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Abstract: Immunosensors are a special class of biosensors that employ specific antibodies for biorecog-
nition of the target analyte. Immunosensors that target disease biomarkers may be exploited as tools
for disease diagnosis and/or follow-up, offering several advantages over conventional analytical
techniques, such as rapid and easy analysis of patients’ samples at the point-of-care. Autoimmune
diseases have been increasingly prevalent worldwide in recent years, while the COVID-19 pandemic
has also been associated with autoimmunity. Consequently, demand for tools enabling the early and
reliable diagnosis of autoimmune diseases is expected to increase in the near future. To this end,
interest in immunosensors targeting autoimmune disease biomarkers, mainly, various autoantibodies
and specific pro-inflammatory proteins (e.g., specific cytokines), has been rekindled. This review
article presents most of the immunosensors proposed to date as potential tools for the diagnosis of
various autoimmune diseases, such as type 1 diabetes, rheumatoid arthritis, and multiple sclerosis.
The signal transduction and the immunoassay principles of each immunosensor have been suitably
classified and are briefly presented along with certain sensor elements, e.g., special nano-sized ma-
terials used in the construction of the immunosensing surface. The main concluding remarks are
presented and future perspectives of the field are also briefly discussed.

Keywords: autoantibodies; autoimmune diseases; patients’ biological fluids; immunosensors;
inflammation; protein-biomarkers

1. Introduction

Autoimmune diseases (ADs) are a group of various disorders that are characterized by
dysregulation of the immune system. This malfunction state leads to an improper activation
of immune elements that may consequently attack target molecules, cells, and tissues
of the organism, resulting in inflammation and organ damage [1]. ADs are considered
chronic disorders that develop over several years [2] and may be divided into organ-
specific or multi-organ/systemic [3]. Thus, in type 1 diabetes (T1D) [4], an organ-specific
AD, the autoimmunity-related inflammatory responses of the organism are specifically
directed against the β-islet cells of the pancreas, which are eventually destroyed, leading to
insulin deficiency. By comparison, in rheumatoid arthritis (RA) [5], a multi-organ/systemic
autoimmune disease, inflammation is “dispersed” to the joints of the organism, as the
synovial membrane is infiltrated by activated immune cells. According to the literature [6],
some ADs exhibit both systemic and organ-specific characteristics; for instance, multiple
sclerosis (MS) [7] is characterized by inflammation in the brain and spinal cord, which
results in neuron axon and myelin damage in the central nervous system, and, consequently,
general disturbances [6]. Usually, ADs follow a pattern of progressively increased severity,
while the insufficiency of the treatment protocols available at present, combined with
autoimmune attack of vital organs, such as lungs and kidneys, may eventually lead to a
fatal outcome [1].
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ADs are currently estimated to affect almost 5–7% of the world population, while
it is well accepted that their prevalence will continue to rise worldwide in the following
years [6]. The etiology of ADs is basically unknown, but it has mainly been associated with
genetic and epigenetic factors along with environmental ones, such as nutritional habits
and air pollution [6]. Moreover, it is widely accepted that specific viral infections can cause
development of ADs [6]. For instance, infection with Epstein–Barr virus has been associ-
ated with the pathogenesis of RA [8] and MS [9]. Furthermore, several literature reports
associate the SARS-CoV-2 virus, which caused the recent pandemic, with development
of autoimmunity/autoantibodies [10–12]. Nevertheless, the exact mechanisms by which
certain viruses may trigger the onset of ADs have not yet been well elucidated.

Biomarkers and Analytical Tools

ADs are closely associated with the generation of autoantibodies against certain self-
antigens that can subsequently attack cells, tissues, and organs of the organism. Many
autoantibodies have been associated with pathogenesis/treatment of specific ADs, such
as systemic lupus erythematosus (SLE) [13]. Moreover, a series of autoantibodies has
been proposed to serve as diagnostic biomarkers for ADs [14–16]; specifically, various
anti-citrullinated protein/peptide antibodies (ACPAs) and rheumatoid factors (RFs), i.e.,
IgM, IgA, and IgG antibodies directed against the Fc fragment of the patient’s own IgG
molecules, were included in the classification criteria for RA set by the European League
against Rheumatism (EULAR)/American College of Rheumatology (ACR) [17–19].

Production of inflammatory protein mediators is considered a common feature of
ADs. Thus, pathogenesis of RA has been closely related to various inflammatory proteins,
including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6),
while several interleukins, including interleukin-1 (IL-1), IL-6, interleukin-8 (IL-8), inter-
leukin12 (IL-12), and interleukin-32 (IL-32), have been proposed as promising biomarkers
of a series of rheumatic ADs [20–24]. Other protein-biomarkers have been associated with
diagnosis/prognosis/follow-up of specific ADs; for instance, the protein hormone insulin
has been correlated with the diagnosis of various types of diabetes and its low circulating
levels have been proposed to signify T1D [25].

All the above-mentioned AD biomarkers are of a protein nature; however, microRNAs,
extracellular vesicles/exosomes, etc., have also been proposed for the diagnosis of specific
ADs, such as RA, MS, and T1D [26–28].

Due to the wide prevalence and severity of symptoms of ADs, demand for analytical
tools detecting AD-related biomarkers and enabling early and reliable diagnosis of the
disease state is very high and expected to further increase in the near future. To date,
the methods most frequently used for determining AD biomarkers of a protein nature
are immunoassays and, in particular, ELISAs, while other biochemical assays, such as
Western blot, have been also reported. The disadvantages of these methods often include
low sensitivity, along with time-consuming, laborious, and complex protocols; moreover,
most of these methods require skilled personnel and well-equipped laboratories. Therefore,
during the last two decades, attention has focused on developing biosensors that are
specific, sensitive, reproducible, and stable, as well as simple, fast, and low-cost, for the
determination of protein-type AD biomarkers in complex clinical samples, such as blood
sera, preferably at the point of care [1,29].

Biosensors are analytical devices that employ specific biomolecules for recognizing
the target entity; biosensors integrate the biorecognition element with suitable transducers,
which could be further enriched with various signal amplification systems to achieve
extremely high sensitivity. Immunosensors are a special class of biosensors that employ
specific antibodies as the biorecognition part; upon specific recognition and capture of the
target analyte, a series of physical and/or chemical changes is induced, which could be
converted into detectable signals by an appropriate transducer.

Depending on the type of transducer employed, biosensors/immunosensors can be
characterized as electrochemical, optical, piezoelectric, or thermal [1,24,29–32]. In elec-
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trochemical biosensors/immunosensors, recognition and binding of the target analyte
to its specific partner biomolecule usually causes a change in the electron transfer rate
between a properly functionalized electrode surface and an electrolyte solution; this change
can be detected as a current (amperometric sensors), charge accumulation or potential
(potentiometric sensors), or change in conductivity (conductimetric/impedimetric sensors).
Electrochemical biosensors/immunosensors have many advantages, including high analyt-
ical sensitivity and specificity, rapid assay protocol, low quantity of sample needed, and
potential of developing miniaturized devices for point-of-care analyses. In optical biosen-
sors/immunosensors, recognition/binding of the target analyte to the partner biomolecule
causes measurable changes in the phase, amplitude, polarization, or frequency of the input
light. Optical immunosensors include colorimetric, fluorescent, luminescent, and reflecto-
metric/refractometric sensors [31]. Optical biosensors/immunosensors also have a series
of desired characteristics, such as high sensitivity, high specificity, and rapid assay protocol,
but their instrumentation is often bulky and expensive; nevertheless, much work has been
recently devoted to address these limitations and enhance optical sensors’ applicability.
In piezoelectric biosensors/immunosensors, recognition/binding of the target analyte
usually causes a mass change on the sensing surface of the device. These sensors, which
are usually based on quartz crystal microbalance (QCM) resonators, are not as widely
used as the electrochemical and optical ones, mainly because of the complexity of their
assay protocol. Thermal biosensors are based on the heat energy absorbed or released
in biochemical reactions [32] and have very rarely been used in the field of diagnosis. It
should be noted that various nanomaterials with desired features have been employed
in the design/construction of biosensors/immunosensors, especially electrochemical and
optical ones, aiming at further improving the analytical sensitivity and specificity of the
latter [33–35].

Several review articles have presented biosensors/immunosensors for ADs, some of
which deal only with electrochemical sensors, while others present information on sensors
based on more types of signal transduction [1,3,24,36]. Some recent reviews have described
biosensors/immunosensors proposed to serve diagnosis of specific ADs, such as MS [37,38]
and RA [39], while other review papers have focused on biosensors/immunosensors for
the detection of specific AD-related biomarkers, such as IL-6 [23].

In this work, we have attempted to compile and present the vast majority of im-
munosensors for ADs (AD immunosensors), focusing especially on the most recently
reported ones (from 2019 to now), which may have not been presented in detail in previous
review articles. Moreover, in comparison with the previous reviews, in this work we placed
more emphasis on the immunoassay principle of the AD immunosensors (Figure 1), and
tried to present a general overview of the field, including all types of sensors, independently
of the signal (electrochemical, optical, or piezoelectric) generated/measured in response to
the basic immunochemical interaction, or the specific AD/AD biomarker the sensors have
been developed for. For practical reasons, AD immunosensors have been divided into two
main categories depending on the biomarker(s) detected, i.e., either various autoantibodies
or other protein biomarkers, such as specific cytokines (Figure 1).
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may also be used (Ib). The sensors of group II may follow either a direct-type (IIa) or a sandwich-
type (IIb) immunoassay setting; in the latter, a couple of capture and detection anti-analyte anti-
bodies (often along with a secondary antibody, for signal enhancement) are employed. Depending 
on their signal transduction principle, the AD immunosensors may be classified as electrochemical, 
optical, or piezoelectric. 

2. AD Immunosensors Detecting Autoantibodies 
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assay principle, all sensors are non-competitive and based on the direct binding between 
an appropriate derivative of the “self-antigen” and the relevant autoantibody, which is 
actually the assay analyte. Keeping this in mind, one should note that, in a way, all affin-
ity-based biosensors that detect autoantibodies can, by definition, be considered as im-
munosensors, i.e., even if they do not employ “external” antibodies as assay reagents. In 
many sensors, however, a secondary antibody is indeed employed, either labeled or not, 
which is added to the predominant immunocomplex, mostly to enhance the assay signal. 
In such immunosensors, the actual immunoassay setting is antigen–autoantibody/ana-
lyte–secondary antibody. 

Regarding the most recently reported AD immunosensors that can detect autoanti-
bodies (from 2019 to now), some points to note are discussed below in brief: 

An electrochemical immunosensor for autoantibodies against oncostatin-M receptor 
(OSMR), which has been associated with the AD known as systemic sclerosis [40], was 
developed. The sensor was based on tin dopped indium (ITO) electrodes coated with a 
conductive layer of poly-pyrrole (PPy); PPy was suitably loaded with gold nanoparticles, 
on which OSMR was immobilized, so as to capture the corresponding autoantibodies [41]. 
ACPAs, a well-known biomarker of RA, as already mentioned, were detected by an elec-
trochemical immunosensor using interdigitated electrodes, the surfaces of which were 
suitably modified with a cyclic citrullinated peptide loaded on iron oxide nanoparticles. 
The nanoparticles were synthesized with a “green-chemistry” approach based on a plant 
extract and chemically immobilized on the sensing surface by means of 3-aminopropyltri-
ethoxysilane and glutaraldehyde [18]. Another electrochemical immunosensor for the 

Figure 1. Schematic representation of the main principles on which immunosensors for autoimmune
diseases (AD immunosensors) developed to date are based. The sensors can be divided into two
broad categories, i.e., those detecting autoantibodies (I) and those detecting other protein biomarkers
(II). All sensors are based on a non-competitive immunoassay principle. The sensors of group I
follow a direct-type immunoassay setting (Ia), in which an anti-human secondary antibody may
also be used (Ib). The sensors of group II may follow either a direct-type (IIa) or a sandwich-type
(IIb) immunoassay setting; in the latter, a couple of capture and detection anti-analyte antibodies
(often along with a secondary antibody, for signal enhancement) are employed. Depending on their
signal transduction principle, the AD immunosensors may be classified as electrochemical, optical, or
piezoelectric.

2. AD Immunosensors Detecting Autoantibodies

AD immunosensors detecting autoantibodies are mainly electrochemical, although
some optical and piezoelectric-type sensors have been reported. Concerning the immunoas-
say principle, all sensors are non-competitive and based on the direct binding between an
appropriate derivative of the “self-antigen” and the relevant autoantibody, which is actually
the assay analyte. Keeping this in mind, one should note that, in a way, all affinity-based
biosensors that detect autoantibodies can, by definition, be considered as immunosensors,
i.e., even if they do not employ “external” antibodies as assay reagents. In many sensors,
however, a secondary antibody is indeed employed, either labeled or not, which is added to
the predominant immunocomplex, mostly to enhance the assay signal. In such immunosen-
sors, the actual immunoassay setting is antigen–autoantibody/analyte–secondary antibody.

Regarding the most recently reported AD immunosensors that can detect autoanti-
bodies (from 2019 to now), some points to note are discussed below in brief:

An electrochemical immunosensor for autoantibodies against oncostatin-M receptor
(OSMR), which has been associated with the AD known as systemic sclerosis [40], was
developed. The sensor was based on tin dopped indium (ITO) electrodes coated with
a conductive layer of poly-pyrrole (PPy); PPy was suitably loaded with gold nanopar-
ticles, on which OSMR was immobilized, so as to capture the corresponding autoanti-
bodies [41]. ACPAs, a well-known biomarker of RA, as already mentioned, were de-
tected by an electrochemical immunosensor using interdigitated electrodes, the surfaces
of which were suitably modified with a cyclic citrullinated peptide loaded on iron oxide
nanoparticles. The nanoparticles were synthesized with a “green-chemistry” approach
based on a plant extract and chemically immobilized on the sensing surface by means
of 3-aminopropyltriethoxysilane and glutaraldehyde [18]. Another electrochemical im-
munosensor for the detection of ACPAs was based on electrodes, the surfaces of which
were functionalized with avidin. Avidin was covalently immobilized on the sensing sur-
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face, which had been covered with a self-assembled monolayer of mercaptohexanoic acid
through N-hydroxy succinimide/1-ethyl-3-(3-diethylamino)propyl carbodiimide. A bi-
otinylated cyclic citrullinated peptide was bound on the functionalized surface, which
could subsequently capture/detect any anti-citrullinated peptide/protein autoantibodies
present in the biological sample [42]. A customized quartz crystal microbalance (QCM)
point-of-care immunosensor was developed for autoantibodies against the phospholipase
A2 receptor (anti-PLA2R), which has been reported to serve as a biomarker in primary
membranous nephropathy [43]. The sensor was based on QCM chips coated with reduced
graphene oxide; the sensing surface was functionalized through bovine serum albumin
adsorption, activation with N-hydroxysuccinimide/1-ethyl-3-(3-diethylamino)propyl car-
bodiimide, and covalent immobilization of the dominant epitope of PLA2R on the activated
surface, which could subsequently capture the anti-PLA2R autoantibodies present in sam-
ples to be analyzed [44]. A multiplex, label-free optical immunosensor was developed on
microarray glass biochips and applied to both detection and activity characterization of sev-
eral autoantibodies in the same biological sample. Simultaneous detection of two antibodies
that have been associated with thyroid ADs, and especially Hashimoto’s thyroiditis [45], i.e.,
anti-thyroglobulin (anti-TG) and anti–thyroid peroxidase (anti-TPO) model autoantibodies,
was reported. As already mentioned, the sensor could be applied to both quantitating the
autoantibodies and evaluating binding kinetics with the corresponding free self-antigen,
thus providing more comprehensive diagnostic information [46]. An immunosensor based
on impedimetric-interdigitated wave type microelectrode array (IDWµE) was developed
and applied to the detection of the rheumatoid factor-immunoglobulin M (IgM-RF) autoan-
tibodies. The IDWµE sensing surface was first functionalized through a self-assembled
monolayer of thioctic acid, on which IgG-Fc fragments were covalently immobilized and
served as specific “self-antigens”/binders to capture the IgM-RF analyte. In the presence of
a suitable redox probe, impedimetric measurements showed a significant change upon IgM-
RF binding [47]. An optical immunosensor for IgM-RF was based on gold nanoparticles,
on which IgG-Fc was covalently linked through a bi-functional polyethylene glycol deriva-
tive. In the presence of pentameric IgM-RF, extensive aggregation of functionalized gold
nanoparticles occurred, which resulted in a color change [48]. An immunosensor for the
detection of IgG-type autoantibodies against tissue transglutaminase (anti-tTG), which is a
reliable serological marker of the gluten-associated AD known as celiac disease [49], was de-
scribed. The sensor was based on membrane-templated gold nanoelectrodes of composite
nature. On the polycarbonate part of the sensor surface used to prepare the nanoelectrode
ensembles, the tTG-antigen was immobilized and subsequently used to capture the cor-
responding autoantibodies. The immune complex was finally electrochemically detected
through an HRP-labeled secondary antibody, in the presence of the H2O2/hydroxyquinone
system [50]. “Sick” red blood cells that bear specific autoantibodies and are present in blood
of patients with autoimmune hemolytic anemia [51] have been detected by means of an
electrochemical immunosensor [52], which might provide more information in comparison
with that revealed by other serological diagnostic tests for this AD [53]. Finally, an electro-
chemiluminescent (ECL) immunosensor was reported for the detection of autoantibodies
against myeloperoxidase (anti-MPO), which are present in patients with an AD known
as antineutrophil cytoplasm antibody (ANCA)-associated vasculitides [54]. In this sensor,
human MPO was immobilized onto glassy carbon electrodes suitably functionalized with
gold/MoS2 nanosheets, and used to capture mouse anti-human MPO (model autoanti-
body/analyte). Afterward, a secondary antibody loaded on PtCo nanocubes/reduced
graphene oxide hybrids, along with a thiol-modified single-stranded DNA, which trig-
gered a hybridization chain reaction (HCR) to form double-stranded DNA that intercalated
doxorubicin/N-(aminobutyl)-N-(ethylisoluminol) (ABEI) luminophores, was used to detect
the immunocomplexes formed, through ECL signal generation and amplification in the
presence of H2O2 [55].

Table 1 presents most of AD immunosensors reported to date that can detect autoanti-
bodies in various samples.
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Table 1. AD immunosensors that can detect specific autoantibodies.

Type of Signal
Transduction

Immunoassay
Principle—Use of

Secondary Antibody

Autoantibody-
Biomarker

Limit of Detection
(LoD)/

Concentration Range

Autoimmune
Disease Biological Sample References

Electrochemical
(Cyclic voltammetry

(CV) and
electrochemical

impedance spectroscopy
(EIS))

Non-competitive,
direct-type assay

Anti-oncostatin-M
receptor

autoantibodies
- Systemic sclerosis

(SSc)

Human serum from
healthy individuals

and SSc patients
[41]

Electrochemical
(Voltammetry)

Non-competitive,
direct-type assay

Anti-citrullinated
peptide/protein
autoantibodies

(ACPAs)

15 pg mL−1/
8–250 pg mL−1

Rheumatoid
arthritis (RA)

Human serum
(spiked) [18]

Electrochemical (EIS) Non-competitive,
direct-type assay ACPAs 0.82 IU ** mL−1/

1–800 IU mL RA Human
serum (spiked) [42]

Optical
(Spectral correlation
interferometry—SCI)

Non-competitive,
direct-type assay; a

non-labeled secondary
antibody was used

Anti-thyroglobulin
(anti-TG) and
anti-thyroid
peroxidase
(anti-TPO)

autoantibodies

6 IU mL−1 (anti-TG)
1.7 IU mL−1

(anti-TPO)/
6–400 IU mL−1

(anti-TG)
1.7–860 IU mL−1

(anti-TPO)

Autoimmune
thyroid diseases Patients’ serum [46]

Piezoelectric
quartz-crystal
microbalance

Non-competitive,
direct-type assay

Anti-phospholipase
A2 receptor
(anti-PL2R)

autoantibodies

0.1 µg mL−1/
0.5–100 µg mL−1

Primary
membranous

nephropathy (pMN)
Patients’ serum [44]

Electrochemical (EIS) Non-competitive,
direct-type assay

Immunoglobulin
M—rheumatoid
factor (IgM-RF)

0.22 IU mL−1/
10–200 IU mL−1 RA Human

serum (spiked) [47]

Electrochemical
(Voltammetry)

Non-competitive,
direct-type assay; a
labeled secondary
antibody was used

Anti-tissue
transglutaminase

(anti-tTG)
autoantibodies

1.8 ng mL−1/
0.005–1 µg mL−1 Celiac disease (CD)

Serum from healthy
individuals and CD

patients
[50]

Electrochemical
(Impedance

spectroscopy and square
wave voltammetry)

Non-competitive,
direct-type assay

Autoantibodies on
red blood cells

(RBCs)
- Autoimmune

hemolytic anemia

Healthy and “sick”
RBCs (i.e., RBCs
from healthy and

affected
individuals)

[52]

Optical (Colorimetry) Non-competitive,
direct-type assay IgM-RF 4.15 IU mL−1 RA Human plasma

(spiked) [48]

Electrochemical (Electro-
chemiluminescence—

ECL)

Non-competitive,
direct-type assay *; a

labeled secondary
antibody was used

Anti-
myeloperoxidase

(anti-MPO)
autoantibodies

15.68 fg mL−1/
50 fg mL−1–1 ng mL−1

Anti-neutrophil
cytoplasm

antibody-associated
vasculitides

Human serum
(spiked) [55]

Electrochemical
(Amperometry)

Non-competitive,
direct-type assay *; a

labeled secondary
antibody was used

Anti-double-
stranded DNA
(anti-dsDNA)

autoantibodies

8 µg mL−1
Systemic lupus
erythematosus

(SLE)
Patients’ serum [56]

Electrochemical
(Amperometry)

Non-competitive,
direct-type assay; a
labeled secondary
antibody was used

Anti-tTG
autoantibodies
(IgG and IgA)

1.4 AU ** mL−1 (IgG)
and 3.2 AU mL−1

(IgA)/
up to 30 AU mL−1

(IgG and IgA)

CD

Patients’ serum
LOD: 3.2 AU **/mL

(IgA),
1.4 AU/mL (IgG)

[57]

Electrochemical (Electro-
chemiluminescence—

ECL)

Non-competitive,
direct-type assay

Anti-glutamate
decarboxylase

(anti-GAD)
autoantibodies

0.10 ng mL−1/
0.30–50 ng mL−1

Type-1 diabetes
(T1D) or latent
autoimmune

diabetes in adult

Patients’ serum [58]

Piezoelectric
Quartz-crystal
microbalance

Non-competitive,
direct-type assay

Anti-TRIM21 and
anti-TROVE2

autoantibodies

0.01 U ** mL−1

(anti-TRIM21) 0.005 U
mL−1 (anti-TROVE2)/

0.32–7.17 U mL−1

(anti-TRIM21)
0.07–1.46 U mL−1

(anti-TROVE2)

SLE
Serum from healthy
individuals and SLE

patients
[59]

Electrochemical
(Amperometry)

Non-competitive,
direct-type assay; a
labeled secondary
antibody was used

Anti-tTG
autoantibodies

0.26 µg mL−1/
0.26–6.9 µg mL−1 CD Serum from CD

patients [60]
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Table 1. Cont.

Type of Signal
Transduction

Immunoassay
Principle—Use of

Secondary Antibody

Autoantibody-
Biomarker

Limit of Detection
(LoD)/

Concentration Range

Autoimmune
Disease Biological Sample References

Electrochemical
(Amperometry)

Non-competitive,
direct-type assay; a
labeled secondary
antibody was used

Anti-tTG
autoantibodies (IgA

and IgG)

1.7 AU mL−1 (IgA)
and 2.7 AU mL−1

(IgG)/
Up to 30 AU mL−1

(IgA and IgG)

CD Serum from
pediatric patients [61]

Electrochemical (EIS) Non-competitive,
direct-type assay

Anti-Myelin Basic
Protein (anti-MBP)

autoantibodies

0.1495 ng mL−1/
0.4875–2500 ng mL−1

Multiple sclerosis
(MS)

Cerebrospinal fluid
(CSF) and serum

from
relapsing/remitting

MS patients

[62]

Electrochemical
(CV)

Non-competitive,
direct-type assay; a
labeled secondary
antibody was used

Anti-tTG
autoantibodies - CD Serum from CD

patients [63]

Electrochemical
(Amperometry)

Non-competitive,
direct-type assay *; a

labeled secondary
antibody was used

Anti-tTG
autoantibodies 390 ng mL−1 CD Serum from CD

patients [64]

Electrochemical
(Amperometry)

Non-competitive,
direct-type assay *; a

labeled secondary
antibody was used

ACPAs - RA Serum from RA
patients [65]

Piezoelectric
Quartz-crystal
microbalance

Non-competitive,
direct-type assay ACPAs - RA Serum from RA

patients [66]

Electrochemical (EIS)

Non-competitive,
direct-type assay; a
labeled secondary
antibody was used

Anti-tTG
autoantibodies - CD Serum from CD

patients [67]

Piezoelectric
Quartz-crystal
microbalance

Non-competitive,
direct-type assay

Anti-dsDNA
autoantibodies - SLE

Serum from healthy
individuals and

patients with
bronchial asthma

and SLE

[68]

Optical
(Surface plasmon
resonance–SPR)

Non-competitive,
direct-type assay

Anti-GAD
autoantibodies - T1D (Buffer) [69]

* In the original papers, the immunocomplexes formed (antigen–autoantibody/analyte–secondary antibody) were
characterized as “sandwich”. ** U: units; IU: international units; AU: arbitrary/antibody units.

Several immunosensors detecting antibodies against the wheat grain protein,
gliadin [70–72], have often been characterized as AD immunosensors, because the anti-
gliadin antibodies can serve as CD biomarkers, as anti-tTG autoantibodies do. Strictly
speaking, however, anti-gliadin antibodies may not be considered autoantibodies, since
gliadin is a food component, not a mammalian self-antigen.

In addition to the aforementioned AD immunosensors, sensors based on similar
technological approaches that can detect cancer-related autoantibodies, such as anti-
p53 antibodies, have been developed [73]. Comprehensive reviews focusing on biosen-
sors/immunosensors for AD- and cancer-related autoantibodies have been recently pub-
lished [1,15].

3. AD Immunosensors Detecting Other Protein Biomarkers

Almost all AD immunosensors detecting specific protein biomarkers, other than
autoantibodies, are electrochemical, while they are all based on a non-competitive assay
principle, of either direct- or sandwich-type. Regarding the most recently reported AD
immunosensors (from 2019 to now) of this category, the following can be summarized:

An optical immunosensor was developed for the simultaneous determination of pro-
calcitonin (PCT) and IL-6, which are well-known biomarkers of inflammatory diseases,
including ADs. Silicon chips with silicon dioxide areas of different thickness were used,
each functionalized with either anti-PCT or anti-IL-6 capture antibodies. Moreover, biotiny-
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lated detection antibodies were used along with streptavidin and biotinylated bovine serum
albumin, to achieve amplification of the optical signal, in a sandwich-type immunoassay
setting [74]. Earlier, an electrochemical immunosensor for IL-6 was developed. The sensor
was based on a working electrode modified with a hybrid of gold nanoparticles (AuNPs)
and graphene. Magnetic beads loaded with capture anti-IL-6 antibodies were also used,
on which IL-6 could be bound and subsequently detected through biotinylated anti-IL-6
antibodies (sandwich-type assay setting) and HRP-labeled streptavidin [22]. An electro-
chemical immunosensor for oncostatin-M receptor, a soluble form of which (sOSMR) had
been found at increased levels in sera of patients with systemic sclerosis, was based on
a conductive poly-pyrrole layer loaded with gold nanoparticles, on which anti-sOSMR
antibodies were immobilized through cysteine chemisorption [41]; this sensor has been
already mentioned (i.e., in “2. AD Immunosensors Detecting Autoantibodies”), since,
after a slight modification of the assay format/protocol, it may also be applied to the
detection of autoantibodies against sOSMR [41]. Another electrochemical immunosensor
was developed for simultaneous determination of the cytokines B-cell activation factor
(BAFF) and a proliferation-induced ligand (APRIL), both of which have been associated
with systemic lupus erythematosus (SLE) [75]. Biotinylated anti-BAFF and anti-APRIL
capture antibodies were loaded onto magnetic beads through neutravidin or direct covalent
immobilization, respectively, while detection anti-BAFF antibodies along with HRP-labeled
secondary antibodies, and detection biotinylated anti-APRIL antibodies along with HRP-
labeled streptavidin, were used for assaying BAFF and APRIL, respectively [76]. In an-
other electrochemical immunosensor for simultaneous determination of BAFF and APRIL,
biotinylated anti-BAFF and biotinylated anti-APRIL capture antibodies were indirectly
immobilized onto the working electrodes, on which neutravidin had been covalently bound.
A sandwich-type assay setting was achieved by using anti-BAFF and anti-APRIL detection
antibodies along with HRP, all of which were loaded onto nanostructures composed of
MoS2/multiwall carbon nanotubes (MoS2/MWCNTs), which enabled signal generation
(through the hydroquinone/H2O2 system) and amplification [77]. An electrochemical
immunosensor for the MS-associated protein biomarker chemokine (C-C motif) ligand 5
(CCL5) was developed. CCL5 was captured from biological samples through biotinylated
anti-CCL5 antibodies (immobilized onto magnetic microparticles pre-functionalized with
neutravidin) and subsequently detected with anti-CCL5 antibodies along with HRP-labeled
secondary antibody (through the amperometric signal produced in the presence of H2O2
and using hydroquinone as the redox mediator) in a sandwich-assay setting [78]. One
more electrochemical immunosensor has been developed that can serve simultaneous
determination of the CXCL7 chemokine and the MMP3 enzyme/metalloproteinase, both
of which are present at elevated levels in serum of RA patients. The sensor has been based
on capture anti-CXCL7 and anti-MMP3 antibodies covalently immobilized on magnetic
beads and on detection biotinylated anti-CXCL7 and anti-MMP3 antibodies along with
HRP-streptavidin conjugates [79]. Some years earlier, an electrochemical immunosensor
was developed for detecting TNFα, the well-known inflammatory protein biomarker; the
sensor was based on a gold working electrode functionalized with anti-TNFα antibodies
through covalent immobilization by means of sulfosuccinimidyl 6-(3′-(2-pyridyldithio)
propionamido) hexanoate (sulfo-LC-SPDP) [80].

It should be noted that the term “immunosensor” is sometimes used in the literature
to define a properly modified specific antibody recognizing/”sensing” a protein biomarker,
such as TNF-α [81]; such antibodies (“quenchbodies”) can be used in various applications,
e.g., in conventional immunoassays.

In Table 2 we have attempted to include most of the AD immunosensors reported to
date that detect specific protein biomarkers, other than autoantibodies, and present their
main characteristics.
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Table 2. AD immunosensors that can detect protein biomarkers other than autoantibodies.

Type of Signal
Transduction

Immunoassay
Principle Protein-Biomarker LoD/

Concentration Range
Autoimmune

Disease Biological Sample References

Optical
(Multi Area Reflectance
Spectroscopy—MARS)

Non-competitive,
sandwich-type

assay

Procalcitonin and
interleukin-6 (IL-6)

2.0 ng mL−1 (PCT) and
0.01 ng mL−1 (IL-6)/
up to 100.0 ng mL−1

(PCT) and
up to 10.0 ng mL−1

(IL-6)

Various inflamma-
tory/autoimmune

diseases
Human serum [74]

Electrochemical
(Cyclic voltammetry

(CV) and
electrochemical

impedance spectroscopy
(EIS))

Non-competitive,
direct-type assay

Oncostatin-M
receptor (sOSMR)

protein

0.42 pg mL−1/
0.005–500 pg mL−1

Systemic sclerosis
(SSc)

Serum from healthy
individuals and SSc

patients
[41]

Electrochemical
(Amperometry)

Non-competitive,
sandwich-type

assay

B cell activation
factor (BAFF) and a

proliferation-
induced ligand

(APRIL)

0.33 pg mL−1 (BAFF)
and 16.4 pg mL−1

(APRIL)
/

1.1–100 pg mL−1 (BAFF)
and 0.05–20 ng mL−1

(APRIL)

Systemic lupus
erythematosus

(SLE)

Serum from healthy
individuals and SLE

patients
[76]

Electrochemical
(Amperometry)

Non-competitive,
sandwich-type

assay

B cell activation
factor (BAFF) and a

proliferation-
induced ligand

(APRIL)

0.08 ng mL−1 (BAFF)
and 0.06 ng mL−1

(APRIL)
/

0.24–120 ng mL−1

(BAFF) and 0.19–25 ng
mL−1 (APRIL)

SLE Serum from SLE
patients [77]

Electrochemical
(Amperometry)

Non-competitive,
sandwich-type

assay
CCL5 chemokine 40 pg mL−1/

0.1–300 ng mL−1
Multiple sclerosis

(MS)

Serum from healthy
individuals and MS

patients
[78]

Electrochemical
(Amperometry)

Non-competitive,
sandwich-type

assay
IL-6 0.42 pg mL−1/

0.97–250 pg mL−1
Rheumatoid
arthritis (RA)

Human serum
(spiked) [22]

Electrochemical
(Amperometry)

Non-competitive,
sandwich-type

assay

CXCL7 chemokine
and MMP3

metalloproteinase

0.8 ng mL−1 (CXCL7)
and 1.2 pg mL−1

(MMP3)/
1–75 ng mL−1 (CXCL7)
and 2.0–2000 pg mL−1

(MMP3)

RA
Serum from healthy
individuals and RA

patients
[79]

Electrochemical
(EIS)

Non-competitive,
direct-type assay

Tumor necrosis
factor α (TNFα)

0.085 pg mL−1/
1–25 pg mL−1

Various inflamma-
tory/autoimmune

diseases

Serum and tears
from healthy
individuals;

cerebrospinal fluid
(CFS) from patients
undergone routine
lumbar puncture

[80]

Electrochemical
(Differential pulse

voltammetry (DPV) and
EIS)

Non-competitive,
direct-type assay

Myelin Basic
Protein (MBP) and

Tau proteins

0.30 nM (MBP) and
0.15 nM (Tau) MS CSF and serum

from MS patients [82]

Electrochemical
(Voltammetry)

Non-competitive,
direct-type assay Insulin 5 pM/

5–200 pM
Diabetes types I and

II
Serum from diabetic

patients [83]

Electrochemical
(EIS)

Non-competitive,
direct-type assay

Interleukin-12
(IL-12)

3.5 pg mL−1/
0.1–500 pg mL−1 MS Fetal bovine serum

(FBS) [84]

Electrochemical
(Amperometry)

Non-competitive,
direct-type assay

Macrophage
migration inhibitory

factor (MIF)

0.02 ng mL−1/
0.03–230 ng mL−1 RA Serum from RA

patients [85]

Electrochemical
(EIS)

Non-competitive,
direct-type assay IL-12 <100 fM MS (Buffer) [86]

In addition to the inflammation/AD-related protein biomarkers shown in Table 2,
a recent review article has presented various analytical assays for HMB1 [87]. HMB1 is
a well-known multifunctional protein associated with severe inflammation storms and
proposed as a prognostic biomarker for COVID-19; an electrochemical immunosensor
prototype for detecting its levels in fluids has been described in this article [87].

In addition to the AD immunosensors, AD aptasensors have been developed for the
detection of biomarkers, such as TNFα, various interleukins, and C-Reactive Protein [88,89].
In these AD aptasensors, the specific anti-analyte antibodies were replaced with especially
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designed and prepared binders, known as aptamers [90]. Moreover, sensors based on
molecularly imprinted polymers have been reported in the literature, e.g., for the detection
of insulin [91].

4. Discussion

Due to the continuously increasing number of patients with ADs, the severity of
ADs’ clinical symptoms, and treatment insufficiency, novel analytical tools enabling early,
reliable, and high-throughput disease diagnosis are highly desirable, since such tools
may help health systems to confront the burden related to the late diagnosis of ADs and
decrease premature mortality. To meet this need, during the last two decades, several
immunosensors for detecting AD-related biomarkers have been developed as research
prototypes.

The AD immunosensors reported to date can be divided into two main groups, de-
pending on the biomarkers they detect, i.e., autoantibodies or other types of protein markers
(Figure 1). All of them are based on a non-competitive (direct or sandwich) immunoassay
principle (Figure 1), at least to the best of our knowledge; while the vast majority of these
are electrochemical, some of them are optical and a few are piezoelectric.

Most of the AD immunosensors reported to date have been applied to the analysis
of human samples, especially blood serum, with very promising results (Tables 1 and 2).
Since complex biological samples contain substances that may cause non-specific binding
and thus affect assay results, the high assay specificity and sensitivity provided by the
AD immunosensors are considered very important. Actually, the LoD values achieved
with AD immunosensors are often remarkably improved as compared with those of the
corresponding well-established ELISA methods; for instance, an LoD of 0.42 pg mL−1 has
been achieved with the electrochemical AD-immunosensor detecting the SSc-associated
AD biomarker, oncostatin M receptor (OSMR), instead of the 312.50 pg mL−1 LoD value
reported for the corresponding gold-standard ELISA method [41]. These highly desired
analytical features may be attributed to particular procedures followed during the im-
munosensors’ design/construction. The latter include special chemical modifications and
functionalization of the sensing surface so as to improve the efficiency of biorecognition
and the generation/amplification of specific vs. non-specific signals. To this end, a series
of blocking materials, most of which are also widely used in conventional immunoassays,
e.g., bovine serum albumin, polyethylene glycol, glycerol, ethanolamine, and Tween-20,
have been used to prevent non-specific interactions on the sensing surface, or as assay-
buffer ingredients. Other chemicals, e.g., hydroxyl- or carboxylic terminated self-assembled
monolayers of alkanethiol, have been used to improve the ratio of specific vs. non-specific
signals, thus enhancing the assay sensitivity and specificity. On the other hand, various
novel materials, such as suitably modified magnetic beads and nanoparticles, along with
other specially designed nanostructures (properly functionalized gold nanoparticles, multi-
walled carbon nanotubes, special types of graphene oxide, etc.), have been employed in the
construction of AD immunosensors (Figures 2 and 3), enabling a decrease in non-specific
noise and amplification of the specific signal. Exploitation of these special nanomate-
rials has also enhanced robustness and miniaturized size of the analytical device (e.g.,
by employing arrays/ensembles of nanoelectrodes), thus providing the opportunity of
point-of-care use of the AD immunosensors.
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Figure 2. Photos, schematics, and images of a piezoelectric immunosensor developed for detecting a
pMN-associated autoantibody biomarker, i.e., anti-phospholipase A2 receptor autoantibody (anti-
PLA2R autoantibody). (a). Instrument photo and cross-sectional schematic view of an in-house-
developed QCM device with a custom-designed microfluidic channel. (b). Photo of a QCM sensing
chip coated with reduced graphene oxide (rGO). (c). Scanning electron microscopy (SEM) of the rGO
coating on the QCM chip. (Reproduced from [44]).
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Figure 3. Photos of an electrochemical immunosensor developed for detecting an MS-associated
protein biomarker, i.e., CCL5 chemokine. The sensor was based on biotinylated capture anti-CCL5
antibodies immobilized on magnetic beads (MBs) pre-coated with neutravidin (Neu), which could
form sandwich-type immunocomplexes with the CCL5 analyte, detection anti-CCL5 antibodies and,
finally, horseradish peroxidase-labeled secondary antibodies; the electrochemical signal is generated
in the presence of the H2O2/hydroquinone system. (1). SPCE: Screen-printed carbon electrode.
(2). Magnet casing prepared in-house from polymethylmethacrylate (PMMA) with an encapsulated
magnet. (3). Addition of the suspension of MBs-Neu-immunocomplexes onto the SPCE-sensing
surface. (4). SPCE with the MBs-Neu-immunocomplexes immersed into a 10 mL electrochemical cell
to measure the electrochemical signal. (Reproduced from [78]).

Due to their promising sensitivity/specificity analytical characteristics, along with a se-
ries of practical advantages offered in many cases, e.g., short analysis time (e.g., 30 min, [44]),
miniaturized size, and/or capability of point-of-care analysis, immunosensors may eventu-
ally be commercialized and substantially contribute to prompt diagnosis of ADs. However,
more research is required before AD immunosensors can be established as reliable clinical
tools contributing to AD diagnosis. In our opinion, future research directions and main
challenges include the following:
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Multi-analyte detection might be a highly active research field in AD immunosensors.
More specifically, efforts should be directed toward detection of a “disease-signature”-type
panel of autoantibodies and/or protein biomarkers rather than a single analyte, which may
greatly increase the clinical specificity of diagnosis. Recent developments in molecular biology
and immunology, as well as further elucidation of disease-associated mechanisms/pathways,
will help to identify/analyze such signature-type panels of biomarkers. On the other hand,
fine-tuned technological/analytical improvements in immunosensors (e.g., further increase in
analytical sensitivity) may help detect AD biomarkers that are present in patients’ samples
prior to the manifestation of symptoms, but at very low concentrations. Progress in the above
areas will further facilitate disease diagnosis/prognosis/follow-up, while it will promote the
precision medicine-approach in ADs [92,93]. Moreover, cost and toxicity of all components of
the AD immunosensors should decrease if large-scale production and wide applicability are
to be achieved. The toxicity issue is important, especially in the case of future implantable
immunosensors, which might serve, e.g., the in vivo monitoring of insulin along with glucose
in patients with various types of diabetes [25].

Another issue associated with further improvement in the AD immunosensor field
is the type of samples analyzed and the way through which these samples are collected.
Actually, most of the samples reported to date are collected from human sera with blood
drawing, or samples that are even more difficult to collect, such as cerebrospinal fluid
(CSF) of MS patients, while tear analysis has been mentioned just once [80], at least to the
best of our knowledge. Thus, more efforts should be directed toward the development
of AD immunosensors suitable for analyzing samples that are easily obtained through
non-invasive methods, e.g., urine or saliva.

Development of immunosensors for AD biomarkers that may allow the real-time
sharing of the results obtained through a smartphone-based or a portable Wi-Fi-based
signal-reading device would enhance the potential for various complex applications and
home self-diagnosis, while it would enable exploitation/integration of the “new era”
technological advances (Internet of things, artificial intelligence, and machine learning)
in the field of AD immunosensors [34,94–97]. To the best of our knowledge, such an
immunosensor has been proposed for the diagnosis of celiac disease [57].

In conclusion, besides their several advantages and strong points, AD immunosen-
sors have not yet been commercialized and/or made available for clinical use. Integra-
tion/exploitation of the most recent technological advances, along with fine-tuned im-
provements in the design/construction of the analytical devices, in combination with
thorough basic research to further elucidate AD pathophysiology mechanisms/pathways
and new potential AD biomarkers, are considered necessary in order to eventually enable
commercialization and wide clinical application of AD immunosensors. People of different
specialties, including engineers, biochemists, immunologists, and medical doctors, can
contribute to the achievement of this goal.
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