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Abstract: Long-Range (LoRa) devices have been deployed in many Internet of Things (IoT) ap-
plications due to their ability to communicate over long distances with low power consumption.
The scalability and communication performance of the LoRa systems are highly dependent on the
spreading factor (SF) and channel allocations. In particular, it is important to set the SF appropri-
ately according to the distance between the LoRa device and the gateway since the signal reception
sensitivity and bit rate depend on the used SF, which are in a trade-off relationship. In addition,
considering the surge in the number of LoRa devices recently, the scalability of LoRa systems is also
greatly affected by the channels that the LoRa devices use for communications. It was demonstrated
that the lightweight decentralized learning-based joint channel and SF-selection methods can make
appropriate decisions with low computational complexity and power consumption in our previous
study. However, the effect of the location situation of the LoRa devices on the communication
performance in a practical larger-scale LoRa system has not been studied. Hence, to clarify the effect
of the location situation of the LoRa devices on the communication performance in LoRa systems, in
this paper, we implemented and evaluated the learning-based joint channel and SF-selection methods
in a practical LoRa system. In the learning-based methods, the channel and SF are decided only
based on the ACKnowledge information. The learning methods evaluated in this paper were the
Tug of War dynamics, Upper Confidence Bound 1, and ε-greedy algorithms. Moreover, to consider
the relevance of the channel and SF, we propose a combinational multi-armed bandit-based joint
channel and SF-selection method. Compared with the independent methods, the combinations of the
channel and SF are set as arms. Conversely, the SF and channel are set as independent arms in the
independent methods that are evaluated in our previous work. From the experimental results, we
can see the following points. First, the combinatorial methods can achieve a higher frame success rate
and fairness than the independent methods. In addition, the FSR can be improved by joint channel
and SF selection compared to SF selection only. Moreover, the channel and SF selection dependents
on the location situation to a great extent.

Keywords: IoT; LoRa; lightweight distributed reinforcement learning; transmission parameter
selection; multi-armed bandit problem

1. Introduction

The Low-Power Wide-Area Network (LPWAN) is a technology that enables low-power
and long-distance communication for Internet of Things (IoT) applications [1]. The number
of IoT devices using the communication protocols that belong to LPWAN has been rapidly
increasing in recent years [2]. Among the LPWAN protocols, Long-Range (LoRa) systems
attract attention because they do not require a license, but have an open standard. Besides,
they can be built at a low cost. As a result, the number of LoRa devices is projected to
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grow to 730 million by 2023 [3]. Since the spectrum resource is limited, it may be difficult
to support the communication of the massive number of increasing LoRa devices using
traditional LoRa protocols. Hence, it is a critical issue to increase the number of LoRa
devices in LoRa systems. To address this issue, it is necessary to adjust the transmission
parameters of the LoRa devices, such as the Spreading Factor (SF), channel, transmission
power, bandwidth, and distance, to adapt to the surrounding communication environment
to maximize the spectrum efficiency. In this paper, we considered the selection of two
main important transmission parameters that may affect the spectrum efficiency, i.e., the SF
and channel. The impact of the transmission power, bandwidth, and distance on the
communication capacity will be considered in our future work.

In LoRa systems, the Chirp Spread Spectrum (CSS) technique that uses a chirp sig-
nal whose frequency increases linearly with time is adopted, making the LoRa devices
more resistant to interference [4]. The value of the SF determines the bit rate, the receiver
sensitivity, and the Signal-to-Noise Ratio (SNR) threshold to correctly demodulate the
signal. A smaller SF allows communication at a higher bit rate, but requires a higher SNR.
Hence, communication is only feasible over relatively short distances and in paths with few
obstacles for a smaller SF generally. Conversely, a larger SF is adapted to communications
with longer distances but lower data rates. In addition, the orthogonality of different SFs
can avoid interference among them [5,6]. Moreover, the theoretical Frame Success Rate
(FSR) for Pure ALOHA, which is constantly employed in LoRa systems, also depends on
the SF, the number of LoRa devices, and the duty cycle [7]. In Pure ALOHA, the LoRa de-
vices access the channel randomly [8]. The LoRa systems constantly use the Pure ALOHA
protocol without the concept of the time slots for communication, which makes them easy
to implement. This simple protocol enables low-power communication and is suitable for
IoT applications. For instance, assuming that there are 30 LoRa devices and each LoRa
device sends 50 bytes of packets per 20 s in a setup similar to the experiments conducted
in this paper, the theoretical packet transmission success probabilities for different SFs are
different, which are as indicated in Table 1, along with the bit rate, receive sensitivity, and
SNR threshold [9]. As described above, it is necessary to use an appropriate SF to transmit
packets for the LoRa devices based on the distance between the GateWay (GW) to achieve
higher communication performance and scalability in LoRa systems. In addition, the SF
must be optimized according to the requirements of the LoRa applications in practical
scenarios, such as the bit rate and the communication distance [10]. In addition to the SF,
another communication parameter significantly impacting communication performance
in LoRa systems is the channel [11]. The Pure ALOHA protocol does not perform carrier
sensing, i.e., it does not sense the communication channel before sending packets, but
communicates by random access. Furthermore, many devices, including LoRa devices,
communicate using the Industrial, Scientific, and Medical (ISM) band since it is an unli-
censed band. Hence, collisions and interference are prevalent in the communication link
between LoRa devices and GWs in the IoT networks with massive numbers of IoT de-
vices [12]. As the data traffic and load increase within the ISM band, network performance
will be significantly degraded without proper channel selection, which significantly impacts
the scalability of the LoRa systems. In addition, since packet collisions in LoRa systems
occur when two or more LoRa devices transmit packets using the same SF and channel
simultaneously, these parameters must be selected jointly and appropriately [13,14].
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Table 1. Communication parameters with different SFs in LoRa systems.

SF Bit Rate (kbps) Receiver Sensitivity (dBm) SNR Threshold (dB) FSR for Pure ALOHA

7 5.47 −123 −6 0.79514

8 3.13 −126 −9 0.67353

9 1.76 −129 −12 0.51529

10 0.98 −132 −15 0.61592

11 0.54 −133 −17.5 0.42236

12 0.29 −136 −20 0.20450

Research on communication parameter management in LoRa systems can be divided
into centralized and distributed approaches. Most of the existing research focuses on
centralized approaches in which the network server allocates communication parameters
to the LoRa devices [15]. The GW is responsible for transmitting the LoRa packets of nodes
and forwarding them to the network server [16]. The network server may allocate optimal
transmission parameters for the centralized approaches. However, the GW needs to know
much a priori information, such as the distance between the GW and the LoRa device,
the packet length, the event probability, the number of devices, and so on, to determine
the communication parameters for the LoRa devices in the centralized approaches, which
may increase the communication latency. Furthermore, the LoRa device needs to be awake
to receive the transmission parameters instruction from the GW, which may increase the
energy consumption of the IoT devices compared to decentralized parameter selection
methods. Moreover, the centralized approaches also increase the consumption of com-
munication resources due to the transmission of the transmission parameters’ instruction.
There are also some studies on improving the performance based on the standardized
protocol of the LoRa systems. There are mainly three specifications for the LoRa systems,
i.e., Class A, Class B, and Class C. Class A uses a so-called Pure-ALOHA-type asynchronous
multiple-access scheme in which a terminal uplink has a short burst signal at an arbitrary
timing. On the other hand, terminal reception is limited to a very short period immediately
after the uplink. In Class B, all GWs and terminals use beacons transmitted by the GWs to
synchronize with the network. By accurately recognizing the time at which each terminal
opens its reception window, the GW can immediately send a call when there is downlink
information. In Class C, high-speed downlink communication is possible because terminals
can always receive signals. Even though the parameter control methods for different LoRa
classes are not the same, the standardized protocols face the same issues as the other cen-
tralized methods. As described above, considering the future proliferation of LoRa devices
and the need to provide ultra-long battery life for LoRa devices, only the resource allocation
schemes that can significantly reduce signaling to the access network are feasible. There-
fore, a decentralized approach is required where each LoRa device autonomously selects
appropriate communication parameters without the help of the GW/network server [17].
Compared to the centralized approaches, the decentralized approach allows parameter
selection without needing prior information and the transmission of the transmission
parameters’ instruction [18]. Hence, the spectrum resource for the communications and
energy consumption of the LoRa devices can be reduced.

Several decentralized communication-parameter-selection methods based on the
Multi-Armed Bandit (MAB) algorithm have been proposed in previous studies to im-
prove the scalability of the LoRa systems. However, these previous studies were limited
to the selection of only the SF or only the CH. Meanwhile, few papers have considered
the implementation of the methods in practice. As IoT devices have low computational
power, limited storage, and less battery, it is a great challenge to develop a joint SF and CH
method for practical LoRa systems. To address this issue described above, we proposed a
MAB-based joint channel and SF-selection method in our previous work. We evaluated
the performance of the proposed method in high-density static and dynamic practical
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environments [19]. The experimental results demonstrated that the performance of the FSR
can be improved by selecting both the channel and SF. However, the selection of the SF and
channel may be correlative, which was not considered in our previous work. In addition,
the communication performance of the LoRa device strongly depends on the selection of
the SF related to its location, which was also not considered. To consider the correlation
of the SF and channel to improve the performance in our LoRa systems further, we set
the SF–channel-selection problem as a combinatorial MAB-based SF–channel-selection
problem and solved it using the MAB methods in this paper. Moreover, we evaluated the
performance of our LoRa systems in the FSR with varied locations of the LoRa devices to
show the relationship between the SF selection and the location of the LoRa devices. We
consider that the proposed method may be a potential transmission-selection solution for
the LoRa systems in the future. The main contributions of this paper are as follows:

• We set the SF–channel-selection problem as a combinatorial MAB-based SF–channel
problem and introduced the MAB algorithms, including the Tug of War dynamics
(ToW), Upper Confidence Bound 1 (UCB1), and ε-greedy algorithms to solve the
formulated problem. In the MAB-based SF–channel-selection methods, the SF and
channel were selected only using the ACK information by the LoRa devices, which can
be applied without modifications to the LoRa protocol. In addition, since the operation
of the MAB algorithms is not complex, the methods can be easily implemented in IoT
devices with memory and computational power constraints.

• We evaluated the proposed method in experiments with real-world LoRa devices in
an environment where the LoRa devices were distributed in multiple indoor locations.
First, we evaluated the performance of the FSR and the relationship between the
selection rate of the SF and the locations of the LoRa devices when only selecting
the SF. The results demonstrated that the appropriate SF depended on the distance
from the GW. Besides, the superiority of the MAB-based SF-selection methods was
demonstrated by comparing the methods with random access. Then, we evaluated
the performance of the FSR and Fairness Index (FI) when considering a joint selec-
tion of the SF and channel. Specifically, to show the effectiveness of the proposed
combinatorial MAB-based SF–channel method for the FSR and FI, we compared it
with the independent MAB-based SF–channel method, where the SF and channel
are selected independently. Next, we focused on the performance evaluation of the
proposed MAB-based SF–channel-selection method. The performance of the FSR with
varying numbers of LoRa devices, transmission intervals, and the locations of the
LoRa devices was evaluated exhaustively.

The remainder of this paper is organized as follows. Section 2 provides an introduction
to the related work. Section 3 describes the system model and the formulated problem.
Section 4 describes the combinational MAB-based SF–channel-selection methods. Section 5
describes the implementation and performance evaluation of the proposed combinational
MAB-based methods. Finally, we provide a conclusion to summarize this paper in Section 6.

2. Related Work

In this section, we describe the related work on communication-parameter-management-
techniques in LoRa systems. We first present the SF- and channel-selection methods in the
centralized approach, followed by the decentralized approach.

2.1. Centralized Approaches

In this subsection, we introduce the related work on the centralized approaches for
SF allocation, channel allocation, followed by SF and channel allocation.In the centralized
approaches, the transmission parameters are allocated by the GW/network server.

2.1.1. SF Allocation Methods

Simple centralized methods for allocating SFs include the Equal-Interval-Based (EIB)
and Equal-Area-Based (EAB) allocation schemes [15,20]. In these schemes, the total network
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area is first divided into concentric circles, assuming that the GW is at the center of the
area. The EIB then divides the network to make the width of each annulus equal, while
the EAB divides the network to make the area of each annulus equal. Next, the SF is
allocated according to the proximity to the GW for the annuli. The smaller SF is assigned
to the annuli that are near the GW. In [15], the EIB and EAB methods were analyzed and
compared. These simple schemes are based on the idea that the reception strength weakens
with the increase of the distance from the GW. However, in a real network environment, it is
necessary to consider the effects of interference and fading in a particular region, as well as
the channel conditions. Therefore, these methods are challenging to improve the scalability
sufficiently in real-world environments. To this end, approaches to parameter optimization
were proposed in [21–24], where the problem for resource allocation was formulated as the
optimization problem, and optimization solvers were proposed to solve the formulated
problems. Some other methods that allocate the SF based on channel gain and the Signal-
to-Noise Ratio (SNR) were proposed in [25,26], respectively. In [27], a modification of the
existing LoRa@FIIT protocol was proposed, ensuring energy-efficient, QoS-supporting,
and reliable communication over the LoRa technology by selecting an appropriate SF and
transmission power. In [28], a deep-reinforcement-learning-based adaptive PHY layer
transmission-parameter-selection algorithm was proposed to select the SF and power.
The proposed algorithm was run on the GW to allocate the SF and power for the LoRa
devices. It was shown that the proposed algorithm could achieve 500% packet delivery
ratios in some cases while being adaptive at the same time. However, these centralized
approaches for SF selection require the GW/network serverto know a priori information,
such as the number of devices, their locations, and transmission probabilities. Furthermore,
the GW/network servermust send control signals regarding the communication parameters
to all LoRa devices, which leads to increased communication resource consumption and
communication latency.

2.1.2. Channel Allocation Methods

In addition to the SF, as discussed in the previous section, the management of the
channel also has a significant impact on the scalability in the LoRa systems. The quality
varies greatly from channel to channel in the unlicensed ISM band because it is susceptible
to interference from IoT devices and electronic devices in other applications. Similar to the
SF-selection methods, many methods have been proposed [18,29]. However, these existing
studies have disadvantages, such as the need for GW/network serverto know prior infor-
mation, as well as the centralized approach in the SF-selection methods, which increases the
communication resource consumption since the transmission parameters instructionneed
to be sent from the GW/network server.Because the disadvantages described above will
become more serious with the future increase of the number of IoT devices, most of the
related centralized approaches would have difficulty becoming realistic solutions.

2.1.3. SF and Channel Allocation Methods

Reference [30] proposed a joint channel- and SF-selectionmethod that allocates a
SF-selectionvalue depending on the rate demand of each end-device and considers the
availability of the frequency channel for each uplink transmission. However, the details of
the proposed method were not fully given. According to the existing description, it seems
that the transmission parameters could not be adjusted corresponding to the dynamic
environments, while the correlation of the location of the users and SF selection, as well as
the implementation of the method were not well considered. Moreover, it seems that the
proposed method in [30] is a centralized method, which may face the same disadvantages
as other centralized methods.
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2.2. Distributed Approaches

In the decentralized approaches, it is possible to reduce communication resource
consumption, latency, and energy consumption compared to the centralized approaches,
since LoRa devices make decisions independently. However, most existing studies on
parameter selection methods for the LoRa systems are centralized approaches, and there
are limited related studies on distributed approaches. In this subsection, we describe the
SF and CH distributed selection approaches.

2.2.1. SF Selection Methods

SF-selection methods based on the MAB algorithm were proposed in [31,32]. In [31], SF
selection based on a popular algorithm called Exponential Weights for Exploration and
Exploitation (EXP3) was proposed and evaluated by simulation. In [32], a SF-selection
method based on the Upper Confidence Bound (UCB), a MAB algorithm that can perform
high-precision search, was proposed. The simulation results showed that the proposed
method based on the MAB algorithm improved the success rate of data transmission.
However, in the existing studies, SF-selection methods were proposed assuming that
all LoRa devices use the same channel, which is unrealistic. In addition, the method
has yet to be validated through real-world experiments, and realistic environments were
not considered.

2.2.2. Channel Selection Methods

Several channel selection distributed approaches were studied in [33,34]. In these
approaches, the channels were selected based on the MAB methods. In [33,34], a channel-
selection method using the UCB algorithm, a typical MAB algorithm, was proposed and
implemented on an actual LoRa device. Moreover, the experimental results under a
dynamic environment with changing channel states were presented. However, these
studies assumed that all LoRa devices use the same SF, which is not a realistic assumption.
Furthermore, only experiments with a small number of LoRa devices were conducted,
and no investigations were conducted in environments with a large number of LoRa
devices.

2.2.3. SF and Channel Selection Methods

In [19], a method for simultaneous channel and SF selection was proposed for multiple
MAB algorithms. However, only the performance under high-density conditions was
evaluated. The distance between the LoRa devices and the GW and the reception strength
have yet to be considered. Furthermore, the MAB problem structure considering the
relevance between the channel and SF when selecting them simultaneously has yet to be
well evaluated.

In summary, the existing studies on centralized methods have disadvantages, such as
the need for the GWs/networks to know prior information and to send transmission pa-
rameters instruction to IoT devices, which increases communication resource consumption.
Because the disadvantages described above will become more serious with the future in-
crease of the number of IoT devices, most of the related centralized approaches would have
difficulty becoming realistic solutions. Although studies on decentralized methods can
solve the disadvantages of centralized methods, several issues have not yet been considered
in the existing studies. For instance, the distance between the LoRa devices and the GW and
the reception strength have yet to be considered. Furthermore, the MAB problem structure
considering the relevance between the channel and SF when selecting them simultaneously
has yet to be well evaluated. To solve these issues, we propose a combinatorial MAB-based
joint channel- and SF-selection method in this paper, which will be exhaustively described
in Section 4. The comparison of the relevant schemes is summarized in Table 2. ! and#
in the Table mean whether the reference considered the corresponding items or not.
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Table 2. The comparison of relevant schemes.

Reference Centralized Decentralized SF CH Implementation

[15] ! # ! # #

[20] ! # ! # #

[21] ! # ! # #

[22] ! # ! # #

[23] ! # ! # #

[24] ! # ! # #

[25] ! # ! # #

[26] ! # ! # !

[27] ! # ! # #

[28] ! # ! # #

[18] ! # # ! #

[29] ! # # ! #

[30] ! # ! ! #

[31] # ! ! # #

[32] # ! ! # #

[33] # ! # ! !

[34] # ! # ! !

[19] # ! ! ! !

3. System Model and Problem Formulation

This paper considered the uplink transmission of a LoRa system with a star topology
consisting of one GW and L LoRa devices. Denote D = {D1, D2, . . . Dl , . . . , DL} as the
LoRa device set, where Dl denotes the l-th LoRa device. Assume that the number of
available channels for the LoRa devices is I. The public ISM band of Japan was used for the
communications between LoRa devices and the GW in this paper, where the bandwidth
of each channel was 125 kHz, while at most 15 channels can be used for communication.
We considered a natural wireless communication environment where LoRa devices are
distributed in various locations with different distances from the GW, as shown in Figure 1.
In Figure 1, the concentric circles are divided according to the distance from the GW.
Different colors represent different SFs assigned to LoRa devices, which may need to be
assigned according to the distance between the LoRa device and the GW. Assume that the
number of SFs is S. Each LoRa device selects one SF and one channel to transmit packets
each time. As described in Section 1, LoRa employs CSS modulation so that signals with
different SFs (7-12) can be identified and successfully received even if they are transmitted
simultaneously on the same channel. In addition, different SFs have different transmission
speeds and thresholds for the SNR that can be successfully received. Therefore, each LoRa
device must select an appropriate SF considering its distance to the GW and interference
effects in the surrounding environment. Theoretically, the spreading codes for different
SFs are orthogonal, so collisions only occur when two or more LoRa devices choose the
same SF and channel. In practice, however, perfect orthogonality may not be guaranteed,
and the interference between transmissions using different SFs on the same channel must
be considered [15,19]. In addition to the channel and SF, the bandwidth B and the transmit
power TP also can be selected to improve the communication performance. The bandwidth
can be chosen as 62.5 kHz, 125 kHz, 250 kHz, and 500 kHz. The transmit power can be
selected from −1 dBm to 13 dBm, depending on the application requirements and the
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communication environment of the LoRa devices. In this paper, the bandwidth of the
channel and the transmission power for all LoRa devices were set to 125 kHz and the
maximum transmit power, i.e., 13 dBm, respectively. We assumed that all LoRa devices
transmit M-byte packets with the same length each time. Denote TI as the transmission
interval. Note that TI is the same for all LoRa devices.

Figure 1. The distribution of SF and LoRa devices.

The process of packet transmission in the LoRa system is summarized as follows.
The transmission parameters, including the SF and channel, are first selected by the LoRa
devices using the distributed MAB-based reinforcement learning methods implemented on
them. After determining the transmission parameters based on the implemented learning
methods, carrier sensing is performed to check the availability of the selected channel. If
the selected channel is available, the LoRa device sends a packet to the GW using that
channel. The feedback ACKnowledgement (ACK) or NACK information from the GW will
be received at the LoRa devices’ side for a while after packet transmission, which is used to
update the MAB-based reinforcement learning methods. If the ACK information is received,
it represents that no packet collision or a capture effect occurred, and the packet from the
LoRa device was successfully transmitted, as shown in the middle of Figure 2. On the other
hand, the packet transmission fails for some reason if the NACK information is received.
The reasons that cause the packet transmission failure may include that other LoRa devices
transmit packets using the same channel and SF at the same time, as shown in the left side
of Figure 2, causing packet collisions among them. In addition, the reason may include the
interference from other IoT devices, or the signal is attenuated by shadowing due to a low
SF value, resulting in an SNR value that is smaller than the threshold value that can be
received, as shown in the right side of Figure 2.

・・・

CH1 CH2 CH 𝐼

・・・
device1

device2

device3 device 𝐿

device 𝐿-1

device 𝐿-2

ACK

Fading・Shadowing

Figure 2. Channel access model.

The FSR was used to evaluate the performance of the MAB-based joint SF- and channel-
selection methods in this paper. The FSR in the LoRa system at the t-th decision is defined
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as the ratio of the number of successful transmissions to the total number of transmission
attempts, which is expressed as:

FSR(t) =
∑L

l=1 rl(t)

∑L
l=1 nl(t)

, (1)

where nl(t) is the number of transmission attempts by device l and rl(t) is the number of
successful transmissions at the time t. This paper aimed to maximize the FSR by the MAB-
based decentralized learning methods, thereby improving the scalability of the overall
LoRa application. The FSR maximization problem can be formulated as follows:

(P) = max
T

∑
t=1

FSR(t). (2)

To achieve this goal, an appropriate SF must be selected based on the distance from
the GW and the surrounding environment. Meanwhile, a channel less affected by other
LoRa devices must be well chosen. In the LoRa system, packet collisions occur when they
are transmitted on the same channel and SF at the same time. Hence, the SF and channel
must be co-selected, and their relationship must be jointly considered in the selection.

4. Channel and SF Selection Based on MAB Algorithms

As mentioned in the previous section, LoRa devices must select appropriate parame-
ters, such as the SF and channel, according to the communication environments. To achieve
this goal, the SF–channel-selection problem was formulated as the MAB problem in this
paper and solved by the MAB-based algorithms. In this section, we first introduce the
relationship between the SF–channel-selection problem and the MAB problem. Next,
the SF–channel-selection problem is formulated as two MAB problems with different
structures, i.e., a combinatorial MAB-based and an independent MAB-based channel–SF-
selection problems. Finally, we present the MAB algorithm for solving the formulated
SF–channel-selection problems.

4.1. MAB and Channel–SF-Selection Problems

The MAB problem or bandit problem is one of the general problems first discussed by
Robbins in [35]. In the MAB problem, the player selects a slot machine to play among several
slot machines, aiming to maximize the number of coins he/she can earn by repeatedly
playing [36]. The player needs to learn the probability of the number of coins for each slot
machine to find the slot machine that pays the most by repeatedly playing. In other words,
we have to perform exploration to gather information by playing slot machines other than
the one with the best probability. On the other hand, if we perform more exploration than
necessary, we cannot maximize the number of coins we can win. Hence, if we can estimate
a good slot machine, we must play that slot machine to maximize the reward. The MAB
problem is a decision-making problem that considers the trade-off between “exploration”
for searching for a good slot machine and “exploitation” for playing a good slot machine to
increase the coins in a series of trials.

In the most-straightforward formulation, the bandit problem has K slot machines with
probability distributions (D1,...DK). The mean and variance of each probability distribution
can be expressed as (µ1,. . . µK) and (σ1,. . . σK), respectively. The player aims to find the
probability distribution with the largest expected value and tries to obtain as many rewards
as possible in a sequence of trials. At each trial t, the player selects a slot machine m(t) and
wins r(t) as a reward (i.e., r(t) coins). The bandit algorithm for solving the bandit problem
can be described as a decision-making strategy determining the slot machine m(t) to be
selected for each trial. Reward maximization is the most-used metric for evaluating the
performance of a bandit algorithm. The bandit algorithm for solving the bandit problem
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will be described later in this section. The reward maximization problem can be expressed
as follows, where T is the total number of trials.

RT = max
T

∑
t=1

r(t). (3)

As described in Section 2, we aimed to maximize the cumulative FSR by letting each
device autonomously select the appropriate channel and SF using the ACK/NACK infor-
mation. The problem of learning appropriate channels and SFs using only the ACK/NACK
information can be transformed into the MAB problem: an IoT device (i.e., the player in
the MAB problem) has S SFs and I channels (i.e., the slot machines in the MAB problem).
The objective is to maximize the cumulative FSR (i.e., the cumulative rewards in the MAB
problem). The relationship between the channel–SF-selection and the MAB problems is
summarized in Table 3.

Table 3. Correspondence of the MAB and channel–SF-selection problems.

MAB Problem Channel–SF-Selection Problem

Player IoT device

Slot machine SF/CH

Reward: coin Reward: ACK/NACK information

Objective: maximize the total number of coins Objective: maximize the FSR

4.2. MAB-Based Channel–SF-Selection Problem

When the parameters to be selected are only SFs or only channels, i.e., when there is
only one parameter to be selected, the MAB problem can be applied directly, as described in
the previous subsection. However, to perform autonomous decentralized joint optimization
of the channel- and SF-selection problem, we need to design the structure of the MAB-
based channel–SF-selection method. In this subsection, we introduce two structures of the
MAB-based channel–SF-selection problem, i.e., combinatorial and independent MAB-based
channel–SF-selection problems.

4.2.1. Combinatorial MAB-Based Channel–SF-Selection Problem

We first describe the combinatorial MAB-based channel–SF-selection problem. In this
problem, any combination of the SF and CH is configured as one slot machine, as shown in
Figure 3. Hence, the number of slot machines is I × S. The best slot machine among these
combinations is selected using the MAB algorithms by maximizing the reward (i.e., the
FSR). The main design idea of this structure is that it is necessary to optimize the channel
and SF considering their potential relationship since packets sent using the same channel
and SF simultaneously will cause collisions in the LoRa system.

[CH1,SF7] [CH1,SF8] [CH1,SF9] [CH2,SF7] [CH𝐼,SF𝑆]

⋯ ⋯

Figure 3. Combinatorial MAB-based channel–SF-selection problem.

The combinatorial MAB-based channel–SF-selection problem process can be sum-
marized as follows. The channel–SF is first selected based on the strategy of the MAB
algorithms implemented on each LoRa device. Then, packets are sent using the selected SF
and channel. The reward of the selected SF–channel combination is evaluated depending
on whether the packet was successfully sent. For the next packet transmission time, each
LoRa device dynamically selects the optimal SF–channel combination based on the updated
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evaluation and repeats this process until the time limit T is reached. The details of the
combinatorial MAB-based channel–SF-selection problem are summarized in Algorithm 1.

Algorithm 1 Combinatorial MAB-based channel–SF selection.

1: Initialize the parameters used in each MAB algorithm
2: while time t ≤ T do
3: Select channel–SF set based on the MAB algorithm.
4: Send a packet using the selected SF and channel.
5: if the packet is transmitted, and the ACK frame is received then
6: Transmission successful.
7: else
8: Transmission failure.
9: end if

10: Update the corresponding parameters according to each MAB algorithm.
11: t = t + 1
12: Sleep for transmission interval TI.
13: end while

4.2.2. Independent MAB-Based Channel–SF-Selection Problem

In the independent MAB-based channel–SF-selection structure, the channels and SFs
are selected independently, aiming to optimize the channel and SF parameters, respectively.
Two groups of machines are prepared; one group is used for SF selection, and the other
group is used for channel selection. Hence, the numbers of the two types of machines are
S and I, respectively. The number of machines for the independent MAB-based channel–
SF-selection structure is S + I. Compared to the combinatorial MAB-based channel–SF-
selection problem, the number of machines can be reduced to a great extent. By this,
the memory requirements can be reduced. In addition, the efficiency of the search for the
appropriate channel or SF may be increased. The schematic diagram of this structure is
shown in Figure 4.

⋯
CH1 CH2 CH𝐼 SF7 SF8 SF𝑆

⋯

Figure 4. Independent MAB-based channel–SF-selection problem.

In the independent MAB-based channel–SF-selection problem, the SF is first selected
based on the MAB algorithm implemented on the LoRa device. Similarly, a channel is
selected. A packet is then sent using the chosen independent SF and channel. After
that, the parameters related to the MAB algorithms are updated based on whether the
packet was successfully transmitted. The process is repeated until the time limit T. The
independent MAB-based channel–SF-selection problem’s details are shown in Algorithm 2.
The computational complexity of the independent MAB-based channel–SF method is O(1),
which was analyzed in our previous work [19].
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Algorithm 2 Independent MAB-based channel–SF-selection problem.

1: Initialize the parameters of the MAB algorithm used for the SF and channel selection
2: while time t ≤ T do
3: Select the SF among the SF slot machines using the MAB algorithm.
4: Select the channel among the channel slot machines using the MAB algorithm.
5: Send a packet using the selected SF and channel.
6: if the packet is transmitted, and the ACK frame is received then
7: Transmission successful.
8: else
9: Transmission failure.

10: end if
11: Update the corresponding parameters for SF selection according to the policy of the

MAB algorithm.
12: Update the corresponding parameters for channel selection according to the policy

of the MAB algorithm.
13: t = t + 1
14: Sleep for transmission interval TI.
15: end while

4.3. MAB Algorithms

In this paper, we focused on three MAB algorithms for solving the channel–SF-selection
problem, that is the ε-greedy, UCB1, and ToW dynamics algorithms. In the following
subsection, we discuss these three MAB algorithms in detail.

4.3.1. ε-Greedy Algorithm

The ε-greedy algorithm is widely used for solving MAB problems because of its
simplicity. In each trial, the slot machine with the highest reward probability determined
by experience is selected and played with a probability of 1 −ε. On the other hand, the slot
machines are randomly selected and played with probability ε. The policy of the ε-greedy
algorithm is expressed below.

pkij
(t) =

Rkij
(t)

Nkij
(t)

, (4)

k∗ij =

{
arg maxkij∈kj

pkij
(t) if 1− ε,

Randomly selected otherwise,
(5)

where j is the indicator of the channel and SF selection and j ∈ 1, 2, 3, that is j = 1
corresponds to the joint channel and SF selection in the combinatorial MAB-based channel–
SF-selection problem and j = 2 and j = 3 correspond to the channel and SF selections
in the independent MAB-based channel–SF-selection problem. Kj is the number of arms
corresponding to the structure j. K1 is the number of SF and channel combinations for
the combinatorial MAB-based channel–SF selection. The value of K1 is I × S. The val-
ues of K2 and K3 are equal to the number of SFs S and channels I, respectively, for the
independent MAB-based channel–SF-selection problem. k j is the set of slot machines.
k1 ={s1i1, s1i2, · · · , s1iI , s2i1, · · · , sSiI}, i.e., the set of channel and SF combinations for
the combinatorial MAB-based channel–SF-selection problem. k2 ={s1, s2, · · · , sS} and
k3 ={i1, i2, · · · , iI}, i.e., the set of channels and that of SFs for the independent MAB-based
channel–SF-selection problem. kij is the i-th slot machine in k j. Nkij

is the number of times
the arm kij is selected at iteration t. Rkij

is the number of successful transmissions among
Nkij

, i.e., the number of times the ACK information is received.
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4.3.2. Upper Confidence Bound1

Upper Confidence Bound (UCB) algorithm sequences were proposed by Auer and
Bianchi in [37]. The UCB1 algorithm is the simplest one among the UCB series. The UCB1
algorithm selects the slot machine based on the average reward and the number of times
each slot machine is played. This algorithm considers the upper bound of the confidence
interval. The slot machine Xkij

(t) is selected in the t-th trial after playing each slot machine
once, according to the following equation.

Xkij
(t) =

Rkij
(t)

Nkij
(t)

+

√
2 ln t

Nkij
(t)

, (6)

k∗ij = arg maxkij∈kj
Xkij

(t). (7)

Auer et al. also proposed a UCB1-Tuned algorithm, which considers not only the
empirical mean value of each slot machine, but also the empirical variance [37]. This
algorithm is the best-performing algorithm among the current MAB algorithms. In the
UCB1-Tuned algorithm, the slot machine is selected based on the following equation in
each trial.

Xkij
(t) =

Rkij
(t)

Nkij
(t)

+

√
ln t

Nkij
(t)

min(1/4, Vkij
(t)), (8)

k∗ij = arg maxkij∈kj
Xkij

(t). (9)

where Vkij
(t) is based on the estimated variance, which can be expressed as follows. σkij

in
the equation is the variance of the obtained reward.

Vkij
(t) = σ2

kij
+

√
2 ln t

Nkij
(t)

. (10)

4.3.3. Tug of War Dynamics

The ToW is a simple method with low computational complexity. It has been ana-
lytically validated that the ToW dynamics is efficient in maximizing stochastic rewards
under dynamic environments where the reward probabilities of the arms change fre-
quently [38–41]. The essential element of the ToW dynamics is a volume-conserving
physical object. It assumes that each slot machine is allocated to multiple cylinders with
branches filled with an incompressible fluid, as shown in Figure 5. The volume is then
updated by pushing and pulling the corresponding cylinders depending on whether the
slot machine is rewarded for a trial at time t. In addition, since the cylinders are connected,
as shown in the figure, a volume increase in one part is immediately compensated by a
volume decrease in another part. In the ToW dynamics, the arm k∗ij with the height cylinder
interface value Xkij

is selected. The following formula expresses Xkij
.

Xkij
(t) = Qkij

(t− 1)− 1
Kj − 1

Kj

∑
k′ij 6=kij

Qk′ij
(t) + osckij

(t). (11)

There are various possibilities for adding oscillations osckij
(t). References [41,42]

studied the impact of oscillations on the efficiency of decision-making in detail, which
is beyond the scope of this paper. In this paper, the incompressible liquids oscillate
autonomously according to the following equation.

osckij
(t) = A cos

(
2πt
Kj

+
2(kij − 1)π

Kj

)
. (12)
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In addition, Qkij
(t) is the estimated compensation for each arm, which is derived by

the following equation:

Qkij
(t) =

{
αQkij

(t− 1) + ∆Qkij
(t) if kij = k∗ij,

αQkij
(t− 1) otherwise,

(13)

where α (0 < α < 1) is the discount factor for estimated compensation. By introducing α, we
can control the impact of the past learning experience on the present to adapt to natural
communication environments where the channel conditions may change dynamically.
∆Qkij

(t) is given by the following formula.

∆Qkij
(t) =

{
+1 if rewarded,
−ωij(t) otherwise.

(14)

Figure 5. ToW dynamics.

In other words, if the transmission is successful and the ACK is received, the Q value
of the selected arm (parameter) gains “+1” as a reward. By this, the height of the fluid
interface for that arm is increased. Conversely, when the transmission fails and an ACK is
not received, the corresponding arm (parameter) is updated with the punishment −ωij(t).
By this, the interface value of the selected arm is decreased. Correspondingly, the interface
value of other arms increases. Here, ωij(t) is expressed as:

ωij(t) =
pij1st(t) + pij2nd(t)

2− (pij1st(t) + pij2nd(t))
. (15)

where pij1st(t) and pij2nd(t) are the arms with the highest and second-highest reward
probabilities among all arms at time t, respectively. The reward probability is given by
Equation (4). In the ToW dynamics, Nkij

(t) is the number of times the arm kij is selected
by time t and Rkij

(t) is the number of successful transmissions using the arm kij by time t.
Nkij

(t) and Rkij
(t) are given by the following equations, respectively.

Nkij
(t) =

{
1 + βNkij

(t− 1) if kij = k∗ij,

βNkij
(t− 1) otherwise,

(16)

Rkij
(t) =

{
1 + βRkij

(t− 1) if kij = k∗ij and rewarded,

βRkij
(t− 1) otherwise,

(17)

where β (0 < β ≤ 1) is the forgetting rate.

5. Implementation and Performance Evaluation of the MAB-Based
Channel–SF-Selection Methods

This section evaluates the proposed combinatorial MAB-based joint channel and
SF-selection methods, including the ToW-dynamics-based, UCB1-based, ε-greedy-based
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methods, and random methods by conducting experiments using actual LoRa devices.
Specifically, the FSR under different numbers of LoRa devices and the rate of the SF selection
for the LoRa devices at different positions when only selecting SF were evaluated first.
Then, the performance of the FSR and FI when selecting both the SF and channel was
evaluated exhaustively. This section describes the experiment settings first, followed by the
performance evaluation when only selecting the SF and selecting both the SF and channel,
respectively.

5.1. Experiment Settings

The MAB-based SF–channel-selection methods use a LoRa module ESP320LR that
supports LoRa communication in the 920 MHz band. A Raspberry Pi and a battery-powered
Arduino mini pro were used as the GW and LoRa device controllers, respectively. The
component parts of the LoRa device and the GW are shown in Figures 6 and 7, respectively.
The communication between the GW and LoRa devices used a LoRa wireless link. The GW
was connected to a common network server over a standard IP protocol stack using a
WiFi router. Using the implemented LoRa system, we evaluated the performance of
the (i) ε-greedy-based, (ii) UCB1-based, (iii) ToW-dynamics-based joint channel and SF
selection in the combinatorial and independent MAB-based channel–SF-selection methods,
and (iv) the random channel–SF selection. Among the compared methods, the UCB1-
based method was introduced in [27,32], while the MAB-based independent methods were
proposed in [19]. By comparing the recently published results, we aimed to justify that the
proposed ToW-dynamics-based combinatorial transmission selection method has advanced
the state-of-the-art in this field. In the experiments, the impact of the transmission intervals,
the number of LoRa devices, and the locations of the LoRa devices on the communication
quality, especially on the FSR, was evaluated. The experiments were conducted indoors in a
120 m × 20 m rectangular area on the fifth floor of a concrete wall building. The LoRa
devices were placed in several locations. The diagram of the experiment field is shown in
Figure 8. As shown in Figure 8, the GW was deployed in Position À of a room termed Room
1 in this paper. The LoRa devices in Position À were deployed in the same room as the GW,
i.e., Room 1, and there was no obstacle between them, guaranteeing a Line of Sight (LoS)
path. Meanwhile, except for the LoRa devices deployed at Position À in Room 1, all other
LoRa devices were deployed in the corridor, i.e., Positions Á∼Ç shown in Figure 8. The
gray parts in Figure 8 are the other rooms with walls except Room 1, resulting in a Non-Line-
of-Sight (NLOS) path with the GW. The Received Signal Strength Indicator (RSSI) from each
location is summarized in Table 4. The LoRa devices deployed in the positions with a lower
RSSI should select a higher SF due to the lower received strength at the GW. We considered
two scenarios to evaluate the impact of the channel and SF selections on the network
performance. The first scenario was where the LoRa device only performed SF selection.
To verify the effectiveness of the MAB-based methods, we evaluated the performance of
the FSR of the MAB-based methods compared with the selection randomly. Moreover,
to confirm that the SFs needed to be selected appropriately according to the reception
strength from each location, we evaluated the selection rate of the SFs at different positions.
In the second scenario, both channel–SF selections were performed using the combinatorial
and independent MAB-based selection methods described in the previous section. In this
scenario, we first evaluated the effect of the structure of the MAB-based methods on the FSR.
Then, we evaluated the performance of the FSR with varying numbers of LoRa devices and
transmission intervals for the combinatorial MAB-based selection methods in detail. Note
that the results shown below were the average value over 10 repetitions of the experiment
in each setting.
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Figure 6. LoRa device.

Figure 7. GW.

② ③
GW
①

120m

20m

⑦

⑧

⑤

④

⑥

Figure 8. Experiment field.

Table 4. RSSI from each position.

Position RSSI (dBm)

1 −62

2 −103

3 −108

4 −121

5 −124

6 −98

7 −111

8 −101

5.2. Performance Evaluation of the SF Selection

In this subsection, we describe the experimental results in the setting where the LoRa
device only performed SF selection. The effectiveness of the distributed approaches using
the MAB algorithm was first evaluated. Then, the impact of the SF selection on the distance
from the GW was evaluated based on the ToW-dynamics-based SF-selection method. In
the experiments, the LoRa devices were placed at three locations, i.e., Positions À, Á, and
Â, in the experimental field shown in Figure 8. The number of channels was set as one,
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while the channel used in the experiments was CH1 working at 920.6 MHz band. The
transmission interval was set to 20 s. Packets with a payload of 50 bytes were sent in each
data transmission. The parameter ε in the ε-greedy method was set as 0.1, and the forgetting
parameters α and β in the ToW dynamics were set as 0.9. The parameters related to the
experiments are listed in Table 5.

Table 5. Parameter settings for the experiments of SF selection.

Parameter Value

Number of LoRa Devices L 3, 9, 15, 30

Location À, Á, Â

Bandwidth BW 125 kHz

Channel CH1 (920.6 MHz)

SF 7, 8, 9

Transmission Interval TI 20 s

Payload Length L 50 bytes

Transmission Power TP 13 dBm

Time Limit T 200 times

Figure 9 shows the performance in terms of the FSR for the MAB-based SF-selection
methods and the random method. The number of LoRa devices was set to 3, 9, 15, and 30.
The LoRa devices were deployed at each location equally, i.e., 1 device was deployed at each
location when the total number of LoRa devices was 3, and 10 devices were deployed at
each location when the total number of LoRa devices was 30. From Figure 9, it can be seen
that the FSR decreased as the number of LoRa devices increased for all approaches. This was
due to the increase in packet collisions as the number of LoRa devices increased. In addition,
the MAB-based SF-selection methods can achieve a higher FSR than the random-based
selection method, indicating that the distributed reinforcement learning approaches were
effective. Moreover, compared to the existing studies on decentralized parameter selection
using UCB1 in [27,32] and ε-greedy in [3], the ToW dynamics algorithm can achieve a
higher FSR. A comparison of the FSR values showed that, as the number of LoRa devices
increased, the difference between the ToW and the other MAB-based methods increased,
which indicated that the ToW algorithm is more suitable for large-scale LoRa systems.
Figure 10 shows the ratio of the SF selection at each position for the ToW-dynamics-based
SF-selection method. The number of LoRa devices was set to 30 in the experiments. The
results showed that a higher SF was selected by the LoRa devices farther from the GW.
The reason was that the reception strength at the GW was weak for farther LoRa devices.
A higher SF that could resist the noise was selected to guarantee successful transmission at
a more-distant location with a lower receiver sensitivity and SNR threshold. In summary,
the ToW-dynamics-based SF selection can select the appropriate SF for the LoRa devices
deployed in different positions without prior information.

5.3. Performance Evaluation of the Channel–SF Selection

This subsection introduces the experimental results for joint channel and SF selection
using the MAB-based methods described in the last section. We first evaluated the impact
of the different MAB structures on the performance of the FSR and the FI. Then, we
evaluated the impact of the number of users and the transmission interval on the FSR for
the combinational MAB-based method. Finally, we evaluated the effect of the position of
the LoRa devices deployed on the performance of the FSR.
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Figure 9. FSR for SF selection.
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Figure 10. SF selection using ToW dynamics.

5.3.1. Combinatorial MAB-Based Problem vs. Independent MAB-Based Problem

The performances of the FSR and FI for the two structures of the MAB-based channel–
SF-selection methods were evaluated. In the experiments, the number of LoRa devices was
set as 30, and 10 devices were deployed at Positions À, Á, and Â, respectively. Three chan-
nels were used in the experiments, i.e., CH1, CH4, and CH7. The experimental parameter
settings are shown in Table 6.

Table 6. Parameter settings for channel–SF selection (CMAB vs. IMAB).

Parameter Value

Number of LoRa Devices L 30

Location À, Á, Â

Bandwidth BW 125 kHz

Channel CH1, CH4, CH7

SF 7, 8, 9

Transmission Interval TI 20 s

Payload Length L 50 bytes

Transmission Power TP 13 dBm

Time Limit T 200 times
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Figure 11 shows the FSR for different methods at each location. CMAB and IMAB
denote the combinatorial and independent MAB-based channel–SF methods, respectively.
SF7-SF9 denotes the results with all LoRa devices fixed to the same SF and the channels
equally allocated to 10 devices on each of the three channels. The experimental results
showed that the FSR decreased with the distance between LoRa devices and the GW
increasing. The reason may be that the time on air for the LoRa devices that were farther
from the GW was longer, which may cause collisions with high probability. Moreover,
the combinatorial MAB-based methods could achieve a higher FSR than independent MAB-
based methods for all the MAB algorithms. Since packet collisions in LoRa systems occur
when both the channel and SF are the same, the combinatorial MAB-based method, which
can account for their relationship, showed better results. The lowest FSR was obtained
among the fixed allocation methods when the SFs of all LoRa devices was set to 9 for
average.This was because the packet time on air was longer when the SF is set to 9, which
increased the probability of packet collisions. On the other hand, the highest FSR among
the fixed methods was achieved when the SF was set to 8 for average, but even at this
FSR, the success rate was still lower than the MAB algorithm based on the CMABstructure.
Furthermore, since the fixed method allocates channels equally based on prior knowledge
of the number of LoRa devices, the MAB-based method was more effective in the actual
network, where prior information was unavailable. Figure 12 shows the confidence interval
of the FSR for combinational MAB-based and random channel–SF selection methods.
From this, we can see that the combinational ToW-based channel–SF-selection method
could achieve the highest FSR compared to the other methods.

pos.1 pos.2 pos.3 Average0.4

0.5

0.6

0.7

0.8

0.9

FS
R

TOW(CMAB)
UCB1(CMAB)

-greedy(CMAB)
TOW(IMAB)

UCB1(IMAB)
-greedy(IMAB)

random
SF7

SF8
SF9

Figure 11. FSR for channel–SF selection.

TOW-dynamics(CMAB) ucb1(CMAB) greedy(CMAB) random0.60
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R

Figure 12. Confidence intervals for channel–SF selection.
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In Figure 13, we compare the FSR of all the MAB algorithm methods with the CMAB
structure (CH–SF selection), the CH selection by all the MAB algorithms, and the SF
selection by all the MAB algorithms. Among them, all the MAB algorithms methods
with the CMAB structure are our proposed method, and the CH or SF selection by all
the MAB algorithms represents the existing methods. From Figure 13, we can see that
the ToW dynamics method with the CMAB structure was superior in the FSR to other
methods. Figure 14 shows the performance of the FI for the MAB-based channel–SF-
selection methods. The FI was used to evaluate the fairness of the LoRa devices that were
deployed at Positions À–Â, which is expressed by the following equation:

FI =
(∑L

l=1 FSRl)
2

L ∑L
l=1(FSRl)2

. (18)

From the results, we can see that the MAB-based selection methods achieved a much
higher FI compared to the random-based selection method, which verified the effectiveness
of the MAB-based methods. Moreover, similar to the FSR evaluation, the combinatorial
MAB-based channel–SF selection also could achieve a higher FI compared to the indepen-
dent MAB-based methods. This was due to the high FSR in LoRa devices far from the GW,
such as Positions Á and Â, in the combinatorial MAB-based method.

Figure 13. FSR for channel–SF selection, channel selection, and SF selection.

0.90 0.92 0.94 0.96 0.98 1.00
FI value

random

-greedy(IMAB)

UCB1(IMAB)

TOW-dynamics(IMAB)

-greedy(CMAB)

UCB1(CMAB)

TOW-dynamics(CMAB)

Figure 14. FI for channel–SF selection.

5.3.2. Effect of the Experimental Parameters on FSR for CMAB Methods

To measure the effectiveness of the experimental parameters on the FSR, the exper-
iments were performed by varying the number of LoRa devices and the transmission
interval. The number of LoRa devices was set to 3, 9, 15, and 30, while the transmission
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intervals were set to 20 s and 50 s. The structure of the method used in the experiments
was a combinational MAB-based channel–SF-selection method since its superiority was
shown in our previous experiments. The other parameters related to the experiments are
listed in Table 7.

Table 7. Parameter settings for channel–SF selection (CMAB).

Parameter Value

Number of the LoRa Devices L 3, 9, 15, 30

Location À, Á, Â

Bandwidth BW 125 kHz

Channel CH1, CH4, CH7

SF 7, 8, 9

Transmission Interval TI 20, 50 s

Payload Length L 50 bytes

Transmission Power TP 13 dBm

We first evaluated the effect of the number of LoRa devices on the FSR. In the experi-
ments, the transmission interval was set as 20 s. Figure 15 shows the results, from which we
can see that the FSR decreased with the increase of the number of LoRa devices. The reason
was that an increase in the number of LoRa devices increased the number of transmitted
packets, increasing collisions and interference. In addition, compared to the experimental
results shown in Figure 9, where only the SF selection was considered, the effect of the
number of available channels on the FSR was small when the number of LoRa devices was
small. However, when the number of LoRa devices increased, Figure 15, where multiple
channels were used, shows a better FSR. This indicated the necessity of selecting both the
SF and channel.

5 10 15 20 25 30
Number of LoRa devices
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ToW-dynamics
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-greedy
random

Figure 15. FSR vs. the number of LoRa devices.

Then, we evaluated the effect of the transmission interval on the FSR. In the experi-
ments, the transmission intervals were set to 20 s and 50 s. The number of LoRa devices
was set to 30. Figure 16 shows the experimental results. From the results, it can be seen
that a higher FSR could be achieved for all of the combinational MAB-based channel–SF-
selection methods when the transmission interval was 50 s compared to the case where
the transmission interval was 20 s. This indicated that the transmission interval should be
set appropriately according to the requirements of the LoRa applications. The FSR may
increase by adjusting the transmission interval autonomously, which will be studied in our
future work.
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Figure 16. FSR vs. the transmission interval.

5.3.3. Effect of the Setting Position of LoRa Devices on FSR

In our previous experiment, the LoRa devices were deployed at Positions À–Â. In the
following experiments, the LoRa devices were deployed at Positions À–Ç. The number
of LoRa devices was set to 24. At each position, three LoRa devices were deployed. The
other parameters used in the experiment were same as shown in Table 7, and the TI was 20
s. Figure 17 shows the FSR and the average RSSI of the received packets at each position.
Similar to the previous results, it can be seen that the MAB-based channel–SF-selection
methods achieved a much higher FSR than the random method, regardless of the positions.
In particular, the random method showed a significant decrease in the FSR at lower RSSI
values, indicating the necessity of using the MAB algorithms to select the channel and
SF appropriately depending on the deployed positions of the LoRa devices. In addition,
the FSR at each position was proportional to the RSSI value for all methods. The reason
may be that the larger SF was selected by the LoRa devices deployed in the positions
with a lower RSSI, which increased the time on air of the transmitted packets. Hence,
the probability of collisions may increase.
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Figure 17. FSR at Positions À–Ç.

6. Conclusions

In this paper, we implemented and evaluated lightweight autonomous distributed
reinforcement learning methods for joint channel and SF selection in a practical larger-scale
LoRa system. As a result, we were able to verify the necessity of dynamically selecting
both the SF and channel. Specifically, the results showed that the channel–SF selection
using the MAB-based methods was effective compared to random selection, especially
in situations where the LoRa devices were distributed in various locations. Specifically,
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when the difference between the FSR of the proposed ToW dynamics and that of random
selection was highest, the achieved FSRs of the ToW dynamics and random selection
were 0.86919 and 0.59761, respectively. Hence, the percentage difference of the achieved
maximum FSRs for the ToW dynamics and random selection was 145%. Besides, the ToW-
dynamics-based method outperformed other MAB-based methods, such as UCB1, used in
the recently published results, whether with the combinational or independent structure.
In addition, the structures of the MAB-based methods and the other communication
parameters also greatly affected the FSR and FI. Specifically, the combinational MAB-based
methods could achieve a higher FSR and FI than the independent MAB-based methods
considered in our previous research. Hence, the relevance of the channel and SF is a
very important factor for the communication performance of larger-scale LoRa systems.
Moreover, the FSR can be improved by jointly selecting the channel and SF compared to
only selecting the SF. Furthermore, by increasing the transmission interval, the FSR can
be improved to a great extent. In our future work, we will consider the joint channel
and SF selection in outdoor, longer-distance environments, the optimization of other
communication parameters, and the energy efficiency of the MAB-based methods.
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