Skip to main content
. 2023 Aug 3;23(15):6903. doi: 10.3390/s23156903
Algorithm 1 Update procedures of model parameters
Input: Observed variables X={X(f),X^(v),X^(s)}
 Initialize Xmiss(f), Z, W(k), α(k), and βk(k{f,v,s}) by prior distributions in Equations (1), (2), (4), (5)
for number of training iterations do
   Update the projection matrix W(k) in Equation (7)
   Update the shared latent variables Z in Equation (10)
   Update the missing values Xmiss(f) in Equation (14)
   Update the inverse variances α(k) in Equation (15)
   Update the inverse variance βk in Equation (18)
end for
Output: Updated distributions of Xmiss(f), Z, W(k), α(k), and βk(k{f,v,s})