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Abstract: As the use of construction robots continues to increase, ensuring safety and productivity
while working alongside human workers becomes crucial. To prevent collisions, robots must recog-
nize human behavior in close proximity. However, single, or RGB-depth cameras have limitations,
such as detection failure, sensor malfunction, occlusions, unconstrained lighting, and motion blur.
Therefore, this study proposes a multiple-camera approach for human activity recognition during
human-robot collaborative activities in construction. The proposed approach employs a particle
filter, to estimate the 3D human pose by fusing 2D joint locations extracted from multiple cameras
and applies long short-term memory network (LSTM) to recognize ten activities associated with
human and robot collaboration tasks in construction. The study compared the performance of human
activity recognition models using one, two, three, and four cameras. Results showed that using
multiple cameras enhances recognition performance, providing a more accurate and reliable means
of identifying and differentiating between various activities. The results of this study are expected
to contribute to the advancement of human activity recognition and utilization in human-robot
collaboration in construction.

Keywords: human pose estimation; human activity recognition; multiple cameras; particle filter;
long short-term memory

1. Introduction

To enhance productivity and address labor shortage and safety concerns, the construc-
tion industry is at the forefront of embracing a range of modern automation technologies.
Among these, robots stand out as one of the most promising technologies capable of revo-
lutionizing the construction landscape. These mechanical marvels possess the remarkable
ability to carry out repetitive or hazardous construction activities with unparalleled speed,
strength, and safety, thereby significantly increasing overall productivity and reducing
fatalities [1-3]. However, the unique cognitive skills possessed by human workers remain
indispensable for certain intricate tasks that demand adaptability and ingenuity. For in-
stance, during drywall installation, a robot may encounter novel challenges that require
fine-tuning the drywall panel or adjusting nailing angles, tasks that demand the quick
thinking and problem-solving prowess of human workers. Recognizing the immense
potential of collaboration between human workers and robots, the construction industry is
now actively pursuing close-proximity human-robot teamwork as a key strategy to harness
the complementary strengths of both. By promoting harmonious collaboration between
these two forces, the construction industry aims to unlock new synergies and optimize
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construction tasks, ultimately achieving a seamless fusion of human expertise and robotic
efficiency [4,5].

Nonetheless, ensuring the safety and productivity of human workers in collaborative
environments presents a significant challenge. Collisions between human workers and
robots can lead to work disruptions, robot malfunctions, and, more critically, severe injuries.
Establishing a safe and harmonious coexistence between human workers and collaborative
robots requires these robots to possess adaptive decision-making abilities, including active
collision avoidance and reactive robotic planning. In this pursuit, the accurate recognition
of human activities plays a pivotal role in the realm of human-robot collaboration [6,7].
Precise human activity recognition empowers robots with the ability to anticipate and
respond to human movement, effectively mitigating the risk of collisions and accidents
in dynamic construction environments. Moreover, the ability to precisely recognize and
understand human activities allows robots to perceive the context and intentions of human
workers, facilitating seamless collaboration and synchronization of actions. As a result,
this level of human activity recognition not only optimizes workflow efficiency but also
enhances the user experience by fostering smooth interaction and effective communication
between humans and robots. It is within this context that accurate human activity recog-
nition becomes the cornerstone of success for the rapidly growing field of human-robot
collaboration in construction, paving the way for safer, more efficient, and harmonious
work environments.

With the rapid advancement in technology, there has been a growing body of research
focused on human activity recognition using motion sensors, lighting sensors, GPS, image
sensors, etc. Among these studies, vision-based approaches have gained considerable atten-
tion due to their non-intrusive nature and real-time identification of diverse activities [8].
Vision-based human activity recognition, primarily relying on pose detection with the
assistance of human skeletons, allows for the extraction of informative features. Human
skeletons provide a spatial representation of body configurations, capturing the spatial re-
lationships and dynamics of movements. This spatial information, combined with reduced
dimensionality, enhances the efficiency of the recognition process. Three-dimensional
estimation of human pose is crucial in this context, as it enables an accurate understanding
and interpretation of various human activities [9]. By capturing the spatial and temporal
relationships among body joints and segments, 3D pose estimation enables the extraction
of significant features that are crucial for discerning between various activities [10-13]. It
aids in identifying subtle variations in body poses and movements, facilitating the discrim-
ination of similar actions or activities with distinct characteristics. Therefore, 3D estimation
of human pose is indispensable in human activity recognition, providing a foundation for
robust and accurate systems capable of understanding and interpreting human actions in
the context of human and robot collaboration in construction.

Numerous studies have investigated 3D human pose estimation using different ap-
proaches, including single-camera, RGB-D camera, and multi-camera methods. The single-
camera approach is a commonly employed technique used to infer the 3D position and ori-
entation of a human from a 2D project obtained through a single camera [14-19]. However,
single camera pose estimation suffers from a lack of depth information and occlusion [20].
The RGB-D camera approach can capture both RGB and depth information simultaneously,
leading to more accurate 3D reconstruction compared to a single-camera approach [21,22].
Nonetheless, RGB-D cameras also have limitations in terms of depth measurement accuracy
at extreme ranges, narrow field of view, and sensitivity to lighting conditions, which can af-
fect the completeness, accuracy and reliability of 3D pose estimation [23]. Researchers have
investigated multi-camera pose estimation techniques to overcome the limitations of single-
camera and RGB-D camera pose estimation. These techniques, including triangulation
and Kalman filtering, present potential solutions [24-28]. However, triangulation heavily
relies on precise feature matching and assumes known camera parameters, making it
vulnerable to occlusion and complex backgrounds. Additionally, the Kalman filter assumes
linearity and Gaussian characteristics, which may not accurately capture the non-linear
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and non-Gaussian aspects of human motion. All in all, while multi-camera pose estimation
holds promise for addressing some of the limitations of single-camera and RGB-D camera
approaches, challenges related to feature matching, camera parameters, and accurately
modeling human motion dynamics remain significant considerations. These challenges can
impact the accuracy and reliability of 3D human pose estimation in complex and dynamic
environments, such as human-robot collaboration tasks in construction settings. Moreover,
in complex environments, such as human-robot collaboration tasks in construction settings,
occlusions can occur frequently, hindering the accurate estimation of 3D human pose.
Occlusions can lead to incomplete or ambiguous feature matching, impacting the reliability
of traditional pose estimation techniques.

To address these challenges, this study proposes a novel multi-camera-based approach
using a particle filter algorithm. The particle filter is employed not only to optimize feature
matching but also to effectively handle occlusions and complex backgrounds. Rather than
relying solely on precise feature matching, the particle filter incorporates probabilistic
models of feature correspondences, facilitating more robust estimation even in demanding
scenarios. The study follows a two-step approach to achieve its objectives. Initially, the
2D locations of human body joints are extracted from multiple camera views. To obtain
comprehensive 3D joint locations, a fusion technique utilizing the particle filter algorithm
is employed, effectively integrating information from various perspectives. Subsequently,
a robust deep learning model is designed to accurately classify activities based on the
extracted joint locations. This two-step process ensures the efficient integration of multi-
view data and enables accurate activity recognition for human-robot collaboration in
construction settings. The novel contributions of this study lie in the effective integration
of multi-view data through the particle filter algorithm, the accurate activity recognition
facilitated by the deep learning model, and the robustness in handling occlusions during
3D pose estimation. These contributions pave the way for safer and more efficient human-—
robot collaboration in construction, showcasing the potential of this approach to advance
the field of construction automation and safety.

The paper is structured as follows. Section 2 provides an overview of the existing
techniques for 3D pose estimation and human activity recognition. Section 3 describes the
proposed methodology, which includes the estimation of 3D human pose, and the use of
LSTM for human activity recognition. In Section 4, the paper presents the data collection
experimental design and model implementation. The activity recognition results for both
single- and multiple-camera approaches, as well as findings and implications are analyzed
and discussed in Section 5, which also includes recommendations for the best approach for
activity recognition. Finally, Section 6 provides a summary of the study;, its limitations, and
suggestions for future research.

2. Related Works

Vision-based pose estimation is essential in human activity recognition as it provides
information about the body’s joint positions and movements. It involves estimating the
spatial locations of various body joints, such as shoulders, elbows, knees, etc. In the context
of human-robot collaboration, 3D human pose estimation becomes particularly valuable.
By estimating the spatial positions of body joints in three-dimensional space, it enhances
the robot’s perception and understanding of human actions. Three-dimensional pose
estimation can be achieved through various means, such as using a single camera, RGB-D
cameras, or multiple cameras.

Single-camera human pose estimation is a widely used technique that involves recon-
structing the 3D position and orientation of a human from a 2D projection captured by a
single camera. Due to its simplicity and cost-effectiveness, it is commonly used in human
pose estimation tasks. Ref. [14] demonstrated the efficacy of this approach in recovering
pose solutions using a single view. Refs. [15,16] introduced an example-based method for
3D pose estimation from single-view image sequences. More recently, ref. [17] proposed a
CNN-based approach to real-time 3D pose estimation using a single fisheye lens camera
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with a wide field of view and egocentric views of a person’s body movements. Refs. [18,19]
introduced a technique for estimating full-body pose from monocular images taken by
a downward-facing fisheye camera installed on a Head-Mounted Display. Ref. [24] de-
veloped a method for estimating globally stable 3D human poses from a single fisheye
camera mounted on a head, using 2D and 3D key points detected by a CNN and motion
priors based on a variational autoencoder. However, single camera pose estimation has
limitations, such as loss of depth information and occlusion. In a single-camera setup, the
lack of depth information can make it challenging to recover the 3D pose from a single
2D image. Occlusion occurs when some parts of the body are obstructed or blocked from
view, leading to pose estimation errors as the missing coordinates of body joints cannot be
inferred from the available data. This encompasses various types of occlusions, such as
self-occlusion where different body parts obstruct each other, occlusion by external objects,
and partial occlusion of human body parts [29].

An RGB-D camera is capable of capturing RGB and depth information simultaneously,
resulting in more accurate 3D reconstruction compared to a single camera setup. The
research outlined in [30] builds upon the utilization of the Microsoft Kinect sensor and
introduces a novel approach to human activity recognition through the application of
machine learning. In another study, a research paper [31] presented an online method for
human activity recognition utilizing RGB-D sequences captured by a Kinect device. The
method employed a combination of multiple fused features, namely depth silhouettes and
human skeletons. Thorough examinations conducted on three standard depth datasets
demonstrated that the proposed approach achieved exceptional outcomes, surpassing
existing methods in the field. Ref. [32] proposed a 3D human pose and camera calibration
tracking approach that utilized three RGB-D Kinect sensors. Ref. [22] used RGB-D videos
to generate a parametric 3D deformable human mesh model for extended pose estimation.
However, RGB-D cameras have a limited range within which they can accurately measure
depth. Objects or body parts that are too far away or too close to the camera may suffer from
depth measurement errors. Furthermore, since RGB-D cameras rely on structured light or
time-of-flight technology to capture depth information, they can be sensitive to lighting
conditions, such as bright or dark environments. Lighting conditions can affect the accuracy
and reliability of depth measurements, which in turn can impact the quality of 3D pose
estimation. In addition, RGB-D data is characterized by its low resolution, which leads to
image noise due to reduced sensitivity. This type of data can be susceptible to interference
from certain materials, such as those that are light-absorbing or transparent [33].

Several studies have aimed to overcome the limitations of single-camera and RGB-D
camera pose estimation through the exploration of multi-camera-based pose estimation.
This approach is more robust than previous methods as it is less susceptible to occlusion
and provides more depth information, making it suitable for real-time tracking of sub-
jects in complex environments where the subject may move quickly and unpredictably.
Refs. [24,25,34] have proposed methods for multi-camera-based 3D pose estimation that use
direct triangulation of 2D joint detections. Ref. [26] have developed a weakly supervised
3D pose estimation approach that combines temporal information and triangulation. They
estimate the 3D pose by triangulating the location of body joints in each camera view. The
3D position of a joint is computed using multiple 2D projections of the same 3D point.
However, triangulation relies on having complete and accurate measurements from all
camera views. In scenarios where some measurements are missing or incomplete, triangu-
lation may struggle to provide reliable pose estimation. Kalman filters can handle missing
or incomplete measurements by utilizing a prediction-correction mechanism. They can
predict the pose based on the dynamic model even when certain measurements are missing
and then update the estimate once the measurements become available. Ref. [27] used
Kalman filter to estimate the internal state of a linear dynamic system from a series of noisy
measurements for trajectory generation to ensure safe human-robot collaboration. Ref. [28]
adopted the extended Kalman filter to estimate the pose using noise covariance matrices
based on the sensor output. However, the Kalman filter assumes a linear relationship
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between the observed data and the hidden state variables, which may not hold true in
reality. The relationship between the observed 2D joint positions and the underlying 3D
pose is highly nonlinear, which can potentially limit the accuracy of the filter.

To overcome the limitations of the linear assumption in the Kalman filter, this study
proposed a particle filter approach, which is a probabilistic technique, for 3D human pose
estimation using a multiple-camera system. A particle filter represents the state estimate as
a collection of particles, each representing a hypothesis about the hidden state. This allows
for the flexible and accurate modeling of complex nonlinear systems. Particle filters offer
robust and accurate 3D human pose estimation, making them well-suited for human-robot
collaboration in construction tasks. Their ability to handle nonlinearities, occlusions, real-
time adaptability, sensor fusion, uncertainty handling, and complex human movements
contribute to improved performance and effectiveness in construction scenarios [35-37].

In the field of 3D skeleton-based human activity recognition, researchers have explored
two main approaches: hand-crafted feature-based methods and deep network-based meth-
ods. Unlike hand-crafted feature-based methods, deep network-based methods leverage
the ability to directly learn features from the data for human activity classification. In recent
years, deep learning-based methods, particularly LSTM networks, have demonstrated
exceptional performance in accurately recognizing and understanding human activities in
the context of human-robot collaboration scenarios. LSTM networks are a type of recurrent
neural network (RNN) specifically designed to model sequences of data [38]. By analyzing
the sequence of 3D pose estimates, LSTM networks can learn the patterns and transitions
between different poses, enabling accurate recognition of the activity being performed.
Additionally, LSTM networks are capable of handling sequences of varying lengths, which
is crucial in human activity recognition since the duration of activities can vary significantly.
Due to these reasons, researchers have proposed LSTM networks as a more sophisticated
approach to capturing the nuances of human actions and various studies have highlighted
their effectiveness [39-41]. As such, LSTM networks offer a promising approach for accu-
rately recognizing human activities, enhancing the understanding of complex movements
observed in construction work, where comprehending the sequence of actions performed
by a worker is essential for understanding the overall workflow and ensuring worker
safety. Therefore, in this study, LSTM networks were employed to identify human activities
based on the 3D joint locations of the human body. By understanding the patterns and
transitions among different poses, LSTM networks facilitate precise classification of diverse
human actions, even in scenarios characterized by unpredictable and imbalanced motion
distributions.

It is also worth exploring methodologies from other fields that have demonstrated
success in target location and detection. For instance, hyperspectral images provide wealthy
spectral information, but processing high-dimensional data with redundant bands poses
challenges. Band selection (BS) addresses this issue by reducing redundancy and focusing
on relevant bands [42]. Additionally, super-resolution mapping (SRM) based on spatial—
spectral correlation enhances mapping results [43]. Adopting insights from spectral imagery
and target detection fields can advance human activity recognition in construction settings.

3. Methodology

In this study, a novel approach is proposed to recognize human activities using a
particle filter in a multiple-camera setting. The study involves a two-step process. Firstly, 2D
location of human body joints are extracted from the camera views. To combine information
from different views and generate 3D joint locations, a fusion method employing a particle
filter is applied. In the second step, a deep learning model is developed to classify the
activities based on the joint locations. LSTM networks are trained using labeled datasets
containing sequences of 3D joint locations corresponding to various human activities,
particularly those related to human-robot collaborative tasks in construction. The trained
LSTM model is then utilized to recognize human activities.
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3.1. Estimating 3D Human Pose Using Particle Filter

An existing human pose estimation technique is used here to extract the 2D joint
locations from an image obtained from a camera. Because the performance of the 3D
pose estimation process depends on the base 2D joint detection technique, the algorithm
should have high accuracy and real-time performance to be effective. In this research, a
state-of-the-art technology called MediaPipe Pose was utilized because it is a pre-trained
model and a standardized pipeline for processing video frames or images. MediaPipe
Pose is one of the cutting-edge technologies that has the capacity for high-fidelity pose
identification and real-time operation. To predict joint locations in relation to the image
coordinates, MediaPipe Pose uses a two-step detector—tracker technique that first finds the
pose region-of-interest (ROI) in the image [44]. The 2D coordinates of 15 main key points
out of 33 landmarks are extracted here from four cameras to be fused for pose estimation.
Figure 1 shows the MediaPipe application for joint detection.

Nose
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: Right shoulder
. Left elbow

: Right elbow

. Left wrist

: Right wrist
Left hip

: Right hip

: Left knee

10: Right knee

11: Left ankle

12: Right ankle
13: Left foot index
14: Light foot index

(a) (®)

© N OUR WN RO

Figure 1. MediaPipe pose detector: (a) all defined human 2D joint locations; (b) 2D joint locations for
extracted for the experiment.

The results of the 2D estimation are considered noisy observation and are used as
inputs by the probabilistic estimation algorithm because the 2D pose estimation algorithm
frequently fails to detect the human pose or generates the wrong pose estimate due to
self-occlusion or occlusions by any object or other bodies. Indeed, since the real world
is in three dimensions, using images that contain two dimensions results in losing one
important part of the information. Hence, it is necessary to generate 3D coordinates using
images taken from different viewpoints.

To combine the data obtained from the multiple cameras and obtain a 3D estimation of
the human pose, the particle filter technique is employed. Particle filter is an algorithm for
estimating unknown internal states based on partial and noisy observations. Particle filter
has several advantages in multi-camera pose estimation. The particle filter algorithm can
handle non-linear and non-Gaussian distributions of data, which is commonly encountered
in multi-camera pose estimation. It also can handle missing or corrupted data, which can
occur due to occlusions or other factors in multi-camera environments. Particle filters
are computationally efficient and can be used in real-time applications. In addition, it
can achieve high accuracy in multi-camera pose estimation by fusing information from
multiple cameras and taking into account the uncertainties in the data. Hence, this study
employs the particle filter algorithm to estimate 3D human pose with the aim of exploiting
its advantages.

In this research, a particle represents a 3D human pose consisting of the three-
dimensional location of 14 joints. Given the camera’s location and orientation, the joints
within each particle are projected onto the camera plane, producing expected locations
on the camera’s image. These projected joint locations serve as expectations. Meanwhile,
the actual joint locations on the captured camera image are detected using a human pose
detector. These detected locations are considered noisy observations due to potential errors
caused by factors like occlusions or lighting conditions. The error between the expectations
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and observations for each joint is defined as the distance, and it is assumed that the error
follows a normal distribution with a mean of 0. To find the most likely human pose that
corresponds to the observed data, the particle filter algorithm iteratively calculates the like-
lihood and performs resampling of the particles. The estimation with the highest likelihood
represents the human pose that is deemed most probable given the observations.

In Algorithm 1, an illustration of the particle filter algorithm is shown used for the
estimation process. It begins with a set of randomly distributed particles (Line 1). Because
it is impossible to predict how humans move, the pose is modeled by a free-rolling ball at
each joint that moves in a random direction (Line 7). After that, the human pose in each
particle is projected to an image plane (Line 11) as if it were caught with the i-th camera,
and the projected joint locations are compared to the observations (Line 12). The Euclidean
distance between two locations is considered a Gaussian random variable and is used
to update the weight of each particle. This is carried out for each pair of expected and
observed joint locations on the image coordinate (Line 13). After that, the weights of the
particles are normalized (Line 16), and another sampling of the particles is done based on
their weights (Line 17). To provide the posterior distribution of the 3D human position, the
particles are iteratively updated such that they reflect the fact that a particle with a high
weight has a higher probability of being resampled.

Algorithm 1 Pseudocode for the particle filter algorithm used in 3D human pose estimation—EstimatePose(N, M, C)

Parameters

N: number of iterations
M: number of particles
C: Set of location and orientation of camera sensors

P = initialize_particle(M) // A particle has 3D locations (x;, yj, z;) of i-th joint for I = 0,...,14
forn=1toN do
fori=1ton(C)do
image[i] = capture_frame(C[i])
end for
form =1toMdo
P[m] += N(0, ) // Pose change as a free rolling ball
W[m] =0
fori=1ton(C) do
// Expectation and observation of 2D locations of joints on the image coord.
expectedy, ; = project_2d(P[m], C[i])
observation; = detect_pose_2d(image)
WI[m] = update(W[m], expectedy, ;, observation;)
end for
end for
W = normalize(W)
P = resample(P, W)
end for
Return estimated pose

3.2. Recognizing Human Activities Using LSTM with 3D Joint Locations

This research utilizes the LSTM model to identify human activities, as it excels in
identifying patterns within time series data [45]. The selection of LSTM networks for
activity recognition is based on their inherent ability to model sequential data and retain
long-term dependencies. LSTM, as a specialized type of RNN model, possesses improved
capabilities in computing hidden states. In contrast to alternative RNN approaches, LSTM
has shown remarkable proficiency in activity recognition and classification and predicting
trajectories [46].

LSTM networks are designed with multiple gates that allow the network to selectively
remember or forget information at each time step. The input gate of an LSTM unit discovers
which value from input should be used to modify the memory as shown in Equation (1).
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Sigmoid function maps values to the range of 0 to 1. and the tanh function gives weightage
to the values which are passed deciding their level of importance ranging from —1 to 1,
expressed in Equation (2).

ip =0 (Wi * [hi—1, xi] + by) M

c¢ = tanh(W, * [h—1, x¢] + bc) @

The forget gate discovers what details are to be discarded from the block as shown
in Equation (3). It is decided by the sigmoid function. It looks at the previous state (h;_1)
and the content input (x;) and outputs a number between 0 (omit this) and 1 (keep this) for
each number in the cell state C;_.

fr=0 Wr*[hg_1y, xe] + by) (3)

In the output gate, the input and the memory of the block are used to decide the
output, expressed in Equation (4). Sigmoid function restricts the output values between 0
and 1. and the tanh function gives weightage to the values which are passed deciding their
level of importance ranging from —1 to 1 and multiplied with output of Sigmoid as shown
in Equation (5). The detailed structure of our model is illustrated in Figure 2.

or =0 (Wo * [h—1y, x¢] + bo) 4
ht = o4 * tanh(Cy) @)
Activity Class Labels
3D Joint Locations :.SS'J(I)VI UL;::; ?::;zl;:::)r ?:g;;::’:)r Softmax Jﬂ
Climbing
: ladder
H .
g .
/N
Dropout A"é"\ A" L\ Egtrl?;;y Measuring
(0.5) "“v ‘;‘:’ Moving
\ ‘ Sitting
/ \ Standing
/ \ Walking
Working
overhead

Figure 2. Network architecture of LSTM model for human activity recognition using 3D joints location.

The process of hyper-parameter optimization, a critical step in fine-tuning the per-
formance of the model, was meticulously conducted using KerasTuner, an indispensable
and powerful tool within the Keras library. This approach allowed us to systematically
explore and select the optimal hyper-parameters, ensuring that the final network com-
prises the most effective configuration. As a result of this process, the ultimate architecture
of the designed network architecture integrates the following chosen components, each
contributing to its overall robustness and accuracy. An LSTM layer of 500 units, followed
by a dropout of 0.5 and two dense layers with size 100. The rectifier linear unit (ReLU)
activation function is used in all hidden layer units. It is common to increase the number
of nodes in the network if the input sequence has many inputs. The reason for this is
that increasing the number of nodes allows the network to learn more complex patterns
and relationships in the input data. This is particularly important when dealing with
high-dimensional input data such as images, videos, and sensor data. However, this also
increases the risk of overfitting the data, which occurs when the network becomes too
specialized to the training data and performs poorly on unseen data. The dropout layer
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prevents individual neurons from becoming too specialized and encourages the network
to learn more generalizable features. This helps to reduce overfitting and improve the
model’s ability to generalize to new data. Moreover, dropout can also be used to reduce the
computational cost of training large LSTM models by randomly dropping out some of the
neurons and thus reducing the number of computations required during training. This can
speed up training time and reduce memory requirements. Since the activity recognition is
a classification problem, the SoftMax activation function is used at the end. The model is
then optimized using the Adaptive Moment Estimation (Adam) optimizer and “categorical
cross-entropy” loss function. The SoftMax activation function is commonly used in the
output layer of a LSTM network to convert the output of the last layer into a probability
distribution over the possible output classes, and the categorical cross-entropy loss is then
calculated by comparing the predicted probabilities with the true labels. The coordinates
information of 15 key points of the body from a past window period will be fed to the model
as an input vector, and the expected output is the probable class of activity performing in
corresponding frame.

4. Experiments
4.1. Data Collection and Model Implementation

Several studies have focused on classifying construction workers” activities. Ref. [47]
identified workers’ activities such as preparing material, placing material, consolidating
material, and plastering walls. Ref. [41] conducted the automatic recognition of workers’
motions in highway construction including standing, walking, bending-up, bending-down,
twisting, and working overhead. Ref. [48] used smartphone-based technology to recognize
activities such as sawing, hammering, turning a wrench, loading, hauling, unloading, and
returning. However, these previous activities did not cover human-robot collaborative
tasks that required working alongside existing construction robots.

To identify human activities associated with human-robot collaborative tasks in con-
struction, this study examined existing construction robots, their functions, and the behav-
iors of collaborative human workers, as shown in Table 1. Although construction robots
can perform several tasks with high accuracy, they still need the assistance of human
co-workers to achieve a proper finish or ensure work quality. To collaborate effectively with
construction robots, certain human behaviors are necessary such as accurate placement,
cleaning up mortar, excavating with a rake, measuring with a tape, and supervision, etc.
Based on their collaborative behaviors, this study identified a total of ten activities of
human workers in conjunction with construction robots. These activities include standing,
sitting, walking, lifting objects, moving objects, kneeling, hammering, measuring, climbing
ladders, and working overhead.

To prepare the training datasets for the activity recognition model, an experiment
capturing videos of a human subject while performing ten different construction activities
was carried out in the laboratory environment. The laboratory space measured 5.49 (1)
meters by 4.57 (w) meters by 2.59 (h) meters, as shown in Figure 3. Four GoPro HEROS8
Black cameras were strategically placed to capture 1080p high-definition footage of the
human subject’s movements from multiple angles. The cameras” horizontal field of vision
(FOV) was set to 118.2 degrees, and the vertical field of view was set to 69.5 degrees
when the linear lens was selected as the camera’s digital lens mode. To enable the multi-
camera system to simultaneously record videos, capturing each frame from different views
concurrently, four cameras need to be synchronized. In the data collection process, the
participant was instructed to produce a distinct and audible clap sound at the beginning and
end of the recording session. This simple yet effective technique served as a synchronization
marker across all camera angles. Using Adobe Premiere Pro (version 23.4), a professional
video editing software, a Multicamera Sequence was created, and the clap sounds were
utilized as synchronization points. This allowed us to precisely align the video clips from
different camera angles during the post-production phase. As a result, the start and end of
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all the different view videos were accurately aligned, facilitating seamless and coherent
further analysis.

Table 1. Existing construction robots and required human-robot collaborative activities.

Manufacturer

Collaborative Human
Workers” Behaviors

Human Workers’

Functions Activities

Construction Robot

Construction Robotics

Semi-Automated Masonry

Accurate placement of the

Lifting the brick, applying bricks, cleaning up excess  Lifting/Moving/Standing/

mortar, and placing each

System (SAM) [49] brick in place mortar, and overs:eeing the Walking
overall project
. . Material Unit Lift lifting and placing Ensuring the accurate cop .
Construction Robotics Enhancer (MULE) heavy material placement of the materials Lifting/Moving
accurate placement of the
Fastbrick Robotics Hardrian X [50] bricklaying bricks, cleaning up Lifting/Moving
excess mortar
Dusty Robotics FieldPrinter / Theometrics Layout and Measuring with tape to Measuring
measurement task ensure the accuracy
Doxel Doxel AI[51] Monitoring job progress Supervision Standing/Walking
Advanced Construction . .. Standing /Walking /Sitting /
v Robotics, Inc. TyBot [52] Rebar tying Supervision gKneelingg &
Eternal Robotics Myro [53] Wall painting Supervision Standing/walking/ climbing

ladder/Working overhead

Camera 2 view

Camera 1 view

€, (0.00,4.57,1.16) & a6 C,(5.49,4.57,1.335)

« >
A

w /S

v

¢, (0.00, 0.00, 1.385) C, (549, 0.00, 1.075)

N .
o g B

(a) Location of Cameras (b) Laboratory Experiment Environment

Figure 3. Laboratory experimental settings.

The experiment involved collecting data on a human subject performing various
human-robot collaboration tasks, including standing, sitting, walking, lifting objects, mov-
ing objects, kneeling, hammering, measuring, climbing ladders, and working overhead.
The videos were captured at a rate of 30 frames per second, with a total length of 22 min and
12 s. After extracting the joint locations of each frame, the resulting dataset contained 15
sets of 3D coordinates, along with their corresponding activity classes. Figure 4 illustrates
that moving objects had the highest-class label distribution in the dataset, while climbing
ladders had the lowest.

To ensure the robustness and applicability of the proposed method in real-world
scenarios, it is essential to consider various factors that may influence the performance of
the equipment. External variables, such as surrounding temperature, lighting conditions,
and environmental complexity, can significantly impact the accuracy and reliability of
the activity recognition system. Temperature fluctuations, for example, may affect the
performance of sensors and cameras, leading to potential variations in data quality. Ad-
ditionally, complex surroundings with cluttered backgrounds or occlusions could pose
challenges for accurate human pose estimation. While conducting experiments under
diverse environmental conditions would provide valuable insights, the scope of the current
study was limited to a controlled environment.
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Figure 4. Number of frames captured for each activity.

The LSTM model requires fixed-length sequences as training data. Therefore, the
dataset was segmented, and each generated sequence (or window) contains 100 records
corresponding to 1.66 s. To ensure continuity between activities, overlapping windows with
an 80% overlap were considered. The dataset used to train the human activity recognition
model consisted of 45 coordinates of 15 joints, which are the model features, and one
activity label, which is the target variable. To evaluate the model’s performance, the data
was split into 65% for training, 15% for testing, and 20% for validation. This step is crucial
in developing accurate and reliable machine learning models. The model was trained for
100 epochs using a learning rate of 0.0002 on both the training and validation data. The
experiments were conducted on a computer with an Intel(R) Core (TM) i7-1195G7 CPU
running at 2.90 GHz, 16 GB RAM, a 64-bit operating system, Windows 11 Home, and Intel
iRIS Xe graphics, using Python 3.10.

4.2. Performance Measurement

The confusion matrix was used to evaluate the performance of the developed models.
It displays the number of instances where the predicted activity matches the actual activity
and where it does not, as shown in Table 2. The rows of the matrix represent the actual
activities, while the columns represent the predicted activities. The diagonal elements
indicate the number of correctly recognized activities, while the off-diagonal elements
represent the misclassified activities.

Table 2. Confusion matrix.

Actual Class

Positive Negative
Predicted cl Positive True positive (TP) False positive (FP)
recicled €1ass Negative False negative (FN) True negative (TN)

Performance metrics, including accuracy, precision, recall, and Fl-score, were also
employed to evaluate the performance of the developed models. Accuracy is a commonly
used performance measure that evaluates how well a model predicts the target variable.
Recall is a metric that measures the ratio of true positive instances to all actual positive
instances. Essentially, it assesses the model’s ability to accurately identify all instances of a
particular activity. Precision, on the other hand, measures the ratio of true positive instances
to all instances that the model predicted as positive. It reflects the model’s ability to avoid
mistakenly recognizing an activity that is not happening. The F-score is a composite
measure that balances the trade-off between recall and precision. It is calculated as the
harmonic mean of recall and precision and ranges from 0 to 1, with 1 indicating optimal
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performance. These metrics help to measure the effectiveness of the models in predicting
the target variable. The calculation process for each evaluation metric is demonstrated in
Equations (6)-(9).

Accuracy = (TN + TP)/(TP + TN +FP + FN) 6)
Precision = TP/ (TP +FP) (7)

Recall = TP/(TP + FN) (8)

Fl-score =2 x (Precision x Recall)/Precision + Recall 9)

In addition, this study used the Precision—-Recall (PR) curve to analyze the trade-off
between precision and recall for various activities. The curve was plotted by calculating
precision and recall values at each threshold and plotting the resulting points. A high
Area Under the Curve (AUC) for the PR curve indicates that the model is achieving high
precision and recall values across a range of decision thresholds, which suggests that the
model is effective in recognizing activities with minimal false positives or false negatives.
Conversely, a low AUC for the PR curve suggests that the model may have low precision,
low recall, or both, indicating poor performance. In this study, the performance of the
proposed approach has been evaluated and compared for one, two, three, and four cameras,
and the results were compared for each performance metric.

5. Results and Discussion
5.1. Experimental Results

Figure 5 presents a comparison of the results of 3D pose estimation using a single
camera versus multiple cameras. When only a single camera was employed, several lower
body key points could not be correctly identified and estimated when it comes to occlusions.
On the other hand, the proposed method could successfully estimate the occluded key
points from the multi-views (see Figure 6a). In the scenario in which the human subject
was sitting, a single camera view was unable to correctly estimate the joint locations of
the left-side body points, but the multiple camera approach correctly identified them (see
Figure 6b). When a human was walking, the right-side key points and the ankles and feet
could not be detected with a single camera, whereas the suggested approach accurately
detected all joint positions by fusing the information collected from the rest of the cameras
(see Figure 6¢).

d*.
L

Mum-camer

=
-

(a) Standing (b) Smmo (c) Walking

Figure 5. Comparison of 3D pose estimation results. Top: using a single camera; bottom: using
multiple cameras.
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Figure 6. Precision-recall curve for the LSTM classification model.

This study aims to evaluate the feasibility of utilizing a multi-camera setup with
a particle filter to accurately recognize human activities. Therefore, the performance of
human activity recognition models using one, two, three, and four cameras were compared.
In single-camera-based models, the 2D locations of joints are utilized. The performance
metrics, precision-recall curves, and confusion matrixes for each activity are shown in
Table 3, Figures 6 and 7, respectively.

Table 3. Performance metrics comparison for each activity.

No. Camera

Single Camera

Two Cameras

Three Cameras

Four Cameras

Activity P R F P R F P R F P R F
Climbing ladder 0.81 0.71 0.76 0.82 0.90 0.86 0.84 0.99 0.91 0.85 0.94 0.89
Hammering 1.00 0.64 0.78 1.00 0.70 0.82 1.00 091 0.95 1.00 1.00 1.00
Kneeling 0.63 0.67 0.65 0.95 0.98 0.97 0.95 0.98 0.97 0.96 1.00 0.98
Lifting object 0.66 0.78 0.72 0.97 0.92 0.95 0.98 1.00 0.99 1.00 1.00 1.00
Measuring 0.82 0.99 0.90 0.81 1.00 0.89 0.93 0.94 0.94 1.00 0.88 0.94
Moving object 0.95 0.92 0.93 0.97 0.97 0.97 0.98 0.98 0.98 1.00 1.00 1.00
Sitting 0.72 0.84 0.77 1.00 0.83 0.91 0.96 1.00 0.98 0.98 0.98 0.98
Standing 0.84 0.68 0.75 0.81 0.99 0.89 0.99 1.00 1.00 1.00 0.99 1.00
Walking 0.89 0.86 0.88 0.87 0.90 0.89 0.99 0.95 0.97 0.97 0.97 0.97
Working Overhead 0.99 0.95 0.97 0.98 0.87 0.92 0.99 0.93 0.96 0.99 0.99 0.99

P: precision, R: recall, and F: F1-score.

The accuracy of the activity recognition through a single camera was found to be
82% and the precision, recall and F-1 score are lower for most of the activity classes

compared to the multiple camera performance. The model demonstrated high precision (i.e.,
generated fewer false alarms) for hammering, moving, and working overhead. Additionally,
the model exhibited higher recall (i.e., accurately recognized the activities) for moving,
measuring, and working overhead.
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Figure 7. Confusion matrix for the LSTM classification model.

When using two cameras, the recognition of activities yielded a 92% accuracy, indi-
cating a noteworthy advancement that ensued by transitioning from 2D data to 3D. The
precision, recall, and F-1 score for the majority of activities were superior when compared
to the single camera’s performance, indicating that using two cameras leads to better
identification of activities and minimizes the possibility of falsely recognizing them. For
example, when it came to hammering, kneeling, lifting objects, moving objects, sitting, and
working overhead, the model achieved a precision close to 1.0. Similarly, the model had
higher recall values for climbing ladder, kneeling, lifting object, moving object, measuring,
standing, walking, and working overhead. These results denote the model’s proficiency in
preventing erroneous positive forecasts for these activities, even in circumstances where
there is occlusion or inadequate visibility. In light of the findings, it can be ascertained
that the implementation of a dual-camera system generally enhances the recognition per-
formance across a wide range of scenarios, thereby offering a more accurate and reliable
means of identifying and differentiating between various activities.

Using the dataset from three and four cameras, the model achieved an accuracy rate of
97% and 98%, respectively, representing significant progress compared to the single-camera
(15%) and the two-camera approach (5%). Also, precision, recall and F1-score increased
significantly for most activities compared with the two-camera approach. For all the
activities except climbing ladder and measuring, both models gained a precision of more
than 0.95, indicating its ability to avoid generating false alarms of these activities. Also, it is
evident from the precision—recall curve that the three- and four-camera approaches have
an area under their curves that is noticeably larger than the other two. On the other hand,
although the AUC of four-camera system is greater than three-camera, other performance
measures are nearly the same with only minor differences in a number of tasks, some in
favor of a four-camera approach and some in the other direction. Overall, these findings
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suggest that using multiple cameras generally enhances the recognition performance,
providing a more accurate and reliable means of identifying and differentiating between
various activities.

5.2. Discussions

This study proposes a human activity recognition model using a multiple camera
system, incorporating particle filter and LSTM. To evaluate the performance, the proposed
model was tested in four different setups using one to four cameras. The results show
that models with high recall and low precision can recognize many activities but generate
false alarms, while models with high precision and low recall miss many activities. Thus, a
human activity recognition model requires high recall and precision values to be accurate,
and a high F1 score is necessary to achieve a good balance between precision and recall.
Figure 8 illustrates that the accuracy, precision, recall, and Fl-score increase with the
increase in number of cameras.

0.98
0.96
0.94
0.92

0.9
0.88
0.86
0.84
0.82

0.8
Single camera Two cameras Three cameras Four cameras

== Accuracy Precision Recall F1-Score

Figure 8. Overall performance metrics comparison.

The single-camera setup had to deal with occlusions and a lack of visibility, resulting
in lower accuracy and performance metrics. However, the two-camera setup significantly
improved the model’s performance, and the three-camera setup showed even better recog-
nition activity due to better visibility. The precision-recall curves also indicate that the areas
under the curve (AUC) of all activity classes increase with the number of cameras, indicat-
ing that the model can recognize activities more accurately without producing many false
positives or false negatives. Overall, the three- and four-camera approach demonstrated
the highest accuracy, precision, recall, and F1 score in recognizing activity using the LSTM
model, even when the human subject is not facing the camera, or some body parts are
occluded by objects in a construction environment. The utilization of multiple cameras in
experimental setup allowed us to capture human actions from different angles, providing
comprehensive data for 3D human pose estimation. This approach yields potential advan-
tages, such as improved accuracy in pose estimation and enhanced activity recognition
performance. By fusing information from multiple cameras, the system can account for
occlusions and obtain a more complete representation of human movements. Moreover, a
multi-camera setup facilitates the generation of 3D joint coordinates, which are crucial for
precise activity recognition.

The proposed multi-camera-based approach offers several advantages, including
enhanced recognition performance and accuracy in 3D human pose estimation and activity
recognition. However, it is crucial to recognize the trade-offs associated with this method,
considering both computational cost and the cost implications of utilizing multiple cameras.
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Utilizing multiple cameras for data fusion and pose estimation may increase the com-
putational burden compared to single-camera or RGB-D camera approaches. The proposed
approach involves several critical components that contribute to the computational cost.
Firstly, the extraction of 2D joint locations from multiple camera views incurs a certain time
overhead. Additionally, the fusion method employing the particle filter algorithm for gen-
erating 3D joint locations introduces further computational complexity, which scales with
the number of cameras used. The integration and synchronization of data from different
viewpoints require significant processing resources. Furthermore, the subsequent deep
learning model, specifically the LSTM network, contributes to the overall time complexity
during the activity recognition phase. The LSTM processes sequential data and may require
extensive computations for accurate classification of human activities.

By analyzing the time complexity and cost implications of each component, it becomes
evident which aspects of the proposed method have the most substantial impact on perfor-
mance. This insight is valuable for identifying potential areas of optimization and making
informed decisions regarding the deployment of the approach in real-world scenarios. In
the experiments conducted in the present study, the time needed for data fusion using four
cameras was measured to be 2.62 times higher than that of using two cameras and 1.48
times higher than that of using three cameras. While using a more powerful computer
system may reduce these times, it is important to note that the computational cost also
translates to actual financial costs. Adding more cameras to the setup may improve accu-
racy and robustness, but it also incurs higher hardware and maintenance expenses. Thus, a
cost trade-off must be carefully considered when deciding the number of cameras to use in
a specific application.

The benefits of improved accuracy and robustness achieved through more cameras
in the multi-camera setup come with the cost of increased computational resources and
financial investment. In real-time applications, where prompt and efficient processing is
essential, the additional computational load and cost implications may become critical
factors in the decision-making process. Therefore, a comprehensive analysis of both com-
putational cost and cost trade-off is warranted and careful consideration should be given
to strike a balance between the number of devices and the desired level of accuracy and
system complexity.

By capturing human actions from multiple camera viewpoints, the proposed system
comprehensively analyzed movements, allowing for a more complete representation of
human actions in collaborative scenarios. The results demonstrated that this approach
achieved a successful balance between accurately recognizing activities and minimizing
false alarms. This is crucial for promoting safe and harmonious human-robot teamwork, re-
ducing the risk of collisions and injuries. Overall, our findings emphasize the effectiveness
of proposed approach in enhancing collaboration between human workers and robots in
construction settings, thus contributing to safer and more efficient work environments. Fur-
thermore, the proposed approach can be also applied to other domains beyond construction
environments, helping to improve safety and efficiency in close-proximity human-robot
collaboration in various industries.

In this study, we applied the particle filter algorithm to estimate 3D human pose
from multiple camera views, given its strengths in handling non-linear and non-Gaussian
systems. The particle filter proved to be well-suited for our specific task, as it effectively
managed the complexities of data fusion and uncertainties involved in 3D pose estimation
from different camera angles. Although a direct comparison with other filtering methods,
such as the Kalman filter, was not conducted, the research aimed to demonstrate the
successful application of the particle filter for determined objectives. While the particle
filter exhibited promising results for 3D pose estimation, it is essential to recognize that
various filtering methods have their strengths and limitations. Future studies could delve
into comparative analyses to explore the performance of different filtering techniques for
similar applications. Overall, findings of this study underscore the efficacy of the particle
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filter in achieving accurate 3D pose estimation from multiple camera views, contributing to
advancements in the field of human pose estimation and multi-camera data fusion.

Despite differences in the dataset and defined activities compared to other experiments,
our results are comparable to previous studies focusing on vision-based HAR. For instance,
Putra et al. [54] achieved significant success in HAR by utilizing multi-view sequences
of raw images and obtaining an impressive 90.3% accuracy. Similarly, Siddiqi et al. [55]
proposed an innovative Maximum Entropy Markov Model (MEMM) incorporating depth
cameras, which led to an outstanding recognition accuracy of 96.3%. While these results
are commendable, it is worth noting that depth cameras represent a recent technological
advancement that provides 3D data, enabling them to capture additional spatial informa-
tion. In contrast, our present study achieves comparable performance using regular 2D
cameras, which are more widely available and cost-effective. This finding highlights the
effectiveness of our method in achieving competitive recognition accuracy without the
need for specialized hardware.

Moreover, our proposed vision-based HAR approach can be compared to studies that
utilize sensor-based data. Agarwal and Alam [56] introduced a lightweight LSTM-RNN
model, achieving an accuracy of 95.78% in predicting human activities. In a separate study,
Antwi-Afari et al. [57] demonstrated impressive results, reporting an accuracy of 97.99%
for an LSTM network using wearable insole sensors to recognize and classify various
uncomfortable working postures. These sensor-based methods have shown promising
outcomes. However, one significant advantage of vision-based HAR over sensor-based
alternatives is its practicality in real-world settings, particularly in construction sites. Many
construction sites are equipped with surveillance cameras for monitoring safety and security.
Leveraging these existing camera systems for HAR eliminates the need for additional
equipment purchases and installations.

Although this study has the potential to contribute significantly to ensuring safe
human-robot collaboration, there are some limitations to its practical use. The limitations
include the dependency of the LSTM model on a large dataset for training to achieve
higher accuracy, the need to explore the proposed model’s performance in recognizing
more activities performed by multiple individuals simultaneously, the reliance on a specific
camera type, and the influence of camera availability and placement on the accuracy,
which may be limited in some areas of the construction site. Moreover, one important
aspect is the incorporation of ablation experiments to perform a systematic analysis of
the method’s individual components” impact on the overall performance. Focusing on
ablation experiments, future studies could aim at understanding the significance of each
module within the approach. Finally, this study was conducted in a controlled laboratory
environment with limited activities. Therefore, there is a future scope of work to be
carried out in real-world construction sites with diverse activities to further validate the
proposed approach.

6. Conclusions

This study presented a novel approach to accurately recognize construction activities
of a worker in close-proximity human robot collaboration using multiple cameras. The
proposed approach used a particle filter algorithm to fuse the 2D joint locations of a human
extracted from multiple viewpoints to estimate the 3D human pose. Using the results
of the estimated 3D human pose, this study recognized ten human activities associated
with human and robot collaborative tasks in construction with the LSTM network. The
results demonstrated that a single-camera approach could accurately recognize activity only
when the subject was facing the camera. The single-camera approach often failed when the
subject turns left or right or is partially occluded. On the other hand, as the multiple-camera
approach could track the joints of the human body even when some of them were not
visible from a particular camera, it resulted in more accurate pose estimation and activity
recognition. The experimental results showed that the proposed approach achieved higher
performance in activity recognition as the number of cameras used increased. The results of
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this study contribute to detecting specific human activities what might be used to identify
any unsafe behavior, such as workers standing too close to a construction robot or a moving
machinery or working close to a robot. More accurate poses with location information and
activity recognition with more accuracy will aid in predicting the future movement of a
worker so that the robot can calculate a safe plan to avoid any collision.

This multi-camera-based approach offers several distinct advantages, including en-
hanced recognition performance and accuracy in 3D human pose estimation and activity
recognition. By integrating information from multiple camera views, the method effectively
manages the complexities of data fusion and uncertainties involved in 3D pose estimation,
leading to reliable results even in challenging scenarios with occlusions. Furthermore,
the vision-based approach demonstrates its practicality and cost-effectiveness by leverag-
ing widely available 2D cameras, making it readily applicable to real-world construction
sites equipped with surveillance cameras. The proposed approach can be useful in con-
struction and for any environment where collaborative work between humans and robots
is necessary.

Nevertheless, there is still room for enhancing the adoption of the proposed approach
in real-world settings. The current study was limited to laboratory experiments conducted
in an enclosed environment with a single individual, rather than in a real construction
site with multiple workers. Additionally, this study only tracked a limited number of
poses of a human subject, while there are likely to be a wide range of poses among
construction workers. Future research should focus on tracking the 3D human pose of
multiple construction workers with varying poses in a real construction site environment.
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