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Abstract
Background: Oral clefts and ectrodactyly are common, heterogeneous birth de-
fects. We performed whole-exome sequencing (WES) analysis in a Syrian family. 
The proband presented with both orofacial clefting and ectrodactyly but not ecto-
dermal dysplasia as typically seen in ectrodactyly, ectodermal dysplasia, and cleft 
lip/palate syndrome-3. A paternal uncle with only an oral cleft was deceased and 
unavailable for analysis.
Methods: Variant annotation, Mendelian inconsistencies, and novel variants 
in known cleft genes were examined. Candidate variants were validated using 
Sanger sequencing, and pathogenicity assessed by knocking out the tp63 gene in 
zebrafish to evaluate its role during zebrafish development.
Results: Twenty-eight candidate de novo events were identified, one of which is 
in a known oral cleft and ectrodactyly gene, TP63 (c.956G > T, p.Arg319Leu), and 
confirmed by Sanger sequencing.
Conclusion: TP63 mutations are associated with multiple autosomal dominant 
orofacial clefting and limb malformation disorders. The p.Arg319Leu mutation 
seen in this patient is de novo but also novel. Two known mutations in the same 
codon (c.956G > A, p.(Arg319His; rs121908839, c.955C > T), p.Arg319Cys) cause 
ectrodactyly, providing evidence that mutating this codon is deleterious. While 
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1   |   BACKGROUND

In mammalian development, the head is one of the most 
complex structures to form. The tissues develop from en-
doderm, mesoderm, ectoderm, and cranial neural crest 
cells, and the regulation of growth and differentiation is 
controlled by signaling between different cellular compo-
nents both spatially and temporally in a highly complex 
process that can be easily disrupted (Abramyan,  2019; 
Murillo-Rincón & Kaucka, 2020). This intricate interplay 
of numerous factors means that cleft lip, with or without 
cleft palate, is a clinically and genetically heterogeneous 
trait with multiple genes and regions mapped. There are 
over 400 syndromes that have orofacial clefts as a key fea-
ture (Fryns & de Ravel, 2002), but the majority of patients 
born with an oral cleft are non-syndromic, where the cleft 
is the only malformation in the child. Only a small pro-
portion of causal genes have been identified for either syn-
dromic or non-syndromic oral clefts.

Ectrodactyly (also known as split hand/split foot mal-
formation, SHFM) is another clinically heterogeneous 
malformation (Elliott et al.,  2005; Elliott & Evans,  2006) 
in which the absence of the central rays produces a deep 
median cleft in the autopod, one of the skeletal elements 
of the developing limb. Like oral clefts, ectrodactyly can 
occur as an isolated entity or as part of a syndrome. During 
development, gradients of signaling molecules in three 
spatial directions control the patterning of the limbs. Three 
specialized cell clusters control this process through dif-
ferentiation and proliferation; the apical ectodermal ridge 
(AER), the progress zone, and the zone of polarizing activ-
ity. Both genetic and environmental risk factors are known 
to disrupt the function of the AER and cause ectrodactyly. 
Mutations in TP63 (Bernardini et al., 2008; Duijf et al., 2003; 
Roberts & Tabin,  1994; Wang et al.,  2014) and WNT10B 
(Bui et al.,  1997) have been associated with ectrodactyly, 
and other regions of the genome have been mapped as con-
taining some still unidentified causal genes. Duplication of 
10q24 is also associated with ectrodactyly and is the most 

common cause of SHFM in humans, accounting for ap-
proximately 20% of cases (Klopocki et al., 2012). There are 
several other SHFM and oral cleft disorders, some of which 
include both, such as ectrodactyly, ectodermal dysplasia, 
cleft lip/palate syndrome-1 (EEC1), and ectrodactyly, ecto-
dermal dysplasia and cleft lip/palate syndrome-3 (EEC3) 
which are autosomal dominant disorders that include 
SHFM as well as skin anomalies.

Whole-exome sequencing (WES) has successfully 
identified the causal variants in a range of Mendelian dis-
eases. Here we present the results of a WES study of a sin-
gle Syrian family with a child affected with both orofacial 
cleft and ectrodactyly.

2   |   METHODS

2.1  |  Recruitment and clinical features

A collaborative study of familial orofacial clefts, with an 
emphasis on non-syndromic oral clefts but expanded to 
include syndromic oral clefts, was instituted in the Syrian 
Arab Republic in 1998 by investigators at the National 
Human Genome Research Institute, National Institutes of 
Health, USA, and clinicians at the Ibn Al-Nafees Hospital, 
Damascus, Syria (Marazita et al.,  2004; Wyszynski 
et al.,  2003). Families were ascertained through at least 
one individual affected with non-syndromic cleft lip with 
or without cleft palate. Of these families, those with two or 
more family members affected with orofacial clefts were 
invited to enroll in this genetic study. The study was ap-
proved by the Institutional Review/Ethics Boards of the 
National Human Genome Research Institute, NIH (USA), 
and the Ibn Al-Nafees Hospital (Damascus, Syrian Arab 
Republic). All study participants provided written in-
formed consent (in Arabic), and the study followed the 
tenets of the Declaration of Helsinki. The informed con-
sent forms and the protocol on file with the Institutional 
Review Board at the NIH both guarantee the pedigrees 

this TP63 mutation is the best candidate for the patient's clinical presentation, 
whether it is responsible for the entire phenotype is unclear. Generation and 
characterization of tp63 knockout zebrafish showed necrosis and rupture of the 
head at 3 days post-fertilization (dpf). The embryonic phenotype could not be 
rescued by injection of zebrafish or human messenger RNA (mRNA). Further 
functional analysis is needed to determine what proportion of the phenotype is 
due to this mutation.
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will never be published to protect the privacy of the study 
participants because these pedigrees are readily identifi-
able given the rarity of such multiplex oral cleft families. 
Therefore, only a redacted and disguised version of the 
pedigree is shown here. Subjects enrolled in this study 
were all examined by the same local physicians and were 
subjected to standardized interviews.

The ascertainment of all families followed the clinical 
guidelines proposed by the International Consortium for 
Oral Clefts Genetics (Mitchell et al., 2002). During the en-
rollment of these families, one family was identified with 
one individual who was affected with non-syndromic bi-
lateral cleft lip and palate (deceased), which met the initial 
qualification of the family for the study, and his nephew 
with bilateral cleft lip and palate as well as ectrodactyly (bi-
lateral split hand and split foot malformation). The current 
study involves this specific family. The paternal uncle with 
cleft lip and palate, who died in childhood, was reported 
to have no other clinical abnormalities; however, he was 
not available for examination. Upon clinical examination, 
the 15-year-old affected nephew was found not to have any 
symptoms of ectodermal dysplasia, but he did have redness 
of his eyes and reported frequent, chronic tearing. He was 
developmentally normal and had no other apparent clini-
cal symptoms. The deceased affected uncle had between 10 
and 15 unaffected siblings (including the affected nephew's 
father, the exact number of siblings disguised to protect the 
family's privacy). The affected nephew had between six 
and 10 unaffected siblings (exact number disguised to pro-
tect the family's privacy). The affected nephew's parents 
were reported to be related, but the family did not specify 
the exact relationship of his mother to his father.

2.2  |  Whole-exome sequencing (WES)

Genomic DNA was extracted from EDTA-treated blood, as 
described by Bellus et al. (1995). WES was performed in the 
patient plus his parents and two unaffected siblings using 
the TruSeq DNA Sample Preparation v2 method (Illumina, 
San Diego), followed with Illumina's TruSeq Exome 
Enrichment Kit protocol and sequenced using the Illumina 
HiSeq2000 with version 3 chemistry to a depth of at least 40 
million paired-end 100 base reads for each sample. Image 
analysis and base calling were performed with default pa-
rameters using Illumina Genome Analyzer Pipeline soft-
ware (RTA version 1.17.20 and CASAVA 1.8.2).

2.3  |  Alignment and genotype calling

Reads were mapped to NCBI build 37 (hg19) with 
Novoalign V2.08.02. The aligned lane bam files were 

merged, sorted, and indexed. Duplicate sequence reads 
derived from the same original DNA molecule, a poly-
merase chain reaction (PCR) artifact characterized by 
molecules having the exact same alignment coordinates 
for both Read 1 and Read 2, were removed with Samtools. 
These alignments were stored in BAM format and then 
fed as input to bam2mpg (http://resea​rch.nhgri.nih.gov/
softw​are/bam2m​pg/index.shtml), which called genotypes 
at all covered positions using a probabilistic Bayesian algo-
rithm (Most Probable Genotype, or MPG). These genotype 
calls have been compared against Illumina Human 1 M-
Quad genotype chips, and genotypes with an MPG score 
of 10 or greater showed >99.89% concordance with SNP 
Chip data. Sequence bases with a quality score less than 
20 (Q20) were ignored. Only reads with mapping quality 
greater than 30 were included for the variant calling.

2.4  |  Post-Calling quality control

Genotypes were zeroed out for read depth < 10, genotype 
quality (GQ) < 10, or a GQ to read depth ratio of <0.5 in 
Golden Helix SVS v7. Mendelian inconsistencies were 
identified and examined as candidate de novo mutations. 
Candidate recessive genes were identified by classifying all 
variants which were heterozygous in both parents and ho-
mozygous in the patient but heterozygous or homozygous 
for the common allele in the other unaffected offspring.

2.5  |  Annotation

The variants were annotated using Annovar (http://annov​
ar.openb​ioinf​ormat​ics.org/en/lates​t/user-guide/​gene/). 
Several filtering and prioritization steps were applied to 
reduce the number and identify potentially pathogenic 
mutations, similar to the methods used in previous stud-
ies (Ng et al., 2009, 2010). Missense variants were sorted 
by the degree of severity of functional disruption predic-
tion using CDPred and annotated using the Combined 
Annotation Dependent Depletion (CADD). Variants de-
tected in dbSNP (version 137), 1000 Genomes, NHLBI 
6500ESP, and HGMD were annotated.

2.6  |  Detection of candidate 
recessive loci

Candidate recessive loci were identified using custom scripts 
in R (https://www.r-proje​ct.org/) and available from the au-
thors on request. Briefly, the script filters loci based on mean 
allele frequencies from 1000 Genomes, NHLBI's Exome 
Sequencing Project (ESP), and the Exome Aggregation 

http://research.nhgri.nih.gov/software/bam2mpg/index.shtml
http://research.nhgri.nih.gov/software/bam2mpg/index.shtml
http://annovar.openbioinformatics.org/en/latest/user-guide/gene/
http://annovar.openbioinformatics.org/en/latest/user-guide/gene/
https://www.r-project.org/
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Consortium (ExAC) combined, identify all loci heterozygous 
in both parents and homozygous for the rare allele in the pa-
tient and then filtered this list to remove variants homozy-
gous for the rare allele in unaffected siblings of the patient.

2.7  |  Detection of Mendelian 
inconsistencies

Mendelian error detection was performed in PLINK 
(Purcell et al., 2007), and candidate variants were exam-
ined in GoldenHelix SVS.

2.8  |  Sanger sequencing

To confirm candidate variants of interest detected by the 
analyses above, Sanger sequencing was performed on two 
variants in seven individuals, consisting of the patient (af-
fected with bilateral cleft lip and palate and ectrodactyly), 
his parents, and four unaffected siblings. Primers were 
designed with M13 tags attached for the regions of inter-
est in TP63 and HLA-DRB5 (Supplementary Table  S1). 
PCR products were generated using the KAPA2G Fast 
HotStart ReadyMix kit (KAPA Biosystems), 2 μM primer, 
and 2.5 ng genomic DNA. PCR products were treated with 
ExoSAP-IT (Affymetrix), and these treated products were 
used in BigDye Terminator v3.1 Cycle Sequencing reactions 
(Applied Biosystems) with 10 μM M13 forward and reverse 
primers, followed by Sanger sequencing on an ABI 3730xl 
DNA Analyzer (Applied Biosystems). Sequence tracings 
were analyzed with Sequencher (Gene Codes) software.

2.9  |  Allele-specific cloning

Due to the difficulty in determining the correct genotype 
in the patient in the HLA-DRB5 sequence data, allele-
specific cloning and sequencing were performed in the 
patient and both parents. The CloneJET PCR Cloning kit 
(ThermoScientific) was used to ligate PCR products into 
the pJET1.2 vector, and they were transformed using com-
petent E. coli cells. Direct PCR of colonies was performed 
with the same HLA-DRB5 primer set used in the original 
PCR, followed by ExoSAP-IT treatment, BigDye reactions, 
and Sanger sequencing, as detailed in the section above.

2.10  |  Zebrafish husbandry and 
ethics statement

All zebrafish experiments were performed in compli-
ance with the National Institutes of Health guidelines for 

animal handling and research using an Animal Care and 
Use Committee (ACUC) approved protocol G-05-5 as-
signed to RS. Wild type (WT) zebrafish strain TAB5 was 
used for all experiments. Zebrafish husbandry and em-
bryo staging were performed as (Westerfield, 2007).

2.11  |  Generation of tp63 
mutants and genotyping

Two single guide RNAs (sgRNAs) targeting exons 5 
(GGATG​GCA​GGT​GAT​GGAGAG) and 6 (GTATG​
ACT​GCA​CCC​TGGGGT) of tp63 (Ensembl transcript 
ID: ENSDART00000127965.4) were designed using 
the ‘ZebrafishGenomics’ track on the UCSC Genome 
Browser. Synthesis of target oligonucleotides (Integrated 
DNA Technologies), preparation of mRNA, microinjec-
tions, CRISPR-STAT to evaluate sgRNA activity, and 
mutant generation were carried out as described previ-
ously (Carrington et al., 2015; Varshney et al., 2015, 2016). 
Primers used for screening and genotyping by fluores-
cent PCR were as follows: E5-Fwd (5′- GCTTC​TCA​ACA​
GCA​TGGATC) and E5-Rev (5′- TCCAG​GTT​GCA​GAT​
TTGGC), E6-Fwd (5′- CTCCA​CAG​AGT​TGA​AGAAGC), 
and E6-Rev (5′- CATTG​AAC​TCT​CTG​CTCAGC). M13F 
adapter (5’-TGTAA​AAC​GAC​GGC​CAGT) was added 
to the 5′ end of each forward primer, and PIG-tail 
(5’-GTGTCTT) was added to the 5′ end of each reverse 
primer as described (Sood et al., 2013).

2.12  |  Time lapse imaging

Embryos were immobilized in 1× tricaine and images were 
acquired every 5 min for a 10 h period using a Leica M125 
microscope equipped with an MC170HD camera and the 
Leica Application Suite (LAS) V4.4. Post-processing of im-
ages was done within the LAS software.

2.13  |  Microinjections of mRNA for 
rescue of phenotype

The following clones were obtained in pBluescriptII 
for zebrafish tp63 (NM_152986.1) and human TP63 
(NM_003722.4) (Genescript). Plasmid DNA was digested 
with XhoI and mRNA was synthesized using a T7 message 
machine kit (Ambion). Following transcription, polyA 
tailing was performed, and RNA was purified by LiCl pre-
cipitation. Injection of mRNA (100 pg to 1 ng) into WT em-
bryos was carried out to determine the appropriate dose. 
Injections (500 pg) of human or zebrafish mRNA were 
then performed in embryos from in-crosses of tp63+/− fish. 
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Embryos were observed at 72 h post-fertilization (hpf) and 
78 hpf for phenotype and collected for genotyping.

3   |   RESULTS

Before quality control, there were a total of 185,474 SNVs 
and 18,058 INDELs. After applying quality control filters, 
variants were dropped for being monomorphic or where 
all individuals were heterozygous. There were 11,905 
INDELS and 137,989 SNVs available for analysis after all 
filtering steps.

Using a mean allele frequency calculated from the 
1000 Genomes Project, the NHLBI Exome Sequencing 
Project, and the Exome Aggregation Consortium, loci 
were filtered and were only retained if their mean minor 
allele frequency was less than or equal to 10%. Thirty-four 
loci were homozygous for the minor allele in the patient 
but heterozygous in the parents and homozygous for the 
major allele or heterozygous in the unaffected siblings. 
None of these 34 variants were in known cleft genes, and 
none of the genes identified were good candidates for oro-
facial clefting by functionality. The complete list of vari-
ants can be found in Supplementary Table S2.

Examining Mendelian inconsistencies revealed 28 can-
didate de novo events, of which only two were well sup-
ported by examination of the alignment and had enough 
biological plausibility for follow-up. Details of all 28 loci 
are listed in Table 1.

The most interesting of the de novo candidates was 
a non-synonymous, single base substitution in TP63 
(c.956G > T, p.Arg319Leu). Examination of the reads in 
Golden Helix Genome Browse showed that the call had 
good coverage and was present in reads in both direc-
tions, consistent with a heterozygous mutation. Sanger 
sequencing in the entire pedigree confirmed this was a 
likely true de novo mutation (Figure  1). The PHRED-
scaled CADD score for this mutation was 31, placing 
it in the class 5 “pathogenic” range. Examination of 
whole-genome or whole-exome sequencing of 37 addi-
tional individuals with non-syndromic oral clefts from 
other Syrian oral cleft families (Bureau et al., 2014) re-
vealed only two coding variants in TP63; rs140508531, 
a rare synonymous SNV previously seen in ExAC and 
ESP. The other was a synonymous SNV not reported in 
any databases. Genotypes for this variant for each indi-
vidual called from the Sanger sequencing can be found 
in Table  2. We also examined exome and genome se-
quences from other populations of non-syndromic oral 
cleft patients (populations details and numbers can be 
found in Table 3) and found two more synonymous vari-
ants in TP63; one had never been seen in any of the on-
line databases, the other was rs33979049, an uncommon 

SNV seen in 1000 Genomes at a minor allele frequency 
(MAF) of between 1 and 5%, depending on population. 
In evaluating the de novo c.956G > T, p.Arg319Leu mu-
tation in our patient, one should note that leucine is 
considerably smaller than arginine which means that 
the amino acid is not in the correct position to make the 
hydrogen bonds with E239, G315 and M316. Leucine is 
also more hydrophobic and its charge is neutral, unlike 
the positively charged arginine. R319 forms a salt bridge 
with E239 so the difference in charge will disturb the 
ionic interaction necessary for this process. As expected, 
all of these differences between the two residues would 

T A B L E  1   Candidate de novo mutations identified in the 
patient's whole-exome sequence data, with the two variants 
selected for follow-up in bold text.

Chromosome Position Gene

1 169,572,298 SELP

2 178,562,139 PDE11A

2 179,578,713 TTN

3 189,585,695 TP63

3 195,506,370 MUC4

3 195,506,606 MUC4

5 140,209,830 PCDHA gene cluster

5 154,287,346 GEMIN5

6 32,489,766 HLA-DRB5/
HLA-DRB1

6 32,489,791 HLA-DRB5/
HLA-DRB1

6 32,489,792 HLA-DRB5/
HLA-DRB1

6 32,489,795 HLA-DRB5/
HLA-DRB1

6 32,489,796 HLA-DRB5/
HLA-DRB1

8 22,146,113 PIWIL2

10 102,766,505 LZTS2

11 55,110,761 OR4A16

12 6,422,337 PLEKHG6

12 6,437,012 PLEKHG6

12 53,343,163 KRT8/KRT18

12 53,516,993 SOAT2

14 50,906,782 MAP4K5

14 105,180,706 INF2

15 22,369,200 OR4M2

16 30,035,399 C16orf92

19 1,010,782 TMEM259

19 3,543,310 MFSD12/C19orf71

19 17,049,254 CPAMD8

20 23,016,819 SSTR4
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likely have significant impact on the conformation and 
function of the protein (Venselaar et al.,  2010) (See 
Supplementary Figures S1 and S2).

The second putative de novo candidate was a third 
allele in the known SNP, rs41550412, in HLA-DRB5. 
Annotation of the variant in dbSNP and CADD and 
examination of the reads in Genome Browser sug-
gested that this was a tri-allelic SNP, has a CADD score 
of 4.4 and 4.0 for the G and C alleles, respectively, 
and therefore not in the likely pathogenic range and 
might be segregating normally in the family. Sanger 
sequencing confirmed this hypothesis (Table  2) and 
showed this family was segregating four additional 
non-synonymous variants in this gene (Figure 2) that 

had not been correctly captured by the WES due to 
the coverage level and allele-specific read imbalance 
at this location. Allele-specific cloning and Sanger 
sequencing of both parents and the patient was per-
formed to clarify the inheritance of 5 loci in this gene 
(Figure  3, Supplementary Table  S3). The patient had 
a unique combination of all five variants (Figures  2 
and 3) that any of his four genotyped unaffected sib-
lings did not share. However, none of these variants 
are rare, so it is probable that this is a chance finding. 
Nevertheless, compared to the other non-syndromic 
oral cleft sequence data we have generated (Table  3), 
none of the additional exome or genome sequences ex-
amined shared any of these variants.

F I G U R E  1   Sanger sequencing results of TP63 mutation in all available family members.

Relationship Individual ID
TP63 
genotype

HLA-DRB5 
genotype 
(rs41550412)

Paternal Grandparent 2 G/G T/C

Father 18 G/G T/G

Mother 19 G/G C/C

Patient 29 G/T C/G

Sibling 1 23 G/G T/C

Sibling 2 24 G/G T/C

Sibling 3 27 G/G T/C

Sibling 4 28 G/G T/C

T A B L E  2   Genotype results of TP63 
and HLA-DRB5 Sanger sequencing, with 
the patient highlighted in bold text.
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We also examined 67 candidate genes (Supplementary 
Table S4) for recessively inherited variants in this family. 
However, no coding variation in these genes produced 
unique genotypes in the patient compared to his siblings.

3.1  |  Generation of tp63−/− zebrafish  
mutants

To validate the role of tp63 in this proband's phenotype, 
we generated tp63 knockout fish lines using CRISPR/Cas9 
technology. To ensure that the mutation affects all known 
isoforms, we selected gRNAs to exons 5 and 6 that are 
common to all isoforms (Supplementary Figure S1). Two 
mutant alleles (del 5 bp in exon 5 and del 2 bp in exon 6), 
predicted to cause frameshifts with premature truncations 
of the protein, were selected for the study (Figure  4a). 
These mutant alleles have been given designations from 
the Zebrafish international Resource Center (http://

T A B L E  3   Number of individuals affected with non-syndromic 
oral clefts* and with available DNA sequence data.

Population

Number of 
individuals 

(families) with 
WESa

Number of 
individuals 

(families) with 
WGSa

Syrian 16 (8) 37 (14)

Indian 26 (12) 37 (19)

Filipino 22 (11) 78 (18)

German 38 (19) 0

Taiwanese 2 (1) 3 (1)

European-
American

3 (1) 4 (1)

Chinese 2(1)

Guatemalan 3 (2)

Singaporean 5 (3)
aMultiple affected individuals were sequenced from multiplex families; 6 
Syrian individuals from 2 families were sequenced with both WES and WGS. 
They are only counted here in the WGS totals.

F I G U R E  2   Sanger sequencing results of HLA-DRB5 variant in all available family members.

http://zfin.org/action/feature/line-designations
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zfin.org/actio​n/featu​re/line-desig​nations) as tp63hg118 
(c.358_362delTCTCC; p.Ser120Ilefs*17) and tp63hg119 
(c.540_541delCC; p.Gln181Glyfs*11).

3.2  |  Loss of tp63 leads to necrosis and 
rupture of head at 3 dpf

To determine the effect of loss of function of tp63 on devel-
opment, we performed pairwise crosses of heterozygous 
fish for each mutant allele separately and observed their 
progeny for morphological phenotypes. Homozygous mu-
tant embryos for both alleles displayed similar morpho-
logical phenotype and hence are collectively referred to 
as tp63−/−. The tp63−/− embryos were indistinguishable 
from their WT and heterozygous clutch mates for the first 
two days of development. At 3 dpf, they displayed a rup-
ture of the head followed by death (Figure 4b). Time lapse 
imaging of live embryos from 68 to 77 hpf revealed that 
about 2–3 h prior to head rupture, necrosis and swelling 

occurs in the head region of mutant embryos (Figure 4b). 
Therefore, we were unable to evaluate jaw and fin devel-
opment in tp63−/−embryos to validate its role in the pa-
tient's phenotype. Although the patient is heterozygous 
for the TP63 mutation, tp63+/− zebrafish embryos ap-
peared morphologically identical to their tp63+/+ siblings 
and survived to adulthood.

3.3  |  Rescue of embryonic phenotype by 
injection of zebrafish or human mRNA

We hypothesized that if the tp63−/− phenotype can be 
rescued by WT tp63 mRNA, then we could evaluate the 
patient variant for its effect on Tp63 function using the 
rescue assay. We performed dose response curve by in-
jecting either human or zebrafish WT tp63 mRNAs into 
WT embryos and monitoring their viability and morpho-
logical phenotype (data not shown). Subsequently, 500 pg 
of zebrafish or human mRNA was injected into embryos 

F I G U R E  3   HLA-DRB5 Genotypes from Sanger Sequencing for all available family members.

http://zfin.org/action/feature/line-designations
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from an in-cross of tp63hg118/hg118 fish. We did not observe 
any phenotypic or survival improvements in the injected 
tp63hg118/hg118 embryos (Figure  4c), indicating that the 

phenotype is too severe to be rescued by complementa-
tion by WT mRNA. Therefore, the rescue assay was not 
applicable for validation of the patient variant.

F I G U R E  4   Generation and characterization of tp63 knockout mutants. (a) Top panel: Nucleotide sequences of CRISPR target regions 
in exons 5 and 6 with sgRNAs marked in cyan, PAM sites underlined, and deleted nucleotides in the mutant alleles marked by dashes. 
Bottom panel: An alignment of WT and mutant proteins with the frameshift and premature stop codons marked in red. (b) Phenotype of the 
tp63−/− embryos shown as images at different time points from a time lapse video taken from 67 to 77 hpf. Images of a heterozygote sibling 
are shown for control. At 67 hpf the tp63−/− embryo is indistinguishable from its heterozygous sibling. Shortly after necrosis within the head 
begins followed by swelling and rupture as marked by red arrows. (c) Data from rescue experiments by injections of 500 pg of zebrafish or 
human tp63 mRNA shown as bar graphs. Embryos were observed for phenotype between 72–78 hpf, separated into dead or alive groups 
and genotyped. Different groups of embryos that were scored are shown on the X-axis and percentages of embryos of different genotypes are 
shown on the Y-axis.
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4   |   DISCUSSION

Mutations in TP63 are known to cause a number of dif-
ferent malformation syndromes, which include orofacial 
clefting or limb malformations in their phenotypic pres-
entation, including Ectrodactyly, Ectodermal Dysplasia 
and Cleft Lip/Palate Syndrome 3 (EEC3), Split Hand/
Foot Malformation 4 (SHFM4), Hay–Wells Syndrome, 
ankyloblepharon-ectodermal defects-cleft lip/palate 
(AEC) syndrome (including Rapp–Hodgkin syndrome), 
and Acro-dermato-ungual-lacrimal-tooth (ADULT) syn-
drome. The phenotype demonstrates considerable phe-
notypic variability which can include hypohidrosis, nail 
dysplasia, sparse hair and tooth abnormalities, hypopig-
mentation, hypoplastic breasts and with or without hypo-
plastic nipples, hypospadia, and lacrimal duct obstruction 
as well as cleft lip/palate and split-hand/foot malforma-
tion/syndactyly. Incomplete penetrance has also been 
observed in a small number of individuals and pedigrees 
(Amiel et al., 2001; Spranger & Schapera, 1988). Genotype–
phenotype analyses have shown the link between the vari-
ous clinical presentations of TP63 related disorders (Alves 
et al., 2015; Harazono et al., 2022). The R319L mutation 
reported here appears novel, with no recorded instances 
in public variation or clinical databases. Two other mu-
tations have been reported at the same codon – the 
SHFM4 mutation 1 bp upstream (rs121908839, c.955C > T, 
p.Arg319Cys) (van Bokhoven et al., 2001) and a case re-
port of EEC/LM/ADULT in a Chinese family (c.956G > A, 
p.(Arg319His) (Otsuki et al.,  2020) changing the same 
nucleotide base as our R319L mutation.). Both produce 
different amino acid changes which provides strong evi-
dence that mutating this amino acid is deleterious. These 
mutations in exon 7 of TP63 are in the DNA-binding do-
main of the protein and are highly evolutionarily con-
served. However, it is not completely clear whether the 
R319L mutation discovered here is only responsible for 
the ectrodactyly or whether it is also responsible for the 
oral cleft seen in the patient. The R319C and R319H muta-
tions are so far known only to cause ectrodactyly (Ianakiev 
et al., 2000; Otsuki et al., 2020; van Bokhoven et al., 2001) 
and not orofacial clefting although the R319H mutation 
was associated with missing teeth and R319C had tooth 
abnormalities. It cannot be ruled out that the patient's 
unique compound heterozygous mutations in HLA-DRB5 
are causing the oral cleft and TP63 is responsible for the 
ectrodactyly phenotype. Although HLA-DRB5 has not 
been associated with orofacial clefting or limb malforma-
tions, it is one of the HLA-DRB cluster of genes in the HLA 
region of chromosome 6 and a paralog of the known oral 
cleft gene HLA-DRB1 (Doxiadis et al., 2012), some tran-
scripts of which may overlap. Given the affected paternal 
uncle and the consanguinity of the patient's parents, there 

is the possibility that these are two co-occurring but inde-
pendent features. There is considerable heterogeneity in 
the phenotypic presentation of TP63 mutations as dem-
onstrated by Harazono et al, so either possibility cannot 
be completely excluded although it seems more likely that 
TP63 is responsible for the entire phenotype as it more 
closely fits with the features of EEC.

Whole-exome sequencing has been used to great effect 
in finding causal mutations in patients with genetically 
heterogeneous diseases. Our study has identified a pre-
viously unknown mutation in TP63, a gene known to be 
associated with both oral clefts and ectrodactyly. However, 
sequencing alone cannot determine exactly which parts of 
the observed phenotype are caused by this mutation. It is 
possible that the orofacial cleft may have another etiology 
since the patient's uncle also had an oral cleft indepen-
dent of the de novo TP63 mutation seen here. However, 
given the prevalence of oral clefts in the Syrian population 
and the known consanguinity in this pedigree, the un-
cle's cleft may be etiologically distinct from his nephew's. 
Unfortunately, determining causation becomes more 
complex because the uncle died in childhood.

The results from our zebrafish experiments were in-
triguing, if not definitive. We were unable to do functional 
validation of the patient variant due to severity of the 
knockout phenotype and inability to rescue it by mRNA 
injections. A recent study has demonstrated that tp63 
is required for ectoderm specification during zebrafish 
development (Santos-Pereira et al.,  2019). Interestingly, 
tp63 mutant embryos used in that study (Santos-Pereira 
et al., 2019) died prior to the stage at which head necrosis 
was observed in our mutant lines. The head necrosis is a 
novel finding in our study. These phenotypic differences 
between different mutant alleles are most likely due to 
their effects on the multiple isoforms of tp63. Consistent 
with the Santos-Pereira et al. findings, the heterozygous 
embryos (tp63+/−) in our study did not display any mor-
phological phenotypes. Closer examinations of their 
developing ethmoidal plate are required to rule out any 
subtle phenotypes in tp63+/− larvae.

In-depth functional analysis is both expensive and time-
consuming, but there is only so far computational, and statis-
tical methods can take us, and additional in vivo studies may 
be required. Specifically, generation of a zebrafish or other 
model organism with this exact variant in TP63 (c.956G > T, 
p.Arg319Leu) using knock-in or base editing is required for 
further evaluation of its role in the proband's phenotype.

5   |   CONCLUSIONS

This study represents the first study of its kind in Syria. 
The TP63 novel variant identified here is an excellent 
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candidate for being the cause of the bilateral ectrodac-
tyly in this patient, which has important clinical impli-
cations, suggesting that any change in this codon may 
have severe consequences developmentally. It is also an 
excellent candidate for being the cause of the patient's 
oral cleft since this fits the pattern of TP63-Related 
Disorders (Harazono et al.,  2022) and similar pheno-
types observed in individuals with other mutations in 
the same codon of TP63. However, it is possible that this 
de novo variant is not the cause of the patient's bilateral 
cleft lip and palate given his uncle's cleft lip and pal-
ate and biological relationship of his parents. The family 
structures in this region of the world can be challeng-
ing and the incidence of oral clefts is high. Studying oral 
clefts is of great significance to global health because 
it is common, and the impact on child growth and de-
velopment is substantial. Whereas corrective surgery in 
early childhood can mitigate most of the effects of the 
disorder, this surgery is out of reach for many living in 
low- and middle-income countries, to devastating effect. 
Understanding the ways in which genes influence the 
development of the trait is an essential step to determin-
ing mechanisms and potential preventive options in the 
future for individuals at high risk of having a child with 
an oral cleft. Even de novo variants, as presented here, 
can provide those insights.
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