFN monomer 
plasmids, populations were first gated on the top 15–25% tdTomato+ 
cells then analyzed for loss of eGFP expression (Supplementary Fig. 11).

Next-generation sequencing and preparation. Following selection 
from ≥5 × 108 library variants, surviving colonies were pooled, mini-
prepped and DNA barcoded for sequencing on an Illumina NextSeq 
500. Two microliters of pooled plasmid DNA was used as a template 
for barcoding in a 25-μl reaction with Taq Polymerase (NEB), with the 
following cycling parameters: 95 °C for 5 min, 20 cycles of (95 °C, 20 s; 
52 °C, 30 s; 68 °C, 30 s) and 68 °C for 10 min, and was then held at 4 C. 
Each 5-μl reaction was visualized on 1% agarose gel to confirm appar-
ent equal amplification, and reactions were pooled in equal volumes. 
These were run out on 1% agarose gel, gel purified and submitted to the 
NYU Genome Technology Center for sequencing on a NextSeq 500.
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Live cell imaging of ZF–GFP fusion. We designed ZFs to bind the 
sequence 5′-CGCCCAGCTGGGGGCGGGGGA-3′, a sequence that is 
repeated 111 times at the Brf1 locus on chromosome 14 (hg38 chr14: 
105229626–105240946). The coding sequence for the designed ZF array 
was ordered from IDT (gBlock) A SV40 NLS was added to the C termini 
by PCR. Next, we added GFP as an N-terminal fusion to the ZFs using the 
NT-GFP Fusion TOPO TA Expression Kit (Invitrogen). Successful clon-
ing into the expression vector was confirmed by Sanger sequencing.

The GFP–ZF fusion expression vector was transfected into 
293 T cells and grown on 0.01% Poly-l-lysine-coated 35-mm Mat-
Tek dishes using X-treme-GENE 9 DNA transfection reagent 
(Sigma-Aldrich). Transfected cells were Hoechst stained the following 
day and then imaged. A titration experiment was conducted to explore 
optimal plasmid concentration. Clear foci were visible at a range of 
concentrations, but 333 ng of plasmid yielded the optimal balance of 
transfection efficiency and signal-to-noise ratio.

Chemically mediated transfection of HEK293T cells. Mirus transfec-
tion. For KLF6-based RTFs, 18–24 h before transfection, HEK293T cells 
were passaged and 7.5 × 105 cells added to 2.5 ml of medium in a six-well 
dish. Cells were transfected with 2 μg of plasmid DNA at a 4:1 ratio of 
DNA:TransIT-LT1 transfection reagent (Mirus) according to the manu-
facturer’s instructions.

Effectene transfection. Transfection of Zim3-based RTFs were per-
formed using a modified Effectene reagent (Qiagen) protocol as 
previously described55, because we found the improved transfection 
efficiency with this protocol was necessary to achieve high levels of bulk 
repression. Per transfection, 0.4 μg of DNA was used in 100 μl of of EC 
buffer at a DNA:enhancer ratio of 1:8 (3.2 μl) and DNA:Effectene ratio 
of 1:15 (6 μl). The resulting transfection complexes were added to each 
well in a six-well plate freshly seeded with 5 × 105 HEK293 T cells in 2 ml 
of medium. All transfections were performed in triplicate.

Cell culture and RT–qPCR analysis of repressors and activators. 
HEK293T cells were transfected with ZF activators and repressors, 
and target transcript levels measured by RT–qPCR as follows. Cells 
were cultured in DMEM supplemented with 10% FBS, 2 mM GlutaMax 
(Life Technologies), 1% penicillin/streptomycin, 1% MEM nonessential 
amino acids (Life Technologies) and 2 mM sodium pyruvate. Medium 
was changed 2 days post transfection and cells harvested for RT–qPCR 
3 days post transfection. Cells were washed once with sterile PBS, 
350 μl of Buffer RLT Plus (Qiagen) containing 1% β-mercaptoethanol 
was added and samples were either stored at −80 °C or processed 
immediately using the RNeasy Plus Mini Kit (Qiagen) according to the 
manufacturer’s instructions.

One microgram of pure RNA was reverse transcribed using the 
SuperScript IV First-Strand Synthesis System (Invitrogen) according 
to the manufacturer’s instructions. Random hexamers were used as 
primers. qPCR reactions were established in technical duplicate or 
triplicate using the equivalent of 25 or 50 ng of reverse-transcribed RNA 
per reaction and the KAPA SYBR FAST qPCR Master Mix (2X) (Roche).

RT–qPCR was performed on a LightCycler 480 Instrument II 
(Roche) using the cycling program recommended for KAPA SYBR 
FAST reagent with the LightCycler 480 (annealing temperature 60 °C). 
Cycle threshold values were calculated using the on-board Absolute 
Quantification/2nd Derivative Max analysis option. Input was first 
normalized using the housekeeping gene RPS18, and fold change in 
expression for a given gene of interest was calculated relative to the 
appropriate negative control. A table of RT–qPCR primers used in this 
study can be found in Supplementary Data.

Production of GFP-tagged TF expressing HEK293 Flp-In-TRex cell 
lines. Cell lines were produced using an engineered Flp-In vector back-
bone with an N-terminal eGFP tag. Parental cells were transfected with 

each specific ZF vector separately (FuGENE HD Transfection Reagent, 
Promega) in six-well plates and transferred to hygromycin selection 
medium after 48 h. All colonies from the same plate were pooled and 
used for further experiments. Cells were treated with doxycycline 
(100 ng ml–1) 24 h before crosslinking, and GFP expression was con-
firmed by fluorescent microscopy.

ChIP–seq. Chromatin immunoprecipitation was performed as pre-
viously described56. In brief, ∼2 × 107 HEK293 Flp-In-TRex cells were 
crosslinked for 10 min in 2.7% formaldehyde followed by 10 min of 
quenching. Lysates were sonicated to a DNA fragment length of 200–
300 bp using a Bioruptor (Diagenode). GFP-tagged transcription fac-
tors were immunoprecipitated with a polyclonal anti-GFP antibody (no. 
ab290, Abcam) and Dynabeads Protein G (Invitrogen). Subsequently, 
crosslinks were reversed at 65 °C overnight and bound DNA fragments 
purified (QIAquick PCR Purification Kit, Qiagen). Each construct was 
tested in duplicate.

Computational analysis
Sequence recovery and filtering. All paired-end Illumina reads were 
demultiplexed and trimmed into 21-mers with in-house Unix scripts 
based on EMBOSS 6.6.0. Trimmed DNA sequences are translated, and 
amino acid sequences considered if they had a least two read counts 
and were coded by at least two different DNAs. Invariant leucine at helix 
position +4 is excluded.

Clustering and filtering selection. For each selection, helix sequences 
were clustered using MUSI software34. Each sequence was assigned to 
the cluster associated with the PWM for which it was assigned the high-
est responsibility. For each cluster generated, Shannon entropy value 
was calculated for each helix residue based on the PWM for that cluster. 
If a selection lacked a cluster with at least one position with entropy of 
two or less, that selection was filtered out for downstream analysis.

Computation of similarity between selections by Hamming dis-
tance. To compare helices from two selections, A and B, pairwise nor-
malized Hamming distances were computed between the two sets 
of filtered sequences based on the number of identical amino acids. 
The minimum normalized Hamming distance was then computed 
from each helix in selection A to each helix in selection B, as well as 
from each helix in selection B to each helix in selection A. The overall 
distance between the two selections was computed as the mean of 
these distances.

Molecular dynamic simulations. Similar to our previous studies35,57, 
the PDB file 1AAY51 was used as template and DNA was elongated by 
2 bp at each end using X3DNA to avoid the melting end effect so that 
the binding of ZFs would not be affected. DNA and protein sequences 
were mutated using Chimera (www.cgl.ucsf.edu/chimera/) for each 
library and test case, and the protonated states were determined by 
WHAT IF (swift.cmbi.umcn.nl/whatif/). The prepared structures were 
then solvated into a TIP3P water box with a 15-Å buffer of water extend-
ing from the protein–DNA complex in each direction, with the addition 
of sodium ions to ensure overall charge neutrality. The FF99 Barcelona 
forcefield was used for the protein–DNA complex and zinc amber 
forcefield for zinc ions. The particle mesh Ewald method was used for 
electrostatics calculations. The SHAKE algorithm was used to constrain 
hydrogen-containing bond length, which allowed a 2-fs time step for 
MD simulation. The nonbonded cutoff was set to 12.0 Å. The systems 
were energy minimized using a combination of steepest descent and 
conjugate gradient methods. The systems were then thermalized and 
equilibrated for 3 ns using a multistage protocol. The first step was a 
1.5-ns gradual heating from 100 to 300 K followed by 1.5 ns of density 
equilibration, both at 1 fs step length. A Berendsen thermostat and 
barostat were used for both temperature and pressure regulation for 
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a further 6-ns equilibration at 2-fs step length, with gradually reduced 
positional constraints at 300 K. The systems were built with tleap and 
simulations conducted with graphics processing unit-accelerated 
Amber18 (ref. 58). For each system, three 500-ns trajectories were simu-
lated. Hydrogen bond analysis was performed using BioPython. We 
considered as hydrogen bonds any contacts <3.5 Å between atoms 
O6 and N7 (for a guanine), between atoms NH1 and NH2 (for an argi-
nine) or between atoms ND2 and OD1 (for an asparagine). Bifurcated 
hydrogen bonds between a guanine and arginine were identified when 
pairs 06–NH1/2 and N7–NH1/2 were found, allowing the tautomeric 
bifurcated hydrogen bond.

Calculation of entropy of binding for core helices across libraries. 
To quantify the promiscuity of helices targeting each nucleotide 3-mer, 
Shannon entropy was computed. For each nucleotide 3-mer, a position fre-
quency matrix of nucleotide sequences targeted by every set of core resi-
dues (−1, 2, 3, 6) was computed. Entropy was calculated in a position-wise 
fashion and then summed to obtain an overall metric for specificity.

Neural network architecture. We developed a hierarchical neural 
network architecture that mimics the B1H experimental setup and 
captures the modularity of ZF proteins. This architecture is composed 
of three modules (Fig. 3). The first two modules are trained to gener-
ate helices that bind to a particular nucleotide 4-mer that includes the 
target 3-mer and the overlap base. The residue embeddings from these 
modules are concatenated and used as input to a third module that is 
designed to learn compatibility between the helices in a pair (Fig. 3a). 
The first module generates residue embeddings for the first helix in 
a pair based on the last four bases in a target 7-mer, and the second 
module generates residue embeddings for the second helix based on 
the first four bases in a target 7-mer (Fig. 3b). The full model is trained 
to predict all core residues in two helices given a nucleotide 7-mer.

The architecture of the first two modules is largely based on the 
Transformer model59. An encoder generates a high-dimensional repre-
sentation for each base in a nucleotide 4-mer. A decoder then generates 
predictions for each core residue in a ZF helix using self-attention and 
attention layers that relate nucleotide bases to helix residues. While the 
decoder in a conventional Transformer strictly generates sequences from 
left to right59, the decoders in this model use bidirectional information. 
A portion of the residues in a helix is masked and the decoder outputs 
amino acid predictions at these positions. The third module consists of 
repeating self-attention and feedforward layers that allow the model to 
update residue embeddings based on interhelix compatibility (Fig. 3b).

Variants of the first module with different numbers of attention 
heads and embedding dimensions were trained and evaluated on the 
initial task of predicting residues in a single helix (Supplementary Table 
1). In the final model, all attention layers were repeated three times and 
each attention layer had four heads. The model-embedding dimension 
(dmodel) was set to 128. The value- and key-embedding dimensions for 
computation of scaled dot-product attention (dv and dk, respectively) 
were both set to 256. The hidden dimension in the feedforward layers 
was set to 128. For regularization, dropout layers were included after 
every feedforward and attention layer with a dropout percentage of 0.3.

Training datasets. The models were trained and evaluated on data 
derived from B1H selections. B1H screening data were filtered using 
a previously described approach in which helices were evaluated 
based on the diversity of encoding nucleotide sequences found in 
the screen35,52,60. Shannon entropy for each helix (or helix pair) was 
calculated based on the number of reads associated with each pos-
sible encoding nucleotide sequence. Helices were filtered based on 
previously defined thresholds35. Specifically, helices with fewer than 
ten reads or Shannon entropy <0.07 were removed.

Modules 1 and 2 were pretrained using data from single-helix B1H 
selections performed against nucleotide 4-mers. The data included 

selections performed with 11 libraries against 192 different nucleo-
tide 4-mers. In total, the dataset included 2,071,764 data points. For 
initial training and hyperparameter tuning, data points were split into 
training, test and validation datasets at proportions of 80, 10 and 10%, 
respectively, by 4-mer sequence. For pretraining, data were instead 
split by helix sequence.

The full model was trained using data from helix-pair B1H selections 
performed against nucleotide 7-mers. An initial dataset of selections 
against 189 seven-mers was split into training and validation datasets 
at proportions of 90 and 10%, respectively. This dataset contained a 
total of 327,792 data points. To ensure that the validation set was suffi-
ciently different from the training dataset, a graph was generated where 
nucleotide 7-mers were represented as nodes, and edges connected 
7-mers within two base substitutions from each other. While most of 
the nodes formed a single connected component, there were sepa-
rate components included in the validation dataset (Supplementary  
Fig. 22a). Nodes with the lowest degree in the graph, and their neighbors, 
were then added to the validation dataset. Most of the sequences in the 
validation dataset were consequently at least three mutations away 
from any sequence in the training dataset (Supplementary Fig. 22b). 
A separate set of 15 selections, filtered to ensure at least 100 unique 
helix pairs, was used as an independent test set for model evaluation.

Model training. In both training steps, a nucleotide target and a 
sequence of partially masked core residues from either a single ZF 
or helix pair were provided to the model; 50% of core residues were 
masked and cross-entropy loss was evaluated based on output prob-
abilities. Training was done carried out an Adam optimizer with a 
learning rate of 1 × 10–4, and a minibatch size of 128 was used. Early stop-
ping was carried out based on validation loss. Pretraining modules 1 
and 2 required, at most, 1.3 million iterations; training the full model 
required, at most, 3.4 million iterations. When training the full model, 
the parameters for modules 1 and 2 were either randomly initialized, 
transferred from the pretraining step, or transferred and from the 
pretraining step and frozen (Supplementary Fig. 23).

De novo design of ZF–helix pairs. When predicting zinc finger residues, 
the model makes use of context provided by known residues. Helix 
sequences are generated incrementally where the network is run once 
for each missing residue. At each iteration, a single residue is added 
to increase the sequence context. For a pair of helices, there are about 
4.1 × 1015 possible sequences and about 4.8 × 108 orders in which each 
sequence can be generated. Enumeration of all possibilities to find the 
sequence with the highest likelihood is thus computationally intractable.

To generate sequences we adapted the A* search algorithm, 
as done previously38,61. This approach involves iteratively filling in 
masked residues while maintaining a priority queue of partially masked 
sequences. At every iteration, the top partially masked sequence is 
taken from the priority queue and passed through the network. All 
possible labels for every masked residue are evaluated. Any label with 
probability >0.05 is accepted and that label added to a copy of the 
input sequence before being pushed onto the priority queue. This is 
repeated until a set number of sequences areis completely generated. 
The following equation is used to assign a priority to each partially 
masked sequence:

pj =
j
∑
i=1

log (pi) +
12
∑
j
log (p∗)

This heuristic approximates the maximum expected probability 
of a sequence that would be attained by predicting the remaining resi-
dues. pi denotes the probability assigned to the prediction made at 
iteration i, and j denotes the number of predicted residues. p∗ denotes 
the expected maximum probability that would be assigned by the 
network to later predictions. This parameter can be tuned to move the 

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-022-01624-4

search closer to a greedy or breadth-first search. This parameter was 
set to 0.1 whenever A* was performed in this work.

We also implemented an alternative biased sampling approach 
using temperature-adjusted distributions, as done previously39. This 
approach generally resulted in higher likelihood sequences (Supple-
mentary Figs. 22 and 23). At every iteration, the probability of predict-
ing an amino acid i at position j is the following:

p (xi,j|n, x(k,m)∈S)
(T)

=
p (xi,j|n, x(k,m)∈S)

1
T

∑20
a=1∑

12
b=1 p (xa,b|n, x(k,m)∈S)

1
T

where n denotes the input nucleotide sequence and S the set of pairs of 
amino acids and positions already predicted. T is an adjustable param-
eter that controls the bias of the distribution; this parameter was set 
to 0.6 when this method was used. In total, 105 ZF pairs were sampled 
and the maximum-likelihood pair when performing de novo design.

Comparison with ZFPred. To generate distributions over helix 
sequences using ZFPred35, 106 helix sequences were randomly sam-
pled. The binding specificities of these helices were predicted using 
ZFPred. Sequence distributions for a particular nucleotide sequence 
were then generated by normalization of the predicted scores of the 
sampled helices for that nucleotide sequence. Predictions for 3-mers 
were concatenated to generate predictions for 6-mer sequences.

RNA-seq analysis. RNA-seq library preps were constructed with the 
Illumina TruSeq Stranded mRNA Library Prep kit (no. 20020595) using 
500–1,000 ng of total RNA as input, amplified by 10–12 cycles of PCR 
and sequenced paired-end 50 cycles on Illumina sequencers with 2% 
PhiX spike-in. Between 25 and 30 million reads were obtained for each 
sample. Paired-end reads were aligned to hg38 using STAR aligner62. 
Read counts were computed using FeatureCounts, and differential 
expression analysis was subsequently performed using DESeq2 (ref. 63).

Statistical analysis. Two-sided Wilcoxon rank-sum tests were per-
formed using the SciPy python library. Boxplot centerlines show 
medians, box limits show upper and lower quartiles, whiskers are 
1.5× interquartile range and points show outliers.

Specificity estimation with ZFDesign. To estimate the specificity 
of a helix pair, the pseudolog-likelihood of the pair with every 7-mer 
was calculated using ZFDesign. This was done by iteratively masking 
each residue and computing its log-likelihood with the remaining 
amino acids provided as context. Pseudolog-likelihood is the sum of 
these log-likelihoods and has previously been shown as an effective 
way to score sequences generated using masked language models64. 
The resulting pseud-log-likelihoods are then normalized to obtain a 
distribution over 7-mers for a particular helix pair.

ChIP–seq analysis. Paired-end reads were aligned to hg38 using 
bowtie2 (ref. 65). MACS2 was used to call peaks using input DNA as a 
control66. Motif finding was done using MEME–ChIP67.

B1H specificity analysis. For specificity analysis, B1H reads were fil-
tered using three criteria. First, 8-mer sequences with fewer than ten 
reads in total were removed. Additionally, 8-mers recovered on only a 
single unique plasmid, based on the upstream barcode, were removed. 
Finally, if the entropy of the distribution of reads for a particular 8-mer 
across different plasmids was <0.1, reads corresponding to the most 
frequent plasmid were filtered out. This was done to ensure that cells 
that escaped selective pressure were not overrepresented. MUSI was 
used to cluster the set of 8-mers into two different motifs. The resulting 
read distribution was normalized using the distribution of reads in the 
sequenced background library.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Access to the ZF selection data used to define and train the model is 
available for academic purposes through execution of a material trans-
fer agreement. Please contact the NYU Langone Health Technology 
Opportunities team (innovationscontracts@nyulangone.org) or the 
corresponding authors for details (pm.kim@utoronto.ca and marcus.
noyes@nyulangone.org). Source data are provided with this paper.

Code availability
Access to ZFDesign and the underlying code is available for academic 
purposes through execution of a material transfer agreement. Please 
contact The Governing Council of the University of Toronto (innova-
tions.partnerships@utoronto.ca) or the corresponding authors for 
details (pm.kim@utoronto.ca and marcus.noyes@nyulangone.org).
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