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Frameshift coding sequence variants o

in the LPL gene: identification of two novel
events and exploration of the genotype-
phenotype relationship for variants reported
to date

Guofu Zhang'", Yuepeng Hu'", Qi Yang'", Na Pu', Gang Li", Jingzhu Zhang', Zhihui Tong',
Emmanuelle Masson??, David N. Cooper?, Jian-Min Chen? and Weigin Li"*"

Abstract

Background Lipoprotein lipase (LPL) is the rate-limiting enzyme for triglyceride hydrolysis. Homozygous or com-
pound heterozygous LPL variants cause autosomal recessive familial chylomicronemia syndrome (FCS), whereas
simple heterozygous LPL variants are associated with hypertriglyceridemia (HTG) and HTG-related disorders. LPL
frameshift coding sequence variants usually cause complete functional loss of the affected allele, thereby allowing
exploration of the impact of different levels of LPL function in human disease.

Methods All exons and flanking intronic regions of LPL were Sanger sequenced in patients with HTG-related acute
pancreatitis (HTG-AP) or HTG-AP in pregnancy. Previously reported LPL frameshift coding sequence variants were
collated from the Human Gene Mutation Database and through PubMed keyword searching. Original reports were
manually evaluated for the following information: zygosity status of the variant, plasma LPL activity of the variant
carrier, disease referred for genetic analysis, patient’s age at genetic analysis, and patient’s disease history. SpliceAl
was employed to predict the potential impact of collated variants on splicing.

Results Two novel rare variants were identified, and 53 known LPL frameshift coding sequence variants were col-
lated. Of the 51 variants informative for zygosity, 30 were simple heterozygotes, 12 were homozygotes, and 9 were
compound heterozygotes. Careful evaluation of the 55 variants with respect to their clinical and genetic data gener-
ated several interesting findings. First, we conclude that 6-7% residual LPL function could significantly delay the age
of onset of FCS and reduce the prevalence of FCS-associated syndromes. Second, whereas a large majority of LPL
frameshift coding sequence variants completely disrupt gene function through their "frameshift" nature, a small
fraction of these variants may act wholly or partly as "in-frame" variants, leading to the generation of protein products
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with some residual LPL function. Third, we identified two candidate LPL frameshift coding sequence variants that may
retain residual function based on genotype-phenotype correlation or SpliceAl-predicted data.

Conclusions This study reported two novel LPL variants and yielded new insights into the genotype-phenotype
relationship as it pertains to LPL frameshift coding sequence variants.

Keywords Aberrant splicing, Cryptic splice site, Familial chylomicronemia syndrome, Genotype—phenotype
relationship, Hypertriglyceridemia-related acute pancreatitis, In-frame variant, Lipoprotein lipase, LPL frameshift

variant, Triglyceride, Zygosity

Background

The lipoprotein lipase (LPL) gene (OMIM #609708) is
located on chromosome 8p21.3 and contains 10 exons.
The precursor LPL protein comprises 475 amino acids,
while the mature LPL protein (excluding the 27-amino-
acid signal peptide) comprises 448 amino acids. LPL is
the rate-limiting enzyme for triglyceride (TG) hydroly-
sis [1, 2]. LPL is mainly synthesized in the parenchymal
cells of the heart, skeletal muscle and adipose tissues
[3]. It is transported by glycosylphosphatidylinositol-
anchored high density lipoprotein-binding protein
1 (GPIHBP1) across endothelial cells to the capillary
lumen, where it hydrolyses TG in TG-rich lipoproteins
(e.g., chylomicrons and very low-density lipoprotein)
[4]. Complete or almost complete loss of LPL function
due to biallelic (homozygous or compound heterozy-
gous) LPL variants causes autosomal recessive famil-
ial chylomicronemia syndrome (FCS; also known as
type I hyperlipoproteinemia or LPL deficiency), which
is characterized by extremely high plasma TG levels
(>10 mmol/L (880 mg/dL)) [5]. FCS typically develops
in infancy or early childhood, manifesting as a failure to
thrive, abdominal pain, nausea and vomiting progressing
to acute pancreatitis (AP) and various other symptoms
(e.g., fatigue, irritability, lipemia retinalis, eruptive xan-
thomas on trunk, back and gluteal region, and hepato-
splenomegaly) [5]. Partial loss of LPL function due to
monoallelic (simple heterozygous) LPL variants is associ-
ated with hypertriglyceridemia (HTG) [6, 7].

Severe HTG is a frequent cause of AP [8]. Indeed, HTG
has become the second most common cause of AP in
China, accounting for 14—40% of all AP patients [9-11].
HTG-related AP (HTG-AP) is more severe and is associ-
ated with poorer outcomes than AP due to other etiolo-
gies [9]. Determining the molecular basis of the genetic
predisposition to HTG-AP promises to improve our
options for both prevention and treatment of the dis-
ease. During our routine analysis of genetic risk factors in
patients with HTG-AP, including HTG-AP in pregnancy,
we identified two novel LPL frameshift coding variants
(defined here as simple insertion, simple deletion or com-
plex indel variants that (i) occurred entirely within the
coding sequence of the LPL gene AND (ii) resulted in the

net addition or deletion of an odd number of nucleotides
at the DNA sequence level). LPL frameshift coding vari-
ants usually result in the complete functional loss of the
affected allele, thereby providing a good model system
with which to contrast the complete loss of LPL func-
tion (due to biallelic variants) with the partial loss of LPL
function (due to monoallelic variants) in human disease.
Herein, we describe the identification of two novel LPL
frameshift variants together with several new insights
into the genotype—phenotype relationship obtained
through an exploration of the LPL frameshift coding vari-
ants reported to date.

Methods

Ethics statement

This study was approved by the Ethics Committee of
Jinling Hostipal, Nanjing, China. Informed consent was
obtained from each participant.

Patient description

Diagnoses of HTG-AP and HTG-AP in pregnancy were
made as previously described [12, 13]. Patients #1 and #2
both suffered from HTG-AP during pregnancy.

Patient #1 was a 33-year-old pregnant woman
(31" weeks of gestation). She was admitted to the
emergency department due to heavy paroxysmal upper
abdominal pain and vomiting. Blood examination
revealed chylomicronemia, while the TG level was too
high to measure accurately. The serum level of amylase
was 1235 U/L, and ultrasound examination noted the
presence of peripancreatic fluid collection. On the sec-
ond day, she received an emergency cesarean section for
fetal distress, while 200 mL of chylous abdominal exu-
date was noted during the operation. After delivery, the
patient underwent abdominal computed tomography,
revealing typical morphology of AP. On the fifth day, she
retained a TG level as high as 23.80 mmol/L (2106.3 mg/
dL). She was discharged 17 days later, by which time
her fasting TG level had decreased to 4.86 mmol/L
(430.11 mg/dL). The patient did not report either a per-
sonal or a family history of any disease, with the excep-
tion of gestational diabetes mellitus being diagnosed at
28 weeks of gestation.
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Patient #2 was a 28-year-old female. She experienced
an episode of AP at 38™* weeks of gestation, with a fast-
ing plasma TG level of 35.35 mmol/L (3128.48 mg/dL).
She had received symptomatic and organ function sup-
port treatments at a local hospital, but her condition
did not improve. She was then transferred to our acute
pancreatitis center, where she was diagnosed with mod-
erately severe AP with the complication of acute pan-
creatic necrosis collection. She received comprehensive
treatments, including nutritional support and paracente-
sis drainage. She was discharged 16 days later, by which
time her fasting TG level had decreased to 2.59 mmol/L
(229.22 mg/dL). The patient did not report any personal
or family history of any disease.

Patient #3 was a 43-year-old female. She suffered from
sudden and heavy postprandial abdominal pain with
nausea and vomiting. She was immediately referred to a
local hospital, where a diagnosis of HTG-AP was made
(TG level, 33 mmol/L (2920.5 mg/dL)). Twelve days
later, she was transferred to our center due to dyspnea
and hyperpyrexia and was diagnosed with severe AP.
She was discharged 18 days after admission to our hos-
pital with a fasting TG level of 4.94 mmol/L (437.19 mg/
dL)). The patient reported a three-year history of HTG.
No other personal or family histories of any disease were
documented.

Genetic analysis

Genomic DNA was prepared from peripheral blood cells
by means of a Gentra Puregene Blood kit (Qiagen, Dus-
seldorf, Germany). All exons and flanking intronic regions
of five primary HTG-related genes, LPL, APOAS5 (apoli-
poprotein A5; OMIM #606368), APOC2 (apolipoprotein
C2; OMIM #608083), LMFI (lipase maturation factor 1;
OMIM #611761) and GPIHBP1 (OMIM #612757), were
amplified by polymerase chain reaction (PCR) and subse-
quently Sanger sequenced as previously described [14, 15].
The two novel LPL variants reported in this study were
confirmed by independent PCR amplification and Sanger
sequencing and have been deposited in the ClinVar data-
base (https://www.ncbi.nlm.nih.gov/clinvar/).

Collation and evaluation of previously reported LPL
frameshift coding sequence variants

Previously reported LPL frameshift coding sequence vari-
ants were derived primarily from the Human Gene Muta-
tion Database (HGMD; https://www.hgmd.cf.ac.uk) [16].
This was complemented by a combination of a keyword
search (“LPL” or “lipoprotein lipase” plus “frameshift var-
iant’, “frameshift mutation’, “truncation variant’, “trun-
cation mutation’, “termination variant” or “termination
mutation”) in PubMed and cross-reference examination.

Corresponding original reports were manually evaluated

Page 30f 18

for the following information: zygosity status of the vari-
ant, plasma LPL activity of the variant carrier, disease
referred for genetic analysis, patient’s age at genetic
analysis, and patient’s disease history. Whenever a vari-
ant was detected as simple heterozygotes and homozy-
gotes or compound heterozygotes, only the homozygous
or compound heterozygous state was considered in
this study, the underlying logic being that homozygotes
or compound heterozygotes were usually more exten-
sively described in terms of their accompanying clinical
genetic data and hence potentially more informative with
respect to the genotype—phenotype relationship. Moreo-
ver, whenever an included variant was reported in>2
publications, only the first publication was cited. Fur-
thermore, whenever a variant of interest was coinherited
with an LPL missense variant in trans, the LPL activity
of the missense variant determined by cell transfection
experiments was collated by means of a literature search.
Variant collation and literature review were frozen on 15
March 2023.

SpliceAl prediction

SpliceAl, a 32-layer deep neural network [17] and cur-
rently the most accurate tool for predicting splicing
variants, was employed to predict the impact of LPL
frameshift coding variants and a common LPL intronic
variant (i.e., ¢.1428-11C>T) on mRNA splicing. The pre-
diction was performed at https://spliceailookup.broad
institute.org/ (last accessed on July 26, 2023) using the
following parameters: Genome version, hg38; Score type,
masked; Max distance, 10000. The A score ranges from 0
to 1; the higher the score, the more likely the variant is to
affect splicing. A variant with a A score of <0.20 was con-
sidered unlikely to affect splicing.

Reference sequences and variant nomenclature

NM_000237.3 and NC_000008.11 were used as reference
LPL mRNA and DNA sequences, respectively. All variants
were named in accordance with Human Genome Varia-
tion Society (HGVS) recommendations (http://varnomen.
hgvs.org/) [18], with the A of the translation initiation ATG
codon of the LPL gene being counted as nucleotide + 1. All
variant names at the coding DNA level were verified/nor-
malized at the Leiden University Medical Center (LUMC)
Mutalyzer 3 website (https://mutalyzer.nl/) [19]. Variant
names at the protein level also followed LUMC Mutalyzer
3 except for one variant (i.e., c.767_768insTAAATATT)
that was experimentally determined to result in a transcript
with an in-frame deletion [20]. It is also worth mentioning
that variants reported in the early literature were described
in the context of the 448-amino-acid mature LPL protein
(N.B. The first nucleotide of the mature LPL protein-coding
sequence corresponds to position ¢.82 of NM_000237.3;
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c.1_81 of NM_000237.3 encodes the 27-amino-acid signal
peptide of the LPL preprotein).

Results

Identification of two novel LPL frameshift coding sequence
variants

We first focused on rare (allele frequency of<1% in all gno-
mAD (Genome Aggregation Database; https://gnomad.
broadinstitute.org/) populations) missense, frameshift,
nonsense or splice site variants in the five primary HTG-
related genes, LPL, APOAS, APOC2, LMFI1 and GPIHBPI.
In patients #1 and #2, we identified the same heterozy-
gous single-nucleotide duplication in exon 1 of the LPL
gene, c.32dup (Fig. 1). This variant was deemed to cause
a complete functional loss of the affected allele by virtue
of its frameshift nature; at the protein level, it was termed
p-(Alal12Glyfs*29). The two patients were not known to be
related. However, it remains possible that the disease alleles
were identical by descent.

In patient #3, we identified a heterozygous 13-bp dele-
tion in the LPL gene (Fig. 2a). The 13-bp deletion was
termed c.77_88+ 1del in accordance with HGVS recom-
mendations, but it could alternatively be described as
c.76_88del (Fig. 2b), thereby fulfilling the definition of a
frameshift coding sequence variant (N.B. The HGVS rec-
ommends that “for deletions, duplications and insertions,
the most 3’ position possible is arbitrarily assigned to have
been changed”). For ease of discussion, this latter descrip-
tion was used here to explore the functional consequences

Wild-type
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of the 13-bp deletion. As illustrated in Fig. 2c, the
sequence spanning the junction of ¢.76_88del appeared to
concur with the 5 splice site consensus sequence (see [21]
and references therein). This suggested that the mutant
pre-mRNA would not differ from the wild-type pre-
mRNA in terms of intron 1 splicing. As such, the 13-bp
deletion would also cause a complete functional loss of
the affected allele by virtue of its frameshift nature; at the
protein level, it was termed p.(Ala26Lysfs*13).

Neither c.32dup nor c.77_88+ 1del has previously been
reported in the literature. Neither of them is present in
gnomAD or ClinVar (https://www.ncbi.nlm.nih.gov/clinv
ar) (as of 25 May 2023). We did not identify any other rare
missense, frameshift, nonsense or splice site variants in the
five primary HTG-related genes, LPL, APOAS5, APOC2,
LMFI and GPIHBP], in any of the three patients.

We did not identify any rare synonymous or intronic
variants in the five primary HTG-related genes in any of
the three patients. Variants with an allele frequency of >1%
found in the three patients are listed in Supplementary
Table 1. With the exception of LPL c.1428-11C>T (N.B.
this variant was predicted here, by means of SpliceAl, to
have no effect on splicing), all these variants were anno-
tated as “benign” in terms of their likely clinical signifi-
cance by gnomAD. This notwithstanding, some of these
variants may have functional consequences and may there-
fore predispose to or protect against HTG or HTG-related
disorders. However, such situations would not affect the
pathological relevance of the two novel LPL frameshift

c.32
'

G T G C T G A C T C TG G €C € G T G T G G

c.32dup

Ant N AL

Fig. 1 Sanger sequencing electropherogram showing the heterozygous single-nucleotide duplication c.32dup in exon 1 of the LPL gene. The

variant has been submitted to the ClinVar database
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g

c.76_88del
c.76 c.88

v
5'...GCGGAGGGGTGEEEEEEEECEAC Ctaagttttg...3'

Exon 1 | Intron 1

' ¥ ¥
Wild-type  5'...... AGGGGTGGCCGCCGCCGACCgtaagttttg............ tcctttccagr\AAGAAGA ...... 3
Intron 1 E

Exon 1

xon 2

c.76_88del 5...... AGGGGTﬁgtaagttttg ............ tcctttccaglAAAGAAGA ...... 3

Exon 1 Intron 1 Exon 2
2oV | AAD
d

A type A score @ pre-mRNA position @ REF score @ ALT score ®

Acceptor Loss 2689 bp 0.01 0.01

Donor Loss 0.99 13bp 0.99

Acceptor Gain 0.01 721bp 0.02 0.03

Donor Gain 0.99 Obp 0.99

Fig. 2 Identification of a heterozygous 13-bp deletion in the LPL gene and in silico prediction of its impact on splicing. a Sanger sequencing
electropherogram showing the 13-bp deletion c.77_88+ 1del (nomenclature in accordance with Human Genome Variation Society (HGVS)
recommendations). The variant has been submitted to the ClinVar database. b lllustration showing that c.77_88+ 1del can be alternatively
described as c.76_88del. The exon 1 sequence is shown in the upper case, whereas the intron 1 sequence is shown in the lower case. The canonical
5" splice site GT dinucleotide is highlighted in bold and blue. The start and end positions of the 13-bp deletion in the two alternative nomenclature
versions are indicated by red arrows. ¢ Presumed splicing of the c¢.76_88del LPL pre-mRNA. Normal splicing of the wild-type LPL pre-mRNA is shown
for comparison. The DNA sequence was used here instead of the RNA sequence for illustrative purposes. The obligate dinucleotides from the donor
and acceptor splice sites, gt and ag, are highlighted in bold and blue. It should be noted that the sequence spanning the junction of the c.76_88del
allele conformed to the 5' splice site consensus sequence. The position weight matrix of the 9-bp 5’ splice site signal sequence was taken from [22],
an Open Access article distributed under the terms of the Creative Commons Attribution Noncommercial License. d SpliceAl predicted impact

of ¢.76_88del on splicing. See text for data interpretation

coding variants and hence would not alter the main con-
clusions of this study. Consequently, those variants with an
allele frequency of > 1% will not be discussed further in the
manuscript.

Exploration of the LPL frameshift coding variants reported
thus far

We collated 53 previously reported LPL frameshift cod-
ing variants (Table 1) through a combination of data

acquired from HGMD, PubMed keyword search and
cross-reference examination. Here, it should be empha-
sized that ¢.247_249 + 1del was included as a frameshift
coding variant since it could be alternatively described
as ¢.246_249del (i.e., deletion of the last four nucleo-
tides of exon 2; Supplementary Fig. 1).

The 53 previously reported LPL variants, together
with the 2 newly reported events, were spatially posi-
tioned according to their affected exons (Fig. 3).
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Exon number 1 2 3 4 6 7 8 9 10
Exon size (bp) 88 161 180 112 243 121 183 105 1
c.positions c.1]c.88 c.89 | c.249 c.250 | c.429 c.430 | c.541 c.542 c.775 c.776 c.1018 ¢.1019 |c.1139 c.1140 | ¢.1322 ¢.1323|c.1427 c.1428

¢.10_11insTTCG c.94_98delAGAGA c.431_432AG[3]
c.32dup c.128dup c.438del c.1044_1050fje|
c.46_47del ¢.133_143del C.440_443del €.1081_1082insAGTA 1160 T1oTnsT
¢.77_88+1del ¢.133dup c.483delA C.1M07_TOBINSATTCGAAGA | | = e dineA
¢.183dup ¢.501_502insGAGA Gfﬁgd 01303 1304del
€.247_249+1del GTACCATTCGAGA e up 1306 1307insAGTACCATT
- ¢.1119_1120insACCATTC ¢-1306_1307insAGTACCATTC
c.087 288del <.596de] ¢.1121_1122insAGAGCGC
€.289_294delinsTTTGCCAAAA ¢.599del c.1138_1139del
€.290_293delinsGG c.624del c.1373del
c.312del c.651del c.835_836del .
c.334dup ¢.708delA c.840del
¢.338_339insAGAGTACCATTCGATAC c.742del €.899_921dup
€.348_349insAGTACCATTCGACAGTC ¢.765_766del c.901del
€.373dup €.767_768insTAAATATT | | ¢.953del
¢.377_378insSAGAGTACCATT ¢.769_770insCA ¢.1008del
¢.384delinsTGGGCT ¢.1010_1011insATTCGAGAGC
¢.386_390del ¢.1016_1017insC

Fig. 3 Exon locations of the 55 LPL frameshift coding variants reported to date. The two novel variants reported in the present study
are highlighted in bold. c.77_88+ 1del and c.247_249 + 1del were included because they can be alternatively described as c.76_88del
and c.246_249del, respectively. Bars indicate exons. Note that for exons 1 and 10, only the coding sequences are shown. c.positions, start and end

coding positions of each exon in accordance with NM_000237.3

Allowing for variable exon size, a paucity of frameshift
coding variants was evident in exon 9 compared to the
preceding exons. However, this may represent a chance
finding owing to the small sample size.

We reviewed the corresponding original reports
with respect to variant zygosity and the patient’s
clinical and laboratory characteristics for each vari-
ant (Table 1). Two variants (c.247_249 + 1del [33] and
¢.384delinsTGGGCT [40]) were “unknown” for zygo-
sity status since we were unable to access the full texts
of the original publications. The zygosity status of two
other variants (c.438del [41] and c.708del [46]) was
“uninformative” due to the lack of relevant information
in the original publications. These four variants were
therefore excluded from further discussion in terms of
genotype—phenotype relationships. Of the 51 variants
informative for zygosity, 30 were detected as simple
heterozygotes, 12 were detected as homozygotes, and 9
were detected as compound heterozygotes.

Genotype-phenotype correlations in individuals with simple

heterozygous variants

Simple heterozygous LPL frameshift coding variants were
almost invariably reported in patients with severe HTG
and HTG-related diseases such as HTG-AP or HTG-AP
in pregnancy. Ages at genetic analysis in these patients,
whenever informative, were almost invariably >20 years.
c.483delA represents a notable exception: it was identified
in a 5-month-old girl with glycogen storage disease type

Ib, and the carrier was found to have severe HTG during
laboratory tests in relation to her primary disease [42]. It
is possible that glycogen storage disease type Ib may have
precipitated the early-onset occurrence of severe HTG in
this particular case. Alternatively, this patient may harbor
additional as yet undiscovered pathogenic variant(s) in
the LPL gene or other HTG-related genes.

Genotype-phenotype correlations in individuals

with homozygous variants

Of the 12 homozygous variants identified, 11 can be
assigned as causative for typical FCS or LPL deficiency
based upon disease phenotype, age of disease onset and/or
in vivo LPL activity (Table 1). However, the remaining var-
iant, ¢.767_768insTAAATATT, was identified in a 25-year-
old woman with HTG-AP [20]. The patient reported
abdominal pain on two occasions in the previous two years
but otherwise had no symptoms of FCS. This rather mild
phenotype (by reference to typical FCS) was accounted
for by the fact that c.767_768insSTAAATATT turned out
to be an in-frame variant at the mRNA level, as revealed
by RT-PCR analysis of RNA prepared from the patient’s
peripheral blood cells. Specifically, c.767_768insTAAATA
TT abolished the physiological GT donor site of intron
5 while creating a new splice donor site spanning the 5’
insertion junction, resulting in the generation of a tran-
script with a 9-bp in-frame deletion (precisely, the dele-
tion of the last 9 nucleotides of exon 5 of the wild-type LPL
gene); the mutant transcript would encode a protein with
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an in-frame deletion of 3 amino acids (i.e., Gly256, Leu257
and Gly258); the mutant protein lacking the three amino
acids has been considered to be partially functional [20].
Thanks to the availability of the RT-PCR analysis data,
c.767_768insTAAATATT could confidently be termed
p.Gly256_Gly258del at the protein level. Otherwise, it
would have been termed p.(Leu257Lysfs*10) in accordance
with LUMC Mutalyzer 3.

In summary, of the 12 frameshift coding variants iden-
tified in the homozygous state, one (c.767_768insTAA
ATATT) was conclusively demonstrated to retain resid-
ual LPL function based upon both a combination of clini-
cal information and functional analysis data.

Genotype-phenotype correlations in individuals
with compound heterozygous variants
Of the 9 variants identified as components of compound
heterozygotes, ¢.287_288del and c.440_443del were
identified in the same subject with FCS, who manifested
with failure to thrive and abdominal pain at 3 weeks of
age [34]. A third variant, c.840del, which was coinherited
with a gross deletion of the LPL gene, was identified in a
one-month-old subject with typical FCS [35]. The typical
ECS associated with these three frameshift coding vari-
ants implied that all three of these variants should result
in the complete or almost complete loss of LPL function.
For the remaining 6 variants, the LPL variants inherited
in trans were invariably missense variants. These six
compound heterozygous variants will now be addressed
individually.

c.128dup and p.Asn318Ser: these two variants were
found in a 29-year-old patient with eruptive cutane-
ous xanthomata and an elevated plasma TG concentra-
tion [26]. This late onset of disease could in principle be
accounted for by the residual function of p.Asn318Ser,
which had been experimentally determined to exhibit
60% wild-type activity [27].

c.133_143del and p.Gly215Glu: their carrier had barely
detectable LPL activity (<1% of control levels), exhib-
ited marked HTG at birth and was diagnosed as hav-
ing FCS in childhood [28]. Consistent with this picture,
p.Gly215Glu was experimentally determined to lead to a
near complete functional loss of LPL [29, 30].

€.290_293delinsGG and p.Leu313Pro: the male car-
rier was described to have FCS [36]. However, he was
subjected to genetic analysis at the age of 67, having pre-
viously reported eruptive xanthomata and chylomicrone-
mia during an episode of AP at the age of 53. Moreover,
the patient’s plasma LPL activity was found to be 6.6% of
that of controls. These pieces of clinical and biological
evidence converged with the conclusion that the patient
had a milder phenotype than typical FCS. However, this
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comparatively mild phenotype would be at odds with
p.Leu313Pro’s experimentally determined LPL activity
(i.e.,<1% of wild-type [36]). To account for this discrep-
ancy, we speculate either that c.290_293delinsGG may
retain some residual LPL function or that the in vitro
determined functional loss of the p.Leu313Pro missense
variant may not reflect the variant’s in vivo properties.

c.334dup and p.Argl02Thr: these variants were found
in a one-month-old baby exhibiting severe HTG [38].
Consistent with this phenotype, both variants were
experimentally shown to result in the complete func-
tional loss of the affected LPL allele [38].

c.373dup and p.His273Arg: these variants were iden-
tified in a 3-year-old child with severe HTG [39]. Con-
sistent with this early onset of disease, p.His273Arg
was experimentally determined to exhibit 2% wild-type
activity [39].

c.953del and p.le221Thr: the male carrier of these
variants exhibited a relatively mild clinical phenotype
compared to typical FCS [50]. First, he was genetically
tested for severe HTG at the age of 33, having not pre-
viously reported any other symptoms of FCS. Second,
his plasma LPL activity was 7.5% of that of controls.
However, p.Ile221Thr was experimentally shown to be
associated with an almost complete loss of LPL activ-
ity by two different studies [51, 52], a finding supported
by two clinical findings. First, p.Ile221Thr homozygo-
sity was found in a patient with LPL deficiency (patient
presented at the age of 4 years with a history of hepato-
splenomegaly and abdominal pain; plasma lipid analysis
revealed chylomicronemia with TG levels in excess of
30 mmol/L; plasma LPL activity in this patient was unde-
tectable) [51]. Second, p.lle221Thr and another missense
variant, p.Arg270His (experimentally shown to be associ-
ated with a complete functional loss variant), were identi-
fied in a typical FCS patient who exhibited HTG at birth,
had recurrent episodes of abdominal pain and pancrea-
titis and was noted to have eruptive xanthomas, lipemia
retinalis, and splenomegaly throughout childhood [52].
The in vitro functional analysis data and clinical informa-
tion firmly established that p.Ile221Thr caused complete
functional loss of the affected allele. Consequently, the
mild phenotype of the c.953del and p.lle221Thr com-
pound heterozygote should be conferred by the c.953del
allele, which might retain some residual LPL function.

In short, of the 9 frameshift coding variants identified
in the compound heterozygous state, one (c.953del) was
reasoned to retain some residual LPL function.

Exploring the possibility that some LPL frameshift coding
variants may generate “in-frame” transcripts

As mentioned earlier, ¢.767_768insTAAATATT homozy-
gosity was associated with a mild phenotype. Consistent
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with this, ¢.767_768insTAAATATT has been experimen-
tally shown to affect splicing, thereby generating a tran-
script with a 9-bp in-frame deletion [20]. This prompted
us to explore whether some other LPL frameshift cod-
ing variants could have a similar effect. To this end, we
predicted the potential impact of all 55 LPL variants by
means of SpliceAl (Supplementary Fig. 2). Seven vari-
ants were predicted to have at least one A score of >0.20.
These seven variants will be addressed first.

c.767_768insTAAATATT

This variant was predicted both to disrupt the physi-
ological splice donor site of intron 5 (A score of donor
loss, 0.85; premRNA position, 8 bp) and to create a
new splice donor site spanning the 5" insertion junction
(A score of donor gain, 1.0; premRNA position, -1 bp)
(Supplementary Fig. 2). These predictions are entirely
consistent with the findings from the RT-PCR analysis
of patient-derived blood cells [20].

Three variants with high A scores but with no impact

on splicing

Three variants (i.e., ¢.76_88 (HGVS name, c.77_88 + 1del),
c.246_249del (HGVS name, c¢.247_249+1del) and
¢.1138_1139del) were similar in two respects. First, all
variants served to delete the last nucleotides of the exons
they affected. Second, they were predicted to have the
highest A scores in terms of both splicing types (i.e.,
donor loss and donor gain) and values (0.99 to 1.00)
(Supplementary Fig. 2). Evaluations of the correspond-
ing donor gain and loss positions, however, revealed
that their respective wild-type and mutant pre-mRNA
sequences did not differ in terms of their consequences
for splicing. Taking c.76_88 as an example (Fig. 2d), a
A score of 0.99 for donor loss and a A score of 0.99 for
donor gain suggested that the deletion allele had the same
potential for splicing as the wild-type allele. The donor
loss at the pre-mRNA position 13 bp in the context of the
wild-type allele refers to c.88, whereas the donor gain at
pre-mRNA position 0 bp in the context of the deletion
allele refers to c.75. This indicates that the wild-type and
c.76_88 pre-mRNAs were identical in terms of intron 1
splicing, as depicted in Fig. 2c. The mutant c.76_88del
mRNA sequence (lacking the last 13 nucleotides of exon
1 compared to the wild-type transcript) would thus be
predicted to encode a significantly truncated and non-
functional protein, p.(Ala26Lysfs*14).

In short, the three variants did not affect splicing
despite their very high A scores, thereby excluding the
possibility of generating aberrantly spliced but “in-frame”
transcripts. In other words, all three variants are expected
to result in the complete functional loss of their affected
alleles. Here, it should be noted that one of these variants
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was informative with respect to in vivo LPL activity;
consistent with our predictions, both ¢.1138_1139del
homozygotes exhibited zero plasma LPL activity [54].

One variant potentially affects splicing and leads

to the generation of some “in-frame” transcripts

C.94_98del can be alternatively described as ¢.93_97del,
c.92_96del or c.91_95del (Fig. 4a). Using c¢.91_95del for
prediction, the variant had an acceptor gain A score of
0.53 (at position 8 bp) (Fig. 4b), indicating the activation
of a cryptic acceptor site immediately after the deleted
nucleotides (Fig. 4c). The aberrantly spliced transcript
would be predicted to lack the first 9 nucleotides of
exon 2 (Fig. 4c), thereby encoding a protein with a mis-
sense variant (p.GIn30His) followed by the deletion of
three amino acids (p.Arg31_Asp33del) (Fig. 4d). Given
that these changes are located within the amino termi-
nus of the mature LPL protein (starting at p.Ala28), it is
highly likely that the mutant protein would retain some
residual function. Unfortunately, this postulate cannot
be confirmed (or refuted) by available clinical genet-
ics data because c.94_98del was reported in a subject
with HTG in the heterozygous state [25]. HTG, unlike
autosomal recessive FCS, is a complex and quantita-
tive trait. Finally, it should be noted that ¢.94_98del was
not predicted by SpliceAl to disrupt any physiological
splice donor or acceptor sites (Fig. 4b). Consequently,
c.94_98del may generate a mixture of “normally spliced
but frameshift transcripts” and “aberrantly spliced but in-
frame transcripts”.

Two variants potentially affecting splicing but that do
not generate “in-frame” transcripts
C.899_921dup had a donor loss score of 0.25 and a
donor gain score of 0.41 (Supplementary Fig. 3). This
suggested that the variant allele might generate an
aberrantly spliced transcript in addition to the “nor-
mally spliced but frameshift transcript” However, this
aberrantly spliced transcript is unlikely to encode a
protein product with any LPL function due to the splic-
ing out of the last 149 (not divisible by 3) nucleotides of
exon 6 (Supplementary Fig. 3).

c.1160_1161insT had an acceptor gain score of 0.43
(Supplementary Fig. 4). The aberrantly spliced transcript
is also unlikely to encode a protein product with any LPL
function due to its splicing out of the first 47 (not divis-
ible by 3) nucleotides of exon 8 (Supplementary Fig. 4).

c.953del is among the variants that were not predicted

to affect splicing

None of the remaining 48 variants were predicted to have
a A score of >0.20 (Supplementary Fig. 2). Interestingly,
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a c.89
5'..catatccaatttttcctttccagAAAGAAGAGATTTTATCGACATC..3"'  ¢.94_98del (HGVS)
c.89
5'..catatccaatttttcctttccagAAAGAAGAGATTTTATCGACATC...3"  ¢.93_97del
c.89
5'..catatccaatttttcctttccagAAAGAASAGATTTTATCGACATC...3"  ¢.92_96del
c.89
5'..catatccaatttttcctttccagAAAGAASAGATTTTATCGACATC...3"  ¢.91_95del
b c.91 95del
A type A score @ pre-mRNA position @ REF score @ ALT score @
Acceptor Loss 3bp 0.05
Donor Loss
Acceptor Gain 0.53 8bp 0.53
Donor Gain 0.01 3186 bp 0.23 0.24
c c.89

¥
5'..catatccaatttttcctttccaghAAAGAACGAGATTTTATCGACATCGAAAGTAAATTTGCCCTAA

GGACCCCTGAAGACACAGCTGAGGACACTTGCCACCTCATTCCCGGAGTAGCAGAGTCCGTGGCTACC

TGTCATTTCAATCACAGCAGCAAAACCTTCATGGTGATCCATGGCTGGACGgtaagggaggctet..3”

d
Wild-type
Mutant

MESKALLVLTLAVWLQSLTASRGGVAAADQRRDFIDIESKFALRTPEDTAEDTCH
MESKALLVLTLAVWLQSLTASRGGVAAADH---FIDIESKFALRTPEDTAEDTCH
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khkkhkhkkhkhkhkhkhkkhhkhkhkhkkhhkhhkhkxkkx

Fig. 4 Possible residual function of the LPL c.94_98del variant. a lllustration showing that c.94_98del (nomenclature in accordance with Human
Genome Variation Society (HGVS) recommendations) can be alternatively described as c.93_97del, c.92_96del or c.91_95del. The exon 1
sequence is shown in uppercase letters, whereas the intron 1 sequence is shown in lowercase letters. The canonical 3" splice site ag dinucleotide
is highlighted in bold and blue. Deleted nucleotides in the different nomenclature versions are barred and red. b SpliceAl-predicted results

for c91_95del. ¢ LPL exon 2 and flanking intronic sequences. The exon 1 sequence is shown in uppercase letters, whereas intronic sequences

are shown in lowercase letters. The physiological obligate acceptor and donor dinucleotides (ag and gt) are highlighted in blue. The c.91_95del
variant (red and barred) was predicted by SpliceAl to activate a downstream cryptic splice acceptor site (highlighted in blue and underlined). The
use of this cryptic splice acceptor site would result in a transcript lacking the first 9 bp of exon 2. d Alignment of the mutant and wild-type LPL

preproteins

c.953del, which was previously thought to retain some
residual LPL function, was among these variants.
c.953del had very low donor loss and gain scores (0.07
and 0.08, respectively; Supplementary Fig. 2).

Discussion

LPL is one of the most extensively studied human dis-
ease genes. Hundreds of loss-of-function LPL variants
resulting from the study of FCS, HTG or HTG-related
diseases have been reported in the literature in different
combinations and permutations [16]. Herein, subse-
quent to the identification of two novel LPL frameshift
coding variants in Chinese patients with HTG-AP or

HTG-AP in pregnancy, we embarked on an exploration
of the genotype—phenotype relationship in relation to
the LPL frameshift coding variants reported to date.
This analysis generated some interesting findings. First,
the study of biallelic variants involving LPL frameshift
coding variants in cases with typical FCS or milder
forms of the disease generated important insights into
the clinical importance of the residual function of LPL.
Based upon current data on genotype—phenotype cor-
relations, we conclude that 6-7% residual LPL function
could significantly delay the disease onset age of FCS as
well as reduce the occurrence rate of FCS-associated
syndromes. This is comparable to the situation evident
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with autosomal recessive cystic fibrosis, where 5% nor-
mal CFTR gene expression is sufficient to prevent the
pulmonary manifestations of the disease [59]. Second,
whereas a large majority of LPL frameshift coding vari-
ants completely disrupt gene function through their
"frameshift" nature, a small fraction of these variants
may act wholly or partly as "in-frame" variants, lead-
ing to the generation of protein products with some
LPL function. Third, SpliceAl has been widely used
to predict the potential effects of different types of
variants in many disease genes. For example, we have
recently employed it to aid the classification of pan-
creatitis-associated PRSSI [60] and PNLIP [61]vari-
ants. Herein, SpliceAl perfectly predicted the splicing
effect of ¢.767_768insTAAATATT and suggested that
c.94_98del may be capable of generating some “in-
frame” transcripts. In contrast, c.953del, which was
reasoned by us to retain residual function, was not
predicted by SpliceAl to be capable of generating “in-
frame” transcripts. These latter two variants would be
interesting candidates for in vitro functional analysis.

The frameshift coding sequence variants studied here
were defined solely on the basis of their DNA sequence
change (see Introduction). Given that this type of vari-
ant is not limited to LPL, insights generated from this
study could have implications for the genotype—phe-
notype relationship of frameshift coding sequence
variants in other disease genes. Herein, it is worth not-
ing that other types of variants, such as missense and
synonymous variants, may also lead to "frameshift" or
"in-frame" changes at the RNA level by affecting pre-
mRNA splicing, but this lies out within the scope of the
current study.

Study strengths and limitations

The strengths of our study were that (i) we reported two
novel variants and (ii) we performed the first comprehen-
sive exploration of genotype—phenotype relationships for
the LPL frameshift coding variants reported thus far. One
limitation of our study was the relatively small sample size.

Conclusions

In this study, we reported 2 novel LPL frameshift coding
variants, followed by an exploration of genotype—phe-
notype relationships for the LPL frameshift coding vari-
ants reported to date. Careful evaluation of the 55 LPL
frameshift coding variants with respect to their clinical and
genetic data generated several novel insights, especially
in relation to the importance of residual LPL function in
modifying the age of disease onset and subsequent clinical
expression in the context of autosomal recessive FCS.
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